JPS63244673A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS63244673A
JPS63244673A JP62076167A JP7616787A JPS63244673A JP S63244673 A JPS63244673 A JP S63244673A JP 62076167 A JP62076167 A JP 62076167A JP 7616787 A JP7616787 A JP 7616787A JP S63244673 A JPS63244673 A JP S63244673A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor electrode
insulating film
substrate
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076167A
Other languages
Japanese (ja)
Other versions
JP2607508B2 (en
Inventor
Hidehiro Watanabe
秀弘 渡辺
Kazumasa Sunochi
一正 須之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62076167A priority Critical patent/JP2607508B2/en
Publication of JPS63244673A publication Critical patent/JPS63244673A/en
Application granted granted Critical
Publication of JP2607508B2 publication Critical patent/JP2607508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a capacitor electrode from exerting a bad influence on the characteristics of a switching transistor, by burying the capacitor electrode in a position below a substrate surface, and buring thereon an insulating film. CONSTITUTION:A groove 12 is formed on a P-type Si substrate 11, and an element-forming region is isolated in the form of an island. A capacitor electrode 15 made of polysilicon is buried in the groove 12 via insulating films 13, 14. This capacitor electrode 15 at a part except the region for forming a capacitor is buried in a position sufficiently below the substrate surface. On the capacitor electrode 15, an insulating film 16 is buried, the surface of which is made to coincide almost with the substrate surface. Thereby, the channel region of a transistor formed in the vicinity of the substrate 11 surface, and the capacitor electrode can be sufficiently separated, so that the switching transistor is not affected by the capacitor electrode 15 and operates stably.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、MOSトランジスタとMOSキャパシタによ
りメモリセルを構成した半導体記憶装置に係わり、特に
素子分離用溝にキャパシタ電極を埋込んだ半導体記憶装
置に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Field of Application) The present invention relates to a semiconductor memory device in which a memory cell is constituted by a MOS transistor and a MOS capacitor, and particularly relates to a semiconductor memory device in which a memory cell is configured by a MOS transistor and a MOS capacitor, and in particular, to a method for burying a capacitor electrode in an element isolation trench. The present invention relates to an integrated semiconductor memory device.

(従来の技術) 従来、ダイナミックRAM (以下dRAMと略記する
)のメモリセルは、電荷を蓄積することにより情報を保
持するMOSキャパシタと、その電荷を外部回路とやり
とりするスイッチングトランジスタにより構成されてい
る。その構成は、例えば第3図(a)に示すように半導
体基板41上にゲート絶縁膜42を介して設けられた第
1ポリシリコンゲート43により構成されたMOSキャ
パシタと、ゲート絶縁膜44を介して設けられた第2ポ
リシリコンゲート電極45及び基板と逆導電型の高濃度
不純物領域46により構成されたMOSトランジスタと
からなる。なお、図中47は索子分離用の厚い酸化膜、
48は層間絶縁膜である。また、第3図(b)はそのゲ
ート幅方向断面図である。
(Prior Art) Conventionally, a memory cell of a dynamic RAM (hereinafter abbreviated as dRAM) is composed of a MOS capacitor that retains information by accumulating charge, and a switching transistor that exchanges the charge with an external circuit. . For example, as shown in FIG. 3(a), the structure includes a MOS capacitor formed of a first polysilicon gate 43 provided on a semiconductor substrate 41 with a gate insulating film 42 interposed therebetween, and a MOS capacitor formed of a first polysilicon gate 43 provided on a semiconductor substrate 41 with a gate insulating film 44 interposed therebetween. The MOS transistor is composed of a second polysilicon gate electrode 45 and a high concentration impurity region 46 of a conductivity type opposite to that of the substrate. In addition, 47 in the figure is a thick oxide film for cordon separation;
48 is an interlayer insulating film. Further, FIG. 3(b) is a cross-sectional view in the gate width direction.

ところで、蓄積電荷の量はMOSキャパシタのゲート絶
縁膜の厚さ及びキャパシタ面積で決まる。
Incidentally, the amount of accumulated charge is determined by the thickness of the gate insulating film of the MOS capacitor and the area of the capacitor.

