JPS63242917A - Production of heat resistant alumina complex oxide - Google Patents

Production of heat resistant alumina complex oxide

Info

Publication number
JPS63242917A
JPS63242917A JP62075719A JP7571987A JPS63242917A JP S63242917 A JPS63242917 A JP S63242917A JP 62075719 A JP62075719 A JP 62075719A JP 7571987 A JP7571987 A JP 7571987A JP S63242917 A JPS63242917 A JP S63242917A
Authority
JP
Japan
Prior art keywords
alkoxide
surface area
heat
specific surface
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62075719A
Other languages
Japanese (ja)
Other versions
JPH0333644B2 (en
Inventor
Fujio Mizukami
富士夫 水上
Shuichi Niwa
修一 丹羽
Makoto Toba
誠 鳥羽
Kazuo Shimizu
一男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62075719A priority Critical patent/JPS63242917A/en
Publication of JPS63242917A publication Critical patent/JPS63242917A/en
Publication of JPH0333644B2 publication Critical patent/JPH0333644B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain heat resistant alumina complex oxide, by subjecting a mixed solution of Al alkoxide with one or more kind of alkoxide of Sr, Ba, La and Zr to gelation and heat treatment in the presence of a prescribed oxygen-containing organic compound. CONSTITUTION:An oxygen-containing organic compound having a hydroxyl group linked to tertiary carbon as a functional group is prepared. In the presence of the compound, an Al alkoxide is blended with one or more kind of alkoxide of Sr, Ba, La and Zr to afford a homogeneous solution, which is then is hydrolyzed and subjected to gelation. Then the resultant gel is dried and heat-treated at >=1,000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性機能材料として有用なアルミナ複合酸化
物に関し、特に高温下で使用される触媒やセンサーなど
の担体として用いられるアルミナ複合酸化物に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an alumina composite oxide useful as a heat-resistant functional material, and in particular to an alumina composite oxide used as a support for catalysts, sensors, etc. used at high temperatures. It is related to.

(従来の技術) 簡単で使い易いという大きな長所を有する炎燃焼は有史
以前から人類の生活、 iiF!!に暖房に、内燃機関
になどと広範に利用されてきた。
(Conventional technology) Flame combustion, which has the great advantage of being simple and easy to use, has been used in human life since prehistoric times, iiF! ! It has been widely used for heating, internal combustion engines, etc.

しかしながら、炎燃焼には、(1)窒素酸化物や一酸化
炭素のような有害物質を発生する。
However, flame combustion (1) generates harmful substances such as nitrogen oxides and carbon monoxide;

(2)煤や悪臭を伴なう未燃焼物を生成する、(3)エ
ネルギー効率が低い、(4)燃料・空気比が特定の狭い
範囲にならなければならない、などの制約や欠点があり
、これらは住環境の保全、エネルギー資源の効率的な利
用などの面から、近年大きな社会問題となってきている
There are limitations and disadvantages such as (2) producing unburned substances with soot and bad odor, (3) low energy efficiency, and (4) the fuel/air ratio must be within a specific narrow range. In recent years, these problems have become a major social problem from the viewpoint of preserving the living environment and efficiently using energy resources.

炎燃焼の上述のような欠点を改善するには、燃焼時に触
媒を利用する触媒燃焼法が有効とされており、種々の触
媒が調製され検討されている。しかし、大気汚染物質の
大半を排出している自動車エンジン、ジェットエンジン
、石油ストーブ、ガスタービンおよびボイラーなどの燃
焼では一部の乗用車の場合を除き、満足すべき触媒は見
出されていない、これはこれらの機器における燃焼が8
00−1500℃と著しく高温であり、この高温に充分
耐え得る触媒がないことが1つの大きな理由である。
In order to improve the above-mentioned drawbacks of flame combustion, a catalytic combustion method that uses a catalyst during combustion is considered to be effective, and various catalysts have been prepared and studied. However, no satisfactory catalyst has been found for combustion in automobile engines, jet engines, kerosene stoves, gas turbines, boilers, etc., which emit most of the air pollutants, except in the case of some passenger cars. The combustion in these devices is 8
One major reason is that there are no catalysts that can sufficiently withstand this high temperature.

そこで、このような高温下で使用しうる触媒やセンサー
の担体となる高耐熱性材料の開発が要求されている。
Therefore, there is a need to develop highly heat-resistant materials that can be used as carriers for catalysts and sensors that can be used at such high temperatures.

一般に、触媒担体としては比表面積や耐熱性の点から、
活性炭、シリカ、アルミナ、チタニア、ジルコニア、ゼ
オライトなどが頻繁に用いられている。しかしながら、
いずれも1000℃以上の高温では熱安定性が悪く、耐
熱性に優れているとされているアルミナでさえも、10
00℃以上では表面積の小さいコランダム構造のα−ア
ルミナへと急激に変化し、高温下における触媒やセンサ
ーなどの担体としての役割を果すことが不可能である。
In general, catalyst carriers are selected from the viewpoint of specific surface area and heat resistance.
Activated carbon, silica, alumina, titania, zirconia, zeolites, etc. are frequently used. however,
Both have poor thermal stability at high temperatures of 1000℃ or higher, and even alumina, which is said to have excellent heat resistance, has a
At temperatures above 00°C, it rapidly transforms into α-alumina with a corundum structure and a small surface area, making it impossible to serve as a carrier for catalysts, sensors, etc. at high temperatures.

このため、アルミナに別種の金属酸化物を混入させ、耐
熱性を上げる試みが種々検討され、La O−AI:L
203系材料(特開昭60−226414)やBa0−
Au203系材料(Chemistr7Letters
、1985年P151〜154.表面1988年、Vo
124.No、11,658 )など、従来にない耐熱
性の良いものも見出されてきている。
For this reason, various attempts have been made to improve heat resistance by mixing different metal oxides into alumina, and LaO-AI:L
203 series materials (JP-A-60-226414) and Ba0-
Au203-based material (Chemist7Letters
, 1985, P151-154. Surface 1988, Vo
124. No. 11,658) and other materials with unprecedented heat resistance have been discovered.

上記のLa  O−A文。03系材料、BaO−AI;
L203系材料ともに大量の水の存在下による共沈法に
よって調製されており、La O−AfL203系材料
は1000℃以上の焼成で比表面積85m″/g、12
00℃の燃焼で37m’/gを示し、BaO−Au20
3系材料は1100℃の焼成で100ゴ/g。
La O-A sentence above. 03 series material, BaO-AI;
Both L203-based materials are prepared by a coprecipitation method in the presence of a large amount of water, and the La O-AfL203-based material has a specific surface area of 85 m''/g and 12
It showed 37 m'/g when burned at 00℃, and BaO-Au20
Type 3 materials have a yield of 100 go/g when fired at 1100°C.

1200℃の焼成で50d1gを示すことが報告されて
いる。
It has been reported that 50d1g is obtained when fired at 1200°C.

(発明が解決しようとする問題点) しかしながら、自動車や航空機などの極めて高速で排出
されるガスや、芳香族化合物などの触媒表面上でコーキ
ングを起し易い燃料を考えた場合、より高い比表面積が
必要であり、既存のものでは不充分である。また、一般
に実用燃焼触媒では、まず耐熱性の支持体(ムライトや
コシエライトなどのハム二カ構造体)に耐熱性担体を乗
せ、次に活性成分を乗せる段階的な調製方法がとられる
ので、前記2種の担体のように共沈法で粉体として得ら
れるものは、支持体への付着が容易でなく大きな問題が
あることがわかっている。
(Problem to be solved by the invention) However, when considering gases emitted at extremely high speeds from automobiles and aircraft, and fuels that tend to cause coking on the catalyst surface, such as aromatic compounds, the specific surface area of is necessary, and the existing ones are insufficient. Furthermore, in general, practical combustion catalysts are prepared in a stepwise manner by first placing a heat-resistant support (hamnica structure such as mullite or cosierite) on a heat-resistant support, and then placing an active ingredient thereon. It has been found that the two types of carriers obtained as powders by the coprecipitation method have a major problem because they do not adhere easily to the support.

従って本発明はかかる従来技術の問題点を克服し、高温
度下においても高い比表面積を保持する耐熱性担体材料
の製造方法を提供することを目的とするものである。
Therefore, it is an object of the present invention to overcome the problems of the prior art and to provide a method for producing a heat-resistant carrier material that maintains a high specific surface area even at high temperatures.

(問題点を解決するための手段) 本発明者らは、前記目的を達成すべく、アルミナと異種
金属酸化物の複合化方法と耐熱性の向上について、鋭意
研究を重ねた結果、ある種の多官能基含酸素有機化合物
の存在下で、アルミニウムアルコキシドと異種のアルコ
キシドとを加水分解すると、前記*機化合物によりアル
コキシドの加水分解および脱水縮重合反応が制御され、
均質性が高く、シかも高い比表面積を示す複合酸化物が
得られるという事実を見出し、この知見に基づいて本発
明をなすに至った。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have conducted intensive research on a method for compounding alumina and dissimilar metal oxides and on improving heat resistance. When aluminum alkoxide and a different type of alkoxide are hydrolyzed in the presence of a polyfunctional oxygen-containing organic compound, the hydrolysis and dehydration condensation reaction of the alkoxide are controlled by the *organic compound,
It was discovered that a complex oxide having high homogeneity and a high specific surface area can be obtained, and the present invention was completed based on this knowledge.

すなわち本発明は複数の官能基を有する少なくとも1種
の含酸素有機化合物の存在下で、アルミニウムアルコキ
シドと、ストロンチウムアルコキシド、バリウムアルコ
キシド、ランタニウムアルコキシドおよびジルコニウム
アルコキシドから選ばれた少なくとも1種とを混合して
均一溶液とし、次いでこの溶液を加水分解してゾルを形
成させたのちゲル化させ、ゲルを乾燥後1000℃以上
で熱処理することを特徴とする#熱性アルミナ複合酸化
物の製造方法を提供するものである。
That is, the present invention mixes aluminum alkoxide and at least one selected from strontium alkoxide, barium alkoxide, lanthanium alkoxide, and zirconium alkoxide in the presence of at least one oxygen-containing organic compound having a plurality of functional groups. To provide a method for producing a #thermal alumina composite oxide, which comprises: preparing a homogeneous solution by hydrolyzing the solution, forming a sol, gelling it, drying the gel, and then heat-treating it at 1000°C or higher. It is something.

本発明に用いられる複数の官能基を有する含酸素有機化
合物(以下単に多官Iオ基台酸素化合物という)は、官
能基の1つとして水酸基を持ち、水酸基の少なくとも1
つが三級の炭素に結合しているものが好ましい、このよ
うなものとして、例えば、ヘキシレングリコール(2−
メチル−2,4−ベンタンジオール)、ビナフール(2
,3−ジメチル−2,3−ブタンジオール)、ジアセト
ンアルコールなどを挙げることができ、このような多官
能基台酸素化合物は金属アルコキシドと錯体形成反応を
起したり、配位子交換反応を起したりすることによって
、金属アルコキシドと錯体を形成する。
The oxygen-containing organic compound having a plurality of functional groups (hereinafter simply referred to as a polyfunctional I-based oxygen compound) used in the present invention has a hydroxyl group as one of the functional groups, and at least one of the hydroxyl groups
is preferably bonded to a tertiary carbon, such as hexylene glycol (2-
methyl-2,4-bentanediol), binafur (2
, 3-dimethyl-2,3-butanediol), diacetone alcohol, etc. Such polyfunctional oxygen compounds can cause complex formation reactions with metal alkoxides or undergo ligand exchange reactions. Forms complexes with metal alkoxides.

生じた錯体はもとのアルフキシトとは、加水分解反応や
脱水縮重合反応において異った挙動を示す、このため、
このような性質を利用して、金属アルコキシド間の加水
分解・縮重合反応を制御することが可能である。すなわ
ち、多官能基含酸素有機化合物によって、金属アルコキ
シドの加水分解・縮重合反応が制御・WR節されるため
に、ゾル化およびゲル化が統ル1され、均質で良く混ざ
り合った耐熱性に優れたアルミナ複合酸化物が得られる
ことになる0本発明では、また、多官能基含酸素化合物
を2種以上混合して使用することも可能で、これは使用
するアルコキシド原料に応じて、適宜行われる。
The resulting complex behaves differently from the original alphexite in hydrolysis reactions and dehydration condensation reactions, and therefore,
Utilizing such properties, it is possible to control hydrolysis and polycondensation reactions between metal alkoxides. In other words, the polyfunctional oxygen-containing organic compound controls and controls the hydrolysis and polycondensation reactions of metal alkoxides, so sol formation and gel formation are unified, resulting in homogeneous and well-mixed heat resistance. An excellent alumina composite oxide can be obtained.In the present invention, it is also possible to use a mixture of two or more polyfunctional oxygen-containing compounds, and this can be done as appropriate depending on the alkoxide raw material used. It will be done.

本発明で使用するアルコキシドはアルミニウム、ストロ
ンチウム、バリウム、ランタニウムおよびジルコニウム
のアルコキシドであれば、アルキル基の種類によらず、
いずれも使用可能であるが、強いて例を挙げるなら、前
記5種の金属のメトキシド、エトキシド、1sa−もし
くはn−プロポキシド、n−、5ec−1もしくはte
rt−ブトキシドなどを挙げることができ、これらはよ
り長鎖のアルコキシドに比べ安価であるという利点を持
っている。
The alkoxides used in the present invention are aluminum, strontium, barium, lanthanium, and zirconium alkoxides, regardless of the type of alkyl group.
Any of these can be used, but to give an example, methoxide, ethoxide, 1sa- or n-propoxide, n-, 5ec-1 or te of the above five metals can be used.
Examples include rt-butoxide, which has the advantage of being cheaper than longer-chain alkoxides.

アルミニウムアルコキシドとストロンチウム、バリウム
、ジルコニウムおよびランタニウムの各アルコキシドと
の混合比については、最終複合酸化物において醸化スト
ロンチウム、酸化バリウム、醸化ジルコニウムおよび酸
化ランタンの各々が全重量の3〜25重量%の範囲に入
るように混合するのが良い、上記4種の金属酸化物の含
量が3重量%より少ないと、高温下の焼成でα−アルミ
ナが生成し易くなり、結果として比表面積が小さくケリ
、また、25重量%より多くなると、前記4種の金属酸
化物の結晶成長が著しくなり、この場合も比表面積の大
幅な低下を来す。
Regarding the mixing ratio of aluminum alkoxide and each alkoxide of strontium, barium, zirconium, and lanthanium, in the final composite oxide, each of strontium oxide, barium oxide, zirconium oxide, and lanthanum oxide accounts for 3 to 25% by weight of the total weight. If the content of the above four types of metal oxides is less than 3% by weight, α-alumina is likely to be formed during firing at high temperatures, resulting in a small specific surface area, Moreover, if the amount exceeds 25% by weight, the crystal growth of the four metal oxides becomes remarkable, and in this case as well, the specific surface area decreases significantly.

本発明では、まず多官能基台酸素化合物の存在下で、ア
ルミニウムアルコキシドと前記4種の各種アルコキシド
を混合し有機溶液とするわけであるが、当該溶液のII
製にあたっては溶媒を使用することができ、そのような
ものとしては、基本的には前記5種のアルコキシドを溶
解するものであれば、いずれも使用可能である。
In the present invention, aluminum alkoxide and the above-mentioned four types of various alkoxides are first mixed in the presence of a polyfunctional base oxygen compound to form an organic solution.
A solvent can be used in the production, and basically any solvent that can dissolve the five types of alkoxides mentioned above can be used.

例えば、メタノール、エタノール、プロパツール、ブタ
メールなどのアルコール類、7セトン、メチルエチルケ
トンなどのケトン類、エチルエーテル、テトラヒドロフ
ラン、ジオキサンナトのエーテル類、ベンゼン、トルエ
ンなどの芳香族化合物類などありとあらゆるものが使用
でき、当然のことながら、多官能基台酸素化合物そのも
のも溶媒として使用できる。
For example, alcohols such as methanol, ethanol, propatool, and butamele, ketones such as 7setone and methyl ethyl ketone, ethers of ethyl ether, tetrahydrofuran, and dioxanna, and aromatic compounds such as benzene and toluene are used. Of course, the polyfunctional oxygen compound itself can also be used as a solvent.

このアルコキシドの混合温度は通常lO〜200℃の範
囲である。加水分解によるゾル化にあたっては、一般に
は水を普通に滴下すれば良いが1時として金属水酸化物
や酸化物の急激な析出を防ぐために、使用する原料アル
コキシドに応じて水の添加方法を工夫する必要がある。
The mixing temperature of this alkoxide is usually in the range of lO to 200°C. When creating a sol through hydrolysis, it is generally sufficient to simply add water dropwise; however, in order to prevent rapid precipitation of metal hydroxides and oxides, the method of adding water must be devised depending on the raw material alkoxide used. There is a need to.

このような工夫としては、水をあらかじめ溶媒として用
いた有機溶媒や加水分解−縮重合反応に無関係な有機化
合物で希釈して添加する方法や湿気を含んだ気体をバブ
リングするとか、湿気雰囲気で溶液を攪 しながら放置
するとかの方法が取られ、これらの方法は加水分解の速
さや進み具合に応じて、適宜、組合せて行っても良い。
Such methods include adding water after diluting it with an organic solvent or an organic compound unrelated to the hydrolysis-condensation reaction, bubbling a humid gas, or adding water to the solution in a humid atmosphere. A method of leaving the solution while stirring is used, and these methods may be used in combination as appropriate depending on the speed and progress of hydrolysis.

本発明では、加水分解の段階で溶液はゾルとなり、最終
的にゲルとなるが、ゲル化にあたっては、□ゾルをその
ままゲル化し乾燥しても良いし、ゾルを他の物質に含浸
・塗布してゲル化し乾燥しても良い、乾燥方法は特に規
定されず、任意の方法が適用可能である。
In the present invention, the solution becomes a sol during the hydrolysis stage, and finally becomes a gel.In gelling, the sol may be directly gelled and dried, or the sol may be impregnated and applied to other substances. The drying method is not particularly specified, and any method can be applied.

熱処理については、本発明では1000℃以上で処理す
ることを特徴としているが、1000℃以上で熱処理す
る以前に1000℃以下の温度で前処理を行ってもよい
、前処理における温度および雰囲気については、特に制
限はなく、一般に使用されている空気、酸素、窒素、水
素、アルゴン、ヘリウムなど種々のガス雰囲気が種々の
温度で使用されるとともに、それらを組合せて前処理を
行うことができる。
Regarding heat treatment, the present invention is characterized by processing at a temperature of 1000°C or higher, but pretreatment may be performed at a temperature of 1000°C or lower before heat treatment at 1000°C or higher. Regarding the temperature and atmosphere in the pretreatment, There are no particular limitations, and various commonly used gas atmospheres such as air, oxygen, nitrogen, hydrogen, argon, and helium can be used at various temperatures, and pretreatment can be performed by combining them.

1000℃の高温下における熱処理も、前処理と同様、
特に制限はなく、i ooo℃を越える種々の温度、種
々の雰囲気および方法で行うことができる。また熱処理
時間についても、特に制限はなく、適宜の温度および雰
囲気で、所定時間、熱処理を行うことができる。
Heat treatment at a high temperature of 1000℃ is similar to pretreatment,
There are no particular limitations, and the process can be carried out at various temperatures exceeding 100° C., in various atmospheres, and by various methods. Further, there is no particular restriction on the heat treatment time, and the heat treatment can be performed at an appropriate temperature and atmosphere for a predetermined time.

(発明の効果) 以上述べてきたような本発明の方法によれば、高温にお
いても高い比表面積を保つアルミナ複合酸化物としての
SrO−AM、03系材料、Ba−Al0  系材料、
La2O3−Al  O系材料およびZ r OA l
 203系材料が得られ、これらは共沈法で製造される
ものより高い比表面積を持っている。さらに本発明方法
により得られたアルミナ複合酸化物は耐熱性が高く、例
えば1000℃以上の高温加熱によっても比表面積の低
下度は、従来法のものに比べはるかに小さい。
(Effects of the Invention) According to the method of the present invention as described above, SrO-AM, 03-based material, Ba-Al0-based material, as an alumina composite oxide that maintains a high specific surface area even at high temperatures,
La2O3-AlO-based materials and ZrOAl
203 series materials are obtained, which have a higher specific surface area than those produced by coprecipitation. Furthermore, the alumina composite oxide obtained by the method of the present invention has high heat resistance, and even when heated at a high temperature of, for example, 1000° C. or higher, the degree of decrease in specific surface area is much smaller than that of the conventional method.

また、未決はゾル状態を経由するという特徴を持ってい
るため、ゾル状態で支持体に含浸させたり、塗布したり
することもできるという従来法にない利点がある。すな
わち1本発明は高温化で使用する触媒担体やセンサー担
体に必要不可欠とされている高表面積と支持体への付着
の簡便さを一気に解決するものとなっている。
Furthermore, since the unsettled process is characterized in that it passes through a sol state, it has the advantage over conventional methods that it can be impregnated onto a support or coated in a sol state. That is, the present invention solves at once the high surface area and the ease of attachment to a support, which are essential for catalyst carriers and sensor carriers used at high temperatures.

このように、本発明によれば、(1)耐熱性であり、高
比表面積を与える複合酸化物の種類が多い、(2)粉体
でもゾル状態でも利用できるという利点を有するため、
本発明方法は従来法に比べ応用範囲も広く経済効果も大
きい。
As described above, the present invention has the following advantages: (1) There are many types of composite oxides that are heat resistant and provide a high specific surface area, and (2) They can be used in either powder or sol state.
The method of the present invention has a wider range of applications and greater economic effects than conventional methods.

(実施例) 以下、実施例に基づき本発明をさらに詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 300m文容ビーカーに72.1gのアルミニウム1s
o−プロポキシド(Al(Oiso−Pr)3)を入れ
、これにエタノール100gとヘキシレングリコール5
0gを加え、120℃の油浴中で加熱しながら30分間
攪拌した。この溶液に4.0gのストロンチウム1so
−プロポキシド(S r (Oiso−P r) 2)
を加え、さらに同温度で2時間加熱攪拌した0次に、こ
の溶液に水8、Ogを50gのエタノールで希釈した溶
液を滴下漏斗を之て滴々と加えた0滴下終了後30分の
時点で、8gの水を含むエタノール溶液20gを同温度
で加え、ゲル化させ、ゲル化後さらに同温度で10時間
放置することにより熟成させた。ゲルをロータリーエバ
ポレーターを使用して減圧下で乾燥した後、空気中30
0℃で3時間、550℃で3時間、800℃で3時間、
1000℃で3時間と段階的に焼成を行い、10wt%
S rO−Au203を得た。このものは粉末X線回折
(XRD)では回折線を示さず非晶であることがわかっ
た。また、BET法で比表面積の測定も行った。この結
果を表1に示した。
Example 1 72.1g of aluminum 1s in a 300m beaker
Add o-propoxide (Al(Oiso-Pr) 3), add 100 g of ethanol and 5 hexylene glycol.
0 g was added, and the mixture was stirred for 30 minutes while heating in a 120° C. oil bath. Add 4.0g of strontium 1so to this solution.
-Propoxide (S r (Oiso-P r) 2)
was added and further heated and stirred at the same temperature for 2 hours.Next, to this solution was added dropwise a solution of 8 g of water and 50 g of ethanol diluted with 50 g of ethanol through a dropping funnel.30 minutes after the completion of the dropwise addition. Then, 20 g of an ethanol solution containing 8 g of water was added at the same temperature to cause gelation, and after gelation, the mixture was further left at the same temperature for 10 hours to ripen. The gel was dried under reduced pressure using a rotary evaporator and then dried in air for 30 min.
3 hours at 0℃, 3 hours at 550℃, 3 hours at 800℃,
Firing was performed in stages at 1000℃ for 3 hours, and 10wt%
S rO-Au203 was obtained. This material showed no diffraction lines in powder X-ray diffraction (XRD) and was found to be amorphous. Further, the specific surface area was also measured using the BET method. The results are shown in Table 1.

実施例2 300mfL容ビーカーに72.2gのA!;L(O1
so−P r) 3を入れ、これにエタノール100g
とヘキシレングリコール100gを加え、120℃の油
浴中で加熱しながら30分間攪拌した。この溶液に3.
0gのバリウムエトキシド(B a (OC2Hs )
 2 )を加え、さらに同温度で2時間加熱攪拌した0
次にこの溶液に水8gを含むエタノール溶液60gを滴
下漏斗で滴々と加えた0滴下終了後、16.5gの水を
含むエタノール溶液66gを30分間かけて加えた。3
0分間、120℃の油浴中で加熱攪拌した後、さらにi
o、3gの水を加えゲル化させた。この後の操作は実施
例1と全く同様にして行い、10wt%Ba0−A!1
203を得た。これはXRDから非晶質であることがわ
かった。このものの比表面積を測定した。この結果を表
1に示した。
Example 2 72.2g of A! in a 300mfL beaker. ;L(O1
so-Pr) 3 and 100g of ethanol to it.
and 100 g of hexylene glycol were added, and the mixture was stirred for 30 minutes while heating in a 120° C. oil bath. Add 3.
0 g of barium ethoxide (B a (OC2Hs)
2) was added and further heated and stirred at the same temperature for 2 hours.
Next, 60 g of an ethanol solution containing 8 g of water was added dropwise to this solution using a dropping funnel. After 0 dropwise addition, 66 g of an ethanol solution containing 16.5 g of water was added over 30 minutes. 3
After heating and stirring in a 120°C oil bath for 0 minutes, further i.
o. 3 g of water was added to form a gel. The subsequent operations were carried out in exactly the same manner as in Example 1, and 10 wt% Ba0-A! 1
I got 203. This was found to be amorphous by XRD. The specific surface area of this material was measured. The results are shown in Table 1.

実施例3 s a (o C2H5) 2の代りに3.7gのバリ
ウムn−ブトキシド(Ba (On−Bu) 2)を用
いた以外は実施例2と全く同様にして、10wt%Ba
0−Al2O2を得た。このものはXRDから非晶質で
あることがわかった。この試料の非表面積を表1に示し
た。
Example 3 10 wt% Ba
0-Al2O2 was obtained. This material was found to be amorphous by XRD. The non-surface area of this sample is shown in Table 1.

実施例4 300m1容のビーカーに72.1gのAM(O1so
−P r) 3を入れ、これにランクニウム1so−プ
ロポキシド(L a (Oiso−P r) 3)3.
9gとヘキシレングリコール100gを加え、180℃
の油浴中で2時間加熱攪拌した。この溶液に水19gを
含むエタノール溶液50gを加えゲル化させた。以後の
操作を実施例1と全く同様に行うことにより10wt%
La  O−AIL203を得り、コノものはXRDよ
り非晶質であることが判明した0表1に、このものの非
表面積を示した。
Example 4 72.1g of AM (O1so) was added to a 300ml beaker.
-P r) 3, and ranknium 1so-propoxide (L a (Oiso-P r) 3) 3.
Add 9g and 100g of hexylene glycol and heat to 180°C.
The mixture was heated and stirred in an oil bath for 2 hours. 50 g of an ethanol solution containing 19 g of water was added to this solution to form a gel. By performing the subsequent operations in exactly the same manner as in Example 1, 10 wt%
La O-AIL203 was obtained, and it was found to be amorphous by XRD. Table 1 shows the non-surface area of this product.

実施例5 300ml容ビーカーに62.5gのAl(O1so−
P r)   103 g (y)ヘキシレンゲ3゛ リコールおよび30gのエタノールを入れ、120℃の
油浴中で30分間加熱攪拌した。これに5.45gのジ
ルコニウムn−プロポキシド(Z r (On−Pr)
 4)と1.1gの酢酸を加え同温度で2時間加熱攪拌
した0次に、この溶液に20gの水を含むエタノール溶
液80gを30分間で20gずつ4回に分は滴下し、ゲ
ル化した。以後の操作を実施例1と全く同様に行うこと
により10wt%Zr203−AfL203を得た。こ
のものはXRDより非晶質であることがわかった6表1
に、このものの比表面積を示した。
Example 5 62.5g of Al(O1so-
Pr) 103 g (y) Hexylene gelatin (3) recall and 30 g of ethanol were added, and the mixture was heated and stirred in a 120° C. oil bath for 30 minutes. To this, 5.45 g of zirconium n-propoxide (Z r (On-Pr)
4) and 1.1 g of acetic acid were added and stirred at the same temperature for 2 hours.Next, 80 g of an ethanol solution containing 20 g of water was added dropwise to this solution in 4 portions of 20 g over 30 minutes to form a gel. . The subsequent operations were performed in exactly the same manner as in Example 1 to obtain 10 wt% Zr203-AfL203. This material was found to be amorphous by XRD.6Table 1
The specific surface area of this material is shown below.

実施例6 実施例10の試料と1200℃でさらに3時間焼成した
。XRI)rは5rO−6Al1203の結晶構造に基
づくやや幅広な回折線が認められた0表1にこのものの
比表面積を示した0表1に示すように比表面積は43r
rf/Eであったがこれは、後記の比較例で得られたも
のの同条件での焼成品よりも優れる。
Example 6 The sample of Example 10 was further baked at 1200° C. for 3 hours. XRI) r is 5r. A slightly wide diffraction line based on the crystal structure of O-6Al1203 was observed.Table 1 shows the specific surface area of this product.As shown in Table 1, the specific surface area is 43r.
rf/E, which is superior to that obtained in the comparative example described later but fired under the same conditions.

実施例7.8 実施例2および3の各試料を1200℃3時間焼成し、
それぞれ実施例7および8の試料とした。XRDではい
ずれり試料も何の回折線も示さず非晶質であることがわ
かった0表1にそれぞれの比表面積を示した。
Example 7.8 Each sample of Examples 2 and 3 was fired at 1200°C for 3 hours,
These were used as samples of Examples 7 and 8, respectively. In XRD, none of the samples showed any diffraction lines and was found to be amorphous.Table 1 shows the specific surface area of each sample.

An (Oigo−Pr) 3(7)代りに87.2g
のアルミニウム5ec−ブトキシド(A fL(Ose
c−B u ) 3)を用いた以外は、実施例1と全く
同様にしテ10wt%5rO−A!L203を得た。
An (Oigo-Pr) 87.2g instead of 3(7)
Aluminum 5ec-butoxide (AfL(Ose)
The procedure was exactly the same as in Example 1 except that c-Bu) 3) was used. 10wt%5rO-A! L203 was obtained.

XRDでは明白な回折線は見られず、非晶質であること
がわかった0表1にこのものの比表面積を示した。
No obvious diffraction lines were observed in XRD, indicating that the material was amorphous. Table 1 shows the specific surface area of this material.

実施例1O111 An (Oiso−Pr)3の代りに87.2g(F)
アルミニウム5ec−ブトキシド(Al(O5ec−B
 u ) 3)  を用いた以外はそれぞれ実施例2お
よび3と全く同様にして10wt%Ba0−Al2O2
を得た。いずれの試料もXRDでは回折線を示さず非晶
質であることがわかった。
Example 1 87.2 g (F) instead of O111 An (Oiso-Pr)3
Aluminum 5ec-butoxide (Al(O5ec-B
u) 10 wt% Ba0-Al2O2 in exactly the same manner as in Examples 2 and 3 except that 3) was used.
I got it. All the samples showed no diffraction lines in XRD and were found to be amorphous.

表1にそれぞれの試料の比表面積を示した。Table 1 shows the specific surface area of each sample.

実施例12 AJI (Ofgo−Pr) 3の代りに、87.2g
のAM (Ogec−Bu)3を用いた以外は実施例4
と同様にして10wt%La203−A!L20つを得
た。XRDでは回折線は見られず鼻晶質であることがわ
かった。比表面積を表1に示した。
Example 12 AJI (Ofgo-Pr) 87.2g instead of 3
Example 4 except that AM (Ogec-Bu) 3 of
Similarly, 10 wt% La203-A! I got 20 L. No diffraction lines were observed in XRD, indicating that it was rhinocrystalline. The specific surface area is shown in Table 1.

実施例13 A l (Oiso−P r) 3(7)代りに87.
2gのAi (0+ec−B u) 3を用いた以外は
実施例5と同様にしテ10wt%ZrO−AfL203
を得た。XRDでは回折線は見られず非晶質であること
がわかった。比表面積を表1に示した。
Example 13 A l (Oiso-P r) 87. instead of 3 (7).
10 wt% ZrO-AfL203 was prepared in the same manner as in Example 5 except that 2 g of Ai (0+ec-B u) 3 was used.
I got it. No diffraction lines were observed in XRD, indicating that the material was amorphous. Table 1 shows the specific surface area.

実施例14 実施例12で得られた試料をさらに3時間1200℃で
焼成した。XRDでは3〜5木の巾広い回折線が認めら
れたのみで、このものは非晶質に近い構造を取っている
ことが推定された。比表面積を表1に示した。
Example 14 The sample obtained in Example 12 was further baked at 1200° C. for 3 hours. In XRD, only 3 to 5 wide diffraction lines were observed, and it was estimated that this material had a structure close to amorphous. The specific surface area is shown in Table 1.

実施例15 300mJ1容ビーカーに75.4gのAfL(Ose
c−Bu) 3と50gのインプロパツールを入れ、こ
れに80gのピナコールを加え、60°Cの油浴で30
分攪拌して、この溶液に5.5gのZ r (On−P
 r) 4を加え溶解し、さらに1.1gの酢酸を加え
、同温度で2時間攪拌した。以後の操作を実施例5と全
く同様にして行い、10wt%ZrO−Ai203を得
た。XRDで、このものは非晶質であることがわかった
0表1にこのものの比表面積を示した。
Example 15 75.4 g of AfL (Ose
c-Bu) 3 and 50g of Improper Tool, add 80g of Pinacol to this, and heat in an oil bath at 60°C for 30 minutes.
5.5 g of Z r (On-P
r) 4 was added and dissolved, and 1.1 g of acetic acid was further added and stirred at the same temperature for 2 hours. The subsequent operations were performed in exactly the same manner as in Example 5 to obtain 10 wt% ZrO-Ai203. This material was found to be amorphous by XRD. Table 1 shows the specific surface area of this material.

比較例1 300+nL;L容ビーカーにA l (Osec−B
 u )3    ゝを87.6gとり、これに50g
のイソプロパツールