JPS63245291A - Induction machine controller - Google Patents

Induction machine controller

Info

Publication number
JPS63245291A
JPS63245291A JP62078736A JP7873687A JPS63245291A JP S63245291 A JPS63245291 A JP S63245291A JP 62078736 A JP62078736 A JP 62078736A JP 7873687 A JP7873687 A JP 7873687A JP S63245291 A JPS63245291 A JP S63245291A
Authority
JP
Japan
Prior art keywords
phase difference
current
secondary resistance
induction machine
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62078736A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
真一 小林
Hiroshi Kuromaru
黒丸 広志
Akihiro Hoshino
昭広 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62078736A priority Critical patent/JPS63245291A/en
Publication of JPS63245291A publication Critical patent/JPS63245291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To compensate secondary resistance variation over the whole operating range by providing a secondary resistance compensating block for compensating a secondary resistance variation. CONSTITUTION:A primary voltage signal generator circuit 21 of a secondary resistance compensating block 20 takes out a primary voltage signal from a PWM current control circuit 19. A phase difference detector 22 detects a phase difference theta between a current signal of a current detector 4 and a voltage signal of the primary voltage generator circuit 21. A phase difference estimator 23 obtains an estimated phase difference theta0 between primary current and primary voltage from the current signal and a slip frequency command Ws from a command value setting circuit 14 by using an induction machine model employed in vector control. A subtracter 24 obtains a deviation value between the phase difference theta and the estimated phase difference theta0. A compensating circuit 25 corrects a slip by using a phase deviation value signal theta from the subtracter 24. Thus, a secondary resistance variation is compensated equivalently.

Description

【発明の詳細な説明】 ? 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、誘IJ様を可変速制御する制m+装置に関し
、特に誘導機サーボ装置における誘導機の二次抵抗変動
を補償する手段に関する。
[Detailed description of the invention] ? 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a control m+ device for variable speed control of an induction IJ, and particularly to means for compensating for secondary resistance fluctuations of an induction motor in an induction motor servo device.

〔従来の技術〕[Conventional technology]

従来の一般的な誘導機の駆動法は、定速駆動法であった
。しかるに最近は、可変速駆動法の利用が始まり、ベク
トル制御が応用されるようになった。可変速駆動を行な
う場合、二次抵抗の変動に対する対処手段が必要である
。これまでの対処手段としては、サーミスタ等の温度検
出素子によって検出された温度変化を用いて二次抵抗の
変動を補償する手段、あるいは−次電圧の大きさの変化
を用いて二次抵抗の変動を補償する手段等が知られてい
る。
The conventional general driving method for induction machines has been the constant speed driving method. However, recently variable speed drive methods have begun to be used and vector control has been applied. When performing variable speed drive, a means to deal with fluctuations in secondary resistance is required. Conventional countermeasures include compensation for secondary resistance fluctuations using temperature changes detected by a temperature detection element such as a thermistor, or compensation for secondary resistance fluctuations using changes in the magnitude of the -order voltage. There are known means to compensate for this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

サーミスタ等の温度検出素子によって検出された。8度
変化を用いて二次抵抗の変動を補償する手段は、誘導機
本体に加工を施す必要がある。このため、安価、堅牢と
いう誘導機本来の特徴を生かせない欠点がある。また−
次電圧の大きさの変化を用いて二次抵抗の変動を補償す
る手段は、高速時には利用できるが低速時には利用でき
ないという欠点がある。
Detected by a temperature detection element such as a thermistor. The means for compensating for fluctuations in secondary resistance using an 8-degree change requires processing the induction machine body. For this reason, it has the disadvantage that it cannot take advantage of the inherent characteristics of induction machines, such as being inexpensive and robust. Also-
The disadvantage of using a change in the magnitude of the secondary voltage to compensate for variations in the secondary resistance is that it can be used at high speeds, but not at low speeds.

そこで本発明は、安価、堅牢という誘導機の特徴を生か
しながら、全運転領域に亙り二次抵抗の変動を補償可能
な誘導機のυノ御装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a υ control device for an induction motor that can compensate for fluctuations in secondary resistance over the entire operating range while taking advantage of the features of induction motors such as being inexpensive and robust.

〔問題点を解決するための手段) 本発明は前記問題点を解決し目的を達成するために次の
ような手段を講じた。すなわち、電圧及び周波数を制御
して誘導機を駆動する変換器に、前記誘′#機の一次電
流を励磁電流成分とこの励磁電流成分と直交する電流成
分とに分けて入力し、1lII!御を行なう装置におい
て、前記誘導医の一次電流と一次電圧の位相差を位相差
検出器で検出し、前記y、誘導機一次電流から一次電圧
との位相差を位相差推定器で推定し、前記位相差検出器
の出力と前記位相差推定器の出力との偏差を減算器で得
、この減算器の出力すなわち前記偏差に基づいて補償回
路により前記誘導機の二次抵抗変動を補償するようにし
た。
[Means for Solving the Problems] The present invention takes the following measures in order to solve the above problems and achieve the object. That is, the primary current of the induction machine is divided into an excitation current component and a current component orthogonal to this excitation current component and input into a converter that drives the induction machine by controlling the voltage and frequency, and 1lII! In the device for controlling the induction machine, a phase difference detector detects a phase difference between the primary current and the primary voltage of the induction machine, and a phase difference estimator estimates the phase difference between the primary current and the primary voltage of the induction machine, A subtracter obtains a deviation between the output of the phase difference detector and the output of the phase difference estimator, and a compensation circuit compensates for secondary resistance fluctuations of the induction machine based on the output of the subtracter, that is, the deviation. I made it.

〔作用〕[Effect]

このような手段を閘じたことにより、次のような作用を
呈する。電圧と電流の位相差から二次抵抗変動を検出し
、これを補償するようにしたので、誘導機には何等加工
を施す必要がなく、誘4Ia本来の安価、堅牢という特
徴を生かし得る上、全運転領域にわたり補償可能となる
。 ′ (実施例) 第1図は本発明の一実施例の構成を示すブロック線図で
ある。先ず主回路について説明する。1は変換器として
の電圧形インバータであり、電圧及び周波数を制御して
誘導様2を駆動する。誘導機2の速度はパルスエンコー
ダ3によって検出されるものとなっている。4は電流検
出器であり、誘導機2の一次電流を検出する。
By using such means, the following effects are achieved. Since secondary resistance fluctuations are detected from the phase difference between voltage and current and compensated for, there is no need to perform any processing on the induction machine, and it is possible to take advantage of the inherent low cost and robust characteristics of di-4Ia. Compensation is possible over the entire operating range. (Embodiment) FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. First, the main circuit will be explained. Reference numeral 1 denotes a voltage source inverter as a converter, which drives the induction type 2 by controlling the voltage and frequency. The speed of the induction machine 2 is detected by a pulse encoder 3. A current detector 4 detects the primary current of the induction machine 2.

次に制御系について説明する。破線で囲まれていない部
分が一般的なベクトル制御ブロック10であり、破線で
囲まれている部分が二次抵抗補償ブロック20である。
Next, the control system will be explained. The part not surrounded by the broken line is the general vector control block 10, and the part surrounded by the broken line is the secondary resistance compensation block 20.

先ず一般的なベクトル制御ブロック10について説明す
る。パルスエンコーダ3から出力された誘導12の速度
信号、すなわち誘導機2の回転数に比例した周波数を持
つパルス信号は、F/Vコンバータ11に入力する。F
/Vコンバータ11は、入力周波数に比例した電圧wr
を出力する。
First, a general vector control block 10 will be explained. A speed signal of the induction 12 output from the pulse encoder 3, that is, a pulse signal having a frequency proportional to the rotation speed of the induction machine 2, is input to the F/V converter 11. F
/V converter 11 generates a voltage wr proportional to the input frequency.
Output.

この出力電圧wrは、速度指令器12の速度指令値wr
oと比較器13で比較される。この比較により生じたW
A差Δwrは、指令値設定回路14に入力する。指令値
設定回路14では、入力した速度誤差ΔwrG−基づい
て、すべり周波数指令WSと電流指令とを設定する。す
べり周波数指令WSは加算器15を介して2相発振器1
6に与えられ、電流指令はベクトル演算器17に与えら
れる。2相発振器16は、すべり周波数指令WSのほか
に回転数指令、すべり周波数補正指令を加算器15を介
して供給され、これらに基づいて一次周波数指令を作り
、2相正弦波信号としてベクトル演算器17に出力する
。ベクトル演算器17は、上記2相正弦波信号と前記電
流指令についてベクトル演算を行ない、2相の電流指令
信号を得、これを2相/3相変換器18に出力する。2
相/3相変換器18は、2相で入力した電流指令信号を
3相に変換し、PWM電流制御回路19に出力する。
This output voltage wr is the speed command value wr of the speed command device 12.
o and is compared by a comparator 13. W generated by this comparison
The A difference Δwr is input to the command value setting circuit 14. The command value setting circuit 14 sets a slip frequency command WS and a current command based on the input speed error ΔwrG-. The slip frequency command WS is sent to the two-phase oscillator 1 via an adder 15.
6, and the current command is given to a vector calculator 17. In addition to the slip frequency command WS, the two-phase oscillator 16 is supplied with a rotation speed command and a slip frequency correction command via an adder 15, creates a primary frequency command based on these commands, and outputs the primary frequency command as a two-phase sine wave signal to a vector calculator. Output to 17. The vector calculator 17 performs vector calculation on the two-phase sine wave signal and the current command to obtain a two-phase current command signal and outputs it to the two-phase/three-phase converter 18 . 2
The phase/three-phase converter 18 converts the input current command signal in two phases into three phases and outputs it to the PWM current control circuit 19.

PWM電流制御回路19は電流指令信号に実電流が一致
する様に、PWM変調により電圧形インバータ1に対し
てゲート指令を出力する。
The PWM current control circuit 19 outputs a gate command to the voltage source inverter 1 by PWM modulation so that the actual current matches the current command signal.

次に破線で囲まれた補償ブロック20につりで説明する
。−次電圧信号発生回路21は、前記PWM電流制御回
路から一次電圧信号を取出す回路であり、位相差検出器
22は、前記電流検出器4の電流信号と一次電圧発生回
路21の電圧信号の位相差θを検出する検出器である。
Next, explanation will be given with reference to the compensation block 20 surrounded by broken lines. - The secondary voltage signal generation circuit 21 is a circuit that takes out the primary voltage signal from the PWM current control circuit, and the phase difference detector 22 detects the phase difference between the current signal of the current detector 4 and the voltage signal of the primary voltage generation circuit 21. This is a detector that detects the phase difference θ.

位相差推定器23は、前記電流検出器4からの電流信号
と、指令値設定回路14からのすべり周波数指令WSと
から、ベクトル制御に用いられている誘導機モデルを用
いて、−次電流と一次電圧との推定位相差0口を得、こ
れを出力する。減算器24は、位相差検出器22からの
位相差θと、位相差推定器23からの位相差θ0との偏
差値を求める。補償口  ・路25は、減算器24から
の位相偏差値信号Δ0を用いて、すべりを補正する。か
くして等価的に二次抵抗変動分の補償が行なわれる。
The phase difference estimator 23 calculates the -order current from the current signal from the current detector 4 and the slip frequency command WS from the command value setting circuit 14 using an induction machine model used for vector control. An estimated phase difference of 0 with respect to the primary voltage is obtained and output. The subtracter 24 obtains a deviation value between the phase difference θ from the phase difference detector 22 and the phase difference θ0 from the phase difference estimator 23. The compensation port path 25 uses the phase deviation value signal Δ0 from the subtractor 24 to correct the slip. In this way, the secondary resistance variation is equivalently compensated for.

次に作用について説明するが、本発明の詳細な説明する
に前に、まず本発明の基礎をなす理論について説明する
Next, the operation will be explained, but before giving a detailed explanation of the present invention, the theory underlying the present invention will be explained first.

第2図は誘導n2の一相分の簡易等価回路である。一般
にベクトル制御は、励vn電流Ilの大きさ一定という
条件下において、トルク電流I2を変化させる事により
、トルク制御を行なっている。
FIG. 2 is a simple equivalent circuit for one phase of the induction n2. Generally, vector control performs torque control by changing the torque current I2 under the condition that the magnitude of the excitation vn current Il is constant.

この場合、外部から操作できる但は一次電流の大きさと
周波数のみであり、IlとI2を独立に制御するにはモ
ータ定数が必要である。
In this case, only the magnitude and frequency of the primary current can be controlled from the outside, and motor constants are required to independently control Il and I2.

しかし、モータ定数の一つである二次抵抗R2は、トル
ク決定において重要なパラメータであるが、その値は温
度上昇と共に変化し、その変化幅は40〜50%にもな
る。
However, although the secondary resistance R2, which is one of the motor constants, is an important parameter in determining torque, its value changes as the temperature rises, and the range of change is as much as 40 to 50%.

次に本発明の作用について説明する。第3図は電流・電
圧ベクトルを示す図である。実線は各指令値VS、II
S、12 Sを示す。第2図の等何回路から明らかな様
に、温度上昇につれて二次抵抗R2が大きくなると、I
2が減少し、I2が増加して11’、12’の様な関係
となり、電圧も増加しV′となる。また逆に、R2が減
少すれば、I2が増加しI1が減少するので、電圧も■
“と減少する。
Next, the operation of the present invention will be explained. FIG. 3 is a diagram showing current/voltage vectors. Solid lines indicate each command value VS, II
S, 12S is shown. As is clear from the circuit shown in Figure 2, as the secondary resistance R2 increases as the temperature rises, I
2 decreases and I2 increases, resulting in a relationship such as 11', 12', and the voltage also increases to V'. Conversely, if R2 decreases, I2 increases and I1 decreases, so the voltage also decreases.
“It decreases.

この時の電圧、電流の位相について考えると、R2が増
加した場合には位相差も増加するが、逆にR2が減少し
た場合には位相差も減少する。したがって実電圧、実電
流の位相差と、ベクトル制御に用いたモデルにおける電
圧、電流の位相差とのずれを、R2の変動の検出量とみ
なし冑る。したがって第1図のように構成し、位相差が
「正」となったとき、すべりを増加させ、位相差が「負
」となったとき、すべりを減少さぜる事により、二次抵
抗R2の変動が補償される事になる。
Considering the phase of the voltage and current at this time, when R2 increases, the phase difference also increases, but conversely, when R2 decreases, the phase difference also decreases. Therefore, the deviation between the phase difference between the actual voltage and current and the phase difference between the voltage and current in the model used for vector control is regarded as the detected amount of variation in R2. Therefore, by configuring as shown in Fig. 1 and increasing the slip when the phase difference becomes "positive" and decreasing the slip when the phase difference becomes "negative", the secondary resistance R2 This means that the fluctuations in the amount will be compensated for.

なお本発明は前記実施例に限定されるものではない。例
えば前記実施例では主回路の変換器として電圧形インバ
ータ1を用いた場合を例示したが、電流形インバータ、
サイクロコンバータ等であってもよい。また前記実施例
では、ベクトル制御方式として直交座標方式を用いた例
を示したが、極座標方式であってもよい。このほか本発
明の要旨を逸脱しない範囲で種々変形実施可能であるの
は勿論である。
Note that the present invention is not limited to the above embodiments. For example, in the above embodiment, the voltage source inverter 1 is used as the main circuit converter, but the current source inverter,
It may also be a cycloconverter or the like. Further, in the embodiment described above, an example was shown in which a rectangular coordinate system was used as the vector control system, but a polar coordinate system may also be used. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果] 以上説明したように本発明によれば、安価、堅牢という
誘導機の特徴を生かしながら、全運転領域に亙り二次抵
抗の変動を補償可能な誘導様の副部装置を提供できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide an induction-like sub-section device that can compensate for fluctuations in secondary resistance over the entire operating range while taking advantage of the features of induction motors, such as being inexpensive and robust. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック線図、
第2図および第3図は同実施例の作用を説明するための
図で、第2図は誘導様の簡易的な等価回路図、第3図は
電圧・電流のベクトル図である。 1・・・電圧形インバータ(変換器)、2・・・誘導機
、3・・・パルスエンコーダ、4・・・電流検出器、1
0・・・一般的なベクトル制御ブロック、11・・・F
/V変換器、12・・・速度指令器、13・・・比較器
、14・・・指令値設定回路、15・・・加算器、16
・・・2相発振器、17・・・ベクトル演算器、18・
・・2相/3相変換器、19・・・PWM電流制御回路
、20・・・二次抵抗補償ブロック、21・・・−数置
圧信号発生回路、22・・・位相差検出器、23・・・
位相差推定器、24・・・減算器、25・・・補償回路
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention;
2 and 3 are diagrams for explaining the operation of the same embodiment. FIG. 2 is a simple equivalent circuit diagram of an induction type, and FIG. 3 is a vector diagram of voltage and current. 1... Voltage type inverter (converter), 2... Induction machine, 3... Pulse encoder, 4... Current detector, 1
0...General vector control block, 11...F
/V converter, 12... Speed command device, 13... Comparator, 14... Command value setting circuit, 15... Adder, 16
...Two-phase oscillator, 17... Vector calculator, 18.
...2-phase/3-phase converter, 19... PWM current control circuit, 20... Secondary resistance compensation block, 21... - several positional pressure signal generation circuit, 22... Phase difference detector, 23...
Phase difference estimator, 24... subtractor, 25... compensation circuit.

Claims (1)

【特許請求の範囲】[Claims] 電圧及び周波数を制御して誘導機を駆動する変換器に、
前記誘導機の一次電流を励磁電流成分とこの励磁電流成
分と直交する電流成分とに分けて入力し、制御を行なう
誘導機の制御装置において、前記誘導機の一次電流と一
次電圧の位相差を検出する位相差検出器と、前記誘導機
の一次電流から一次電圧との位相差を推定する位相差推
定器と、前記位相差検出器の出力と前記位相差推定器の
出力との偏差を得る減算器と、この減算器の出力に基づ
いて前記誘導機の二次抵抗変動を補償する補償回路とを
具備したことを特徴とする誘導機の制御装置。
A converter that controls voltage and frequency to drive an induction machine,
In an induction machine control device that performs control by inputting the primary current of the induction machine divided into an excitation current component and a current component orthogonal to this excitation current component, the phase difference between the primary current and the primary voltage of the induction machine is calculated. a phase difference detector for detecting a phase difference, a phase difference estimator for estimating a phase difference between the primary current and the primary voltage of the induction machine, and obtaining a deviation between an output of the phase difference detector and an output of the phase difference estimator. A control device for an induction machine, comprising: a subtracter; and a compensation circuit that compensates for secondary resistance fluctuations of the induction machine based on the output of the subtracter.
JP62078736A 1987-03-31 1987-03-31 Induction machine controller Pending JPS63245291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078736A JPS63245291A (en) 1987-03-31 1987-03-31 Induction machine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078736A JPS63245291A (en) 1987-03-31 1987-03-31 Induction machine controller

Publications (1)

Publication Number Publication Date
JPS63245291A true JPS63245291A (en) 1988-10-12

Family

ID=13670169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078736A Pending JPS63245291A (en) 1987-03-31 1987-03-31 Induction machine controller

Country Status (1)

Country Link
JP (1) JPS63245291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803739B2 (en) 2001-09-04 2004-10-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803739B2 (en) 2001-09-04 2004-10-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling synchronous motor

Similar Documents

Publication Publication Date Title
CN107819416B (en) Control device
US5656911A (en) Circuit for driving permanent-magnet synchronous motor using proportional controller
JP6726390B2 (en) Controller for permanent magnet type synchronous motor
JPH02254987A (en) Method and apparatus for control of induction motor
JP7151872B2 (en) Controller for permanent magnet synchronous machine
JP2006197712A (en) System and method for driving synchronous motor
JP3637209B2 (en) Power converter using speed sensorless vector control
US5726545A (en) Current controlling method for servo motor
JP4667741B2 (en) Induction motor control device
JP7385538B2 (en) Power converter, temperature estimation method and program
JP5556054B2 (en) AC motor control device
JPS63245291A (en) Induction machine controller
US10298158B2 (en) Controller for electric motor
JP3053121B2 (en) Control method of induction motor
KR0148832B1 (en) Vector controller for induction motor
JPH06335278A (en) Tuning of vector control inverter for induction motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP2019221105A (en) Motor drive device
JP7321375B2 (en) motor controller
JPH01136596A (en) Vector controller for induction motor
JP3124019B2 (en) Induction motor control device
JP3797479B2 (en) Induction motor control method
JP2017229127A (en) Device and method for controlling motor
WO2020152785A1 (en) Motor control method and motor control device
JP2023079279A (en) Controller for induction motor