従って、情報の安定した書込み及び読出しのためには、
MOSキャパシタの面積を大きくせざるを得ず、これが
メモリセル”の微細化、高密度化を妨げる大きな要因と
なっていた。
Therefore, for stable writing and reading of information,
The area of the MOS capacitor had to be increased, and this was a major factor hindering the miniaturization and higher density of memory cells.

そこで最近、キャパシタ容量を小さくすることなくメモ
リセル占有面積を縮小するために、素子分離領域に溝を
形成し、この溝の側面をキャパシタとして利用するメモ
リセル構造が提案されている。この構造では、平面的な
セル面積を増大することなく、キャパシタ容量を大きく
することができるので、メモリセルの微細化、高密度化
に極めて有効である。
Recently, in order to reduce the area occupied by the memory cell without reducing the capacitance of the capacitor, a memory cell structure has been proposed in which a trench is formed in the element isolation region and the side surfaces of the trench are used as a capacitor. This structure allows the capacitor capacity to be increased without increasing the planar cell area, and is therefore extremely effective in miniaturizing and increasing the density of memory cells.

しかしながら、この種の装置にあっては次のような問題
があった。即ち、キャパシタ電極がトランジスタの周囲
を取囲むように配置されているため、このキャパシタ電
極の影響でスイッチングトランジスタの特性が不安定に
なる虞れがある。特に、キャパシタ形成領域以外の溝に
埋込まれたキャパシタ電極がトランジスタのチャネル領
域に近接しているので、この部分における影響でトラン
ジスタの特性が大きく劣化する虞れがあった。
However, this type of device has the following problems. That is, since the capacitor electrode is arranged so as to surround the transistor, the characteristics of the switching transistor may become unstable due to the influence of the capacitor electrode. In particular, since the capacitor electrode buried in the trench other than the capacitor formation region is close to the channel region of the transistor, there is a possibility that the characteristics of the transistor will be significantly deteriorated due to the influence in this region.

(発明が解決しようとする問題点) このように従来、素子分離用溝にキャパシタ電極が埋込
んだ構造においては、キャパシタ電極がスイッチング用
トランジスタを囲むことになり、且つトランジスタのチ
ャネル領域にキャパシタ電極が近接することになるので
、トランジスタの動作が不安定になると云う問題があっ
た。
(Problems to be Solved by the Invention) Conventionally, in a structure in which a capacitor electrode is embedded in an element isolation trench, the capacitor electrode surrounds the switching transistor, and the capacitor electrode is located in the channel region of the transistor. There was a problem in that the operation of the transistor became unstable because the two transistors were placed close to each other.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、素子分離用溝に埋込まれたキャパシタ
電極がスイッチングトランジスタの特性に悪影響を与え
るのを防止することができ、トランジスタ特性の安定化
をはかり得る半導体記憶装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to prevent the capacitor electrode embedded in the element isolation trench from having an adverse effect on the characteristics of the switching transistor. An object of the present invention is to provide a semiconductor memory device whose characteristics can be stabilized.

[発明の構成] (問題点を解決するための手段) 本発明の骨子は、メモリセルのスイッチングトランジス
タをその周辺に埋込まれたキャパシタ電極の影響から隔
離すべく、キャパシタ電極がトランジスタのチャネル領
域に影響を与えないように、キャパシタ電極を基板表面
よりも低い位置に埋込むことにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is that, in order to isolate the switching transistor of a memory cell from the influence of the capacitor electrode embedded in its periphery, the capacitor electrode is connected to the channel region of the transistor. The purpose is to bury the capacitor electrode at a position lower than the substrate surface so as not to affect the substrate surface.

即ち本発明は、MOSトランジスタ及びMOSキャパシ
タからメモリセルを構成してなり、半導体基板の表面に
設けられた素子分離用溝の一部に上記キャパシタを形成
した半導体記憶装置において、前記溝内の全てに該溝の
壁面に形成された絶縁膜を介してキャパシタ電極を埋込
むと共に、キャパシタ形成領域以外ではキャパシタ電極
の表面が基板表面よりも下方に位置するようにし、且つ
このキャパシタ電極上に基板表面と略同じ高さまで絶縁
膜を埋込むようにしたものである。
That is, the present invention provides a semiconductor memory device in which a memory cell is constituted by a MOS transistor and a MOS capacitor, and in which the capacitor is formed in a part of an element isolation trench provided on the surface of a semiconductor substrate. A capacitor electrode is embedded through an insulating film formed on the wall surface of the groove, and the surface of the capacitor electrode is located below the substrate surface in areas other than the capacitor formation area, and the substrate surface is placed on the capacitor electrode. The insulating film is buried to approximately the same height.

(作用) 本発明によれば、キャパシタ形成領域以外ではキャパシ
タ電極の表面が基板表面よりも低くなるので、基板表面
近傍に形成されるトランジスタのチャネル領域とキャパ
シタ電極とを十分離すことができる。さらに、キャパシ
タ形成領域以外の溝においてキャパシタ電極上に絶縁膜
を埋込んでいるので、トランジスタの周囲はキャパシタ
形成領域を除いて絶縁膜で囲まれることになる。従って
、スイッチングトランジスタはキャパシタ電極からの影
響を受シブることなく、安定した動作が実現される。
(Operation) According to the present invention, since the surface of the capacitor electrode is lower than the substrate surface in areas other than the capacitor formation region, the channel region of the transistor formed near the substrate surface and the capacitor electrode can be sufficiently separated. Furthermore, since the insulating film is buried on the capacitor electrode in the groove other than the capacitor forming region, the transistor is surrounded by the insulating film except for the capacitor forming region. Therefore, the switching transistor is not influenced by the capacitor electrode, and stable operation is realized.

(実施例) 以下、本発明のwlIlを図示の実施例によって説明す
る。
(Example) Hereinafter, wlIl of the present invention will be explained with reference to illustrated examples.

第1図は本発明の一実施例に係わるMO8型dRAMの
メモリセル部の構成を説明するためのもので、(a)は
平面図、(b)は(a)の矢視A−A断面図である。な
お、このメモリセルは、1トランジスタ/1キヤパシタ
からなるものである。
FIG. 1 is for explaining the configuration of a memory cell portion of an MO8 type dRAM according to an embodiment of the present invention, in which (a) is a plan view, and (b) is a cross section taken along arrow A-A in (a). It is a diagram. Note that this memory cell is composed of one transistor/one capacitor.

p型Si基板11に溝12が設けられ、この溝12によ
り素子形成領域が島状に分離されている。
A groove 12 is provided in the p-type Si substrate 11, and the groove 12 separates element formation regions into island shapes.

溝12内には絶縁膜13.14を介してポリSiからな
るキャパシタ電極15が埋込まれている。
A capacitor electrode 15 made of poly-Si is embedded in the groove 12 with an insulating film 13, 14 interposed therebetween.

このキャパシタミル15は、キャパシタ形成領域以外の
部分では基板表面よりも十分低い位置に埋込まれている
。そして、このキャパシタ電極15上に絶縁膜16が埋
込まれ、この絶縁膜16の表面が基板表面と略一致する
ものとなっている。
This capacitor mill 15 is buried at a position sufficiently lower than the substrate surface in a portion other than the capacitor forming region. An insulating film 16 is buried on this capacitor electrode 15, and the surface of this insulating film 16 substantially coincides with the surface of the substrate.

ここで、上記キャパシタ電極15と溝12の側壁に拡散
により形成されたn−117とからMOSキャパシタが
構成されている。また、キャパシタ形成(!4域以外で
は溝側壁の絶縁膜13の厚みは500〜1000人程度
であり、キャパシタ形成領域では溝側壁の絶縁[114
の厚みはそれより十分薄い100人程度となっている。
Here, a MOS capacitor is constituted by the capacitor electrode 15 and the n-117 formed on the side wall of the groove 12 by diffusion. In addition, the thickness of the insulating film 13 on the trench side wall is about 500 to 1000 in areas other than the capacitor formation region (!4), and the thickness of the insulating film 13 on the trench side wall in the capacitor formation region
Its thickness is much thinner than that, at around 100 people.

一方、前記溝12により分割された島状領域(トランジ
スタ形成領域)には、ゲート酸化膜18を介してワード
線となるゲート電極19が形成され、さらにn”112
1.22を形成してMOSトランジスタが構成されてい
る。そして、この基板上に層間絶縁MI23を介してビ
ット線となるへ2配線24が形成されている。
On the other hand, in the island-like regions (transistor formation regions) divided by the grooves 12, gate electrodes 19 which become word lines are formed via gate oxide films 18, and
1.22 to form a MOS transistor. Then, two wirings 24 that become bit lines are formed on this substrate via an interlayer insulation MI23.

次に、上記素子の製造工程について、第2図を参照して
説明する。
Next, the manufacturing process of the above device will be explained with reference to FIG.

まず、第2図(a)に示す如く、p型3i基板11上に
SiO2等のマスク(図示せず)を設け、反応性イオン
エツチング(RIE)等により格子状に溝12を形成し
、複数の島状領域を形成する。
First, as shown in FIG. 2(a), a mask (not shown) such as SiO2 is provided on a p-type 3i substrate 11, and grooves 12 are formed in a grid pattern by reactive ion etching (RIE) or the like. form an island-like region.

続いて、マスクを除去したのち、キャパシタ電極の絶縁
のために、全面にやや厚めの酸化11113を形成する
Subsequently, after removing the mask, a somewhat thick oxide layer 11113 is formed over the entire surface to insulate the capacitor electrode.

次いで、第2図(b)に示す如く、レジストからなるマ
スク31を形成し、キャパシタを形成する部分について
は底部を除きレジストを選択的にエツチングする等して
、酸化膜13を選択エツチングする。これは倒えば、レ
ジスト31ポジ型を用いる場合、キャパシタ側を露光し
て02プラズマでキャパシタ部のレジストを所望厚エツ
チングすることにより可能である。或いは、レジスト3
1上に他のマスクを形成し、キャパシタ部に所定厚のレ
ジスト31を残すようにすることもできる。その後、レ
ジスト31を全て除去してキャパシタ形成領域における
溝12の側壁にn型不純物を拡散してn−型層17を形
成する。このn一層17の形成には、該層を形成する領
域上のみにPSG膜等を被着し、この膜からの同相拡散
等を用いればよい。
Next, as shown in FIG. 2(b), a mask 31 made of resist is formed, and the oxide film 13 is selectively etched by selectively etching the resist except for the bottom portion where a capacitor is to be formed. In other words, when a positive type resist 31 is used, this can be done by exposing the capacitor side and etching the resist in the capacitor portion to a desired thickness using 02 plasma. Or resist 3
It is also possible to form another mask on the capacitor 1 and leave a predetermined thickness of the resist 31 in the capacitor portion. Thereafter, the resist 31 is completely removed and an n-type impurity is diffused into the sidewalls of the trench 12 in the capacitor formation region to form an n-type layer 17. To form this n-layer 17, a PSG film or the like may be deposited only on the region where the layer is to be formed, and in-phase diffusion from this film may be used.

次いで、第2図(C)に示す如く、キャパシタ形成領域
に薄めの絶縁1114を熱酸化等により形成する。続い
て、全面にキャパシタ電極となるポリ3i膜15を堆積
し、これにより溝12内をポリ5iI115で完全に埋
込む。このポリ5il115に対しての不純物の導入は
、堆積と同時でも、最後でも、またことによっては堆積
を数段階に分けたその途中でもよい。
Next, as shown in FIG. 2C, a thin insulator 1114 is formed in the capacitor formation region by thermal oxidation or the like. Subsequently, a poly 3i film 15 that will become a capacitor electrode is deposited on the entire surface, thereby completely filling the groove 12 with poly 5iI 115. The impurity may be introduced into the poly 5il 115 at the same time as the deposition, at the end, or possibly during the deposition which is divided into several stages.

次いで、第2図(d)に示す如く、キャパシタ形成領域
上にはレジスト等のマスク32を形成しておき、ポリ5
1g115をRIE等によりエッチバックする。そして
、キャパシタ形成領域以外ではポリs+gi15の表面
が基板表面よりも下方にくるようにする。
Next, as shown in FIG. 2(d), a mask 32 such as a resist is formed on the capacitor formation area, and a poly 5
1g115 is etched back by RIE or the like. The surface of the polys+gi 15 is placed below the substrate surface in areas other than the capacitor formation region.

次いで、第2図(e)に示す如く、キャパシタ電極15
とゲートとを絶縁するために、キャパシタ形成領域以外
の溝12においてキャパシタ電極15上に埋込み絶縁膜
16を形成し、この絶縁膜16の表面を基板表面と略同
じ高さにする。絶縁116の埋込み形成には、全面に酸
化膜を堆積したのち、この酸化膜を基板表面が露出する
までエッチバックすればよい。このとき、絶縁1115
の表面が基板表面よりも下位にならないように制御する
Next, as shown in FIG. 2(e), the capacitor electrode 15
In order to insulate the substrate and the gate, a buried insulating film 16 is formed on the capacitor electrode 15 in the trench 12 outside the capacitor formation region, and the surface of this insulating film 16 is made to be approximately at the same height as the substrate surface. To form the insulator 116 in a buried manner, an oxide film may be deposited over the entire surface, and then this oxide film may be etched back until the surface of the substrate is exposed. At this time, the insulation 1115
control so that the surface of the substrate is not lower than the substrate surface.

次いで、第2図(f)に示す如く、ゲート酸化膜18を
形成したのち、ゲート電極となるべきポリ5i119を
堆積し、このポリ3i膜19をバターニングしてゲート
電極を形成する。さらに、不純物の拡散によりソース・
ドレイン領域(n +層)21.22を形成する。
Next, as shown in FIG. 2(f), after forming a gate oxide film 18, a poly 5i film 119 which is to become a gate electrode is deposited, and this poly 3i film 19 is patterned to form a gate electrode. Furthermore, due to the diffusion of impurities, the source
Drain regions (n+ layers) 21 and 22 are formed.

これ以降は、通常のdRAMセルの製造工程と同様にし
て、層間絶縁膜23の形成及びビット線25の形成等を
行うことによって、前記第1図に示す如き構造が実現さ
れることになる。
Thereafter, the interlayer insulating film 23 and the bit line 25 are formed in the same manner as in the normal dRAM cell manufacturing process, thereby realizing the structure shown in FIG. 1.

かくして形成された本装置においては、キャパシタ形成
領域以外のキャパシタ電極15が基板表面よりも下方に
埋込まれ、その上に絶縁1116が埋込まれているので
、基板表面部に形成されるトランジスタはキャパシタ形
成領域を除いて厚みの大きな絶縁膜16で囲まれること
になる。しかも、この絶縁膜・16の存在により、トラ
ンジスタのチャネルl1ilKとキャパシタ電極15と
を十分離すことができる。このため、キャパシタ電極が
与えるトランジスタ特性の劣化を防止することができ、
スイッチングトランジスタは安定した特性を示すように
なる。また、絶縁膜13を絶縁1114よりも十分厚く
しているので、溝内にポリS1を埋込んでも素子分離は
十分行うことができる。
In this device thus formed, the capacitor electrode 15 other than the capacitor formation region is buried below the substrate surface, and the insulator 1116 is buried thereon, so that the transistor formed on the substrate surface is The region except for the capacitor formation region is surrounded by a thick insulating film 16. Furthermore, due to the presence of this insulating film 16, the channel l1ilK of the transistor and the capacitor electrode 15 can be separated sufficiently. Therefore, deterioration of transistor characteristics caused by the capacitor electrode can be prevented,
The switching transistor now exhibits stable characteristics. Furthermore, since the insulating film 13 is made sufficiently thicker than the insulating film 1114, element isolation can be achieved sufficiently even if poly S1 is buried in the trench.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記埋込み絶縁膜や溝の側壁に形成する絶
縁膜は酸化膜に限るものではなく、窒化膜その他の絶縁
膜、さらには複数の絶縁膜を積層したものであってもよ
い。さらに、溝の側壁に形成する絶縁膜の厚みは仕様に
応じて適宜変更可能であるが、キャ゛バシタ領域ではキ
ャパシタ容量が大きくなるように薄(、それ以外の領域
では素子分離が確実となるように比較的厚くする必要が
ある。また、ゲート電極、キャパシタ電極はポリSiに
限るものではなく、MO等の金属或いは金属シリサイド
でもよい。さらに、基板としてN型を用いることもでき
るし、キャパシタの形態は仕様に応じて適宜変更可能で
ある。その他、本発明の要旨を逸脱しない範囲で、種々
変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the buried insulating film and the insulating film formed on the side walls of the trench are not limited to oxide films, but may be nitride films or other insulating films, or even a stack of a plurality of insulating films. Furthermore, the thickness of the insulating film formed on the side walls of the trench can be changed as appropriate depending on the specifications, but it should be thin in the capacitor region to increase the capacitance (and in other regions to ensure element isolation). In addition, the gate electrode and capacitor electrode are not limited to poly-Si, and may be made of metal such as MO or metal silicide.Furthermore, an N-type substrate can be used, and the capacitor electrode The form of can be changed as appropriate according to specifications.In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、キャパシタ電極が
トランジスタのチャネル領域に影響を与えないように、
キャパシタ電極を基板表面よりも低い位置に埋込み、且
つその上に絶縁膜を埋込んでいるので、キャパシタ電極
がスイッチングトランジスタの特性に悪影響を与、える
のを防止することができる。従って、トランジスタ特性
の安定化をはかることができ、信頼性の高いメモリセル
構造を実現することが可能となる。
[Effects of the Invention] As detailed above, according to the present invention, the capacitor electrode is prevented from affecting the channel region of the transistor.
Since the capacitor electrode is buried at a position lower than the substrate surface and an insulating film is buried thereon, it is possible to prevent the capacitor electrode from adversely affecting the characteristics of the switching transistor. Therefore, transistor characteristics can be stabilized, and a highly reliable memory cell structure can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる半導体記憶装置の概
略構造を示す平面図及び断面図、第2図は上記装置の製
造工程を示す断面図、第3図は従来の半導体記憶装置の
概略構造を示す断面図である。 11・・・Si基板、12・・・素子分離用溝、13゜
14・・・絶縁膜、15・・・キャパシタ電極、16・
・・埋込み絶縁膜、17・・・n一層、18・・・ゲー
ト酸化膜、19・・・ゲート電極、21.22・・・ソ
ース・ドレイン領域(n 4″層)、23・・・層間絶
縁膜、24・・・Ag配線。 出願人代理人 弁理士 鈴江武彦 (a) (b) 第1図 第2図(1) 第2図(2)
FIG. 1 is a plan view and a cross-sectional view showing a schematic structure of a semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the above device, and FIG. It is a sectional view showing a schematic structure. DESCRIPTION OF SYMBOLS 11... Si substrate, 12... Element isolation groove, 13° 14... Insulating film, 15... Capacitor electrode, 16...
...Buried insulating film, 17...N single layer, 18...Gate oxide film, 19...Gate electrode, 21.22...Source/drain region (N 4'' layer), 23...Interlayer Insulating film, 24...Ag wiring. Applicant's agent Patent attorney Takehiko Suzue (a) (b) Figure 1 Figure 2 (1) Figure 2 (2)

Claims (2)

【特許請求の範囲】[Claims] (1)MOSトランジスタ及びMOSキャパシタからメ
モリセルを構成してなり、半導体基板の表面に設けられ
た素子分離用溝の一部に上記キャパシタを形成した半導
体記憶装置において、前記溝内の全てに該溝の壁面に形
成された絶縁膜を介してキャパシタ電極を埋込むと共に
、キャパシタ形成領域以外ではキャパシタ電極の表面が
基板表面よりも下方に位置し、且つこのキャパシタ電極
上に基板表面と略同じ高さまで絶縁膜を埋込んでなるこ
とを特徴とする半導体記憶装置。
(1) In a semiconductor memory device in which a memory cell is constituted by a MOS transistor and a MOS capacitor, and the capacitor is formed in a part of an element isolation trench provided on the surface of a semiconductor substrate, the capacitor is completely filled in the trench. The capacitor electrode is buried through an insulating film formed on the wall of the groove, and the surface of the capacitor electrode is located below the substrate surface in areas other than the capacitor formation area, and the surface of the capacitor electrode is located at approximately the same height as the substrate surface. A semiconductor memory device characterized by having an insulating film embedded in the top.
(2)前記素子分離用溝の壁面の絶縁膜は、キャパシタ
形成領域よりもそれ以外の領域の方が厚く形成されてな
ることを特徴とする特許請求の範囲第1項記載の半導体
記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the insulating film on the wall surface of the element isolation trench is formed thicker in other regions than in the capacitor formation region.
JP62076167A 1987-03-31 1987-03-31 Semiconductor storage device Expired - Fee Related JP2607508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076167A JP2607508B2 (en) 1987-03-31 1987-03-31 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076167A JP2607508B2 (en) 1987-03-31 1987-03-31 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS63244673A true JPS63244673A (en) 1988-10-12
JP2607508B2 JP2607508B2 (en) 1997-05-07

Family

ID=13597522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076167A Expired - Fee Related JP2607508B2 (en) 1987-03-31 1987-03-31 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JP2607508B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS6239049A (en) * 1985-08-14 1987-02-20 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6254461A (en) * 1985-09-03 1987-03-10 Toshiba Corp Semiconductor memory device
JPS6396950A (en) * 1986-10-13 1988-04-27 Matsushita Electric Ind Co Ltd Semiconductor storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS6239049A (en) * 1985-08-14 1987-02-20 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6254461A (en) * 1985-09-03 1987-03-10 Toshiba Corp Semiconductor memory device
JPS6396950A (en) * 1986-10-13 1988-04-27 Matsushita Electric Ind Co Ltd Semiconductor storage device

Also Published As

Publication number Publication date
JP2607508B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
KR910010167B1 (en) Stack capacitor dram cell and its manufacturing method
US5290726A (en) DRAM cells having stacked capacitors of fin structures and method of making thereof
JPH05206451A (en) Mosfet and its manufacture
US6872629B2 (en) Method of forming a memory cell with a single sided buried strap
US5470778A (en) Method of manufacturing a semiconductor device
KR0139513B1 (en) Semiconductor device
US4921815A (en) Method of producing a semiconductor memory device having trench capacitors
KR20070047572A (en) Semiconductor device and method for forming the same
KR100566411B1 (en) Semiconductor memory device and manufacturing method
JPH05218329A (en) Semiconductor device and its manufacture
US6515326B2 (en) Semiconductor memory device and method of fabricating the same
JPS63244673A (en) Semiconductor memory device
JPH1197529A (en) Manufacture of semiconductor device
JPH0319362A (en) Semiconductor memory and manufacture thereof
JP3063203B2 (en) Semiconductor memory and manufacturing method thereof
JPH0621388A (en) Semiconductor memory and manufacture thereof
JP3120633B2 (en) Semiconductor memory device and manufacturing method thereof
JPS61134058A (en) Manufacture of semiconductor device
JPH0786427A (en) Semiconductor device and its manufacture
KR0151126B1 (en) Method for fabricating a shallow trench stacked capacitor with high integrated dram cell
JPH0621387A (en) Semiconductor memory and manufacture thereof
JPH0434831B2 (en)
KR960001952B1 (en) Method of manufacturing a stacked trench capacitor
JP2969789B2 (en) Method for manufacturing semiconductor memory device
KR100215914B1 (en) Memory cell capacitor fabrication method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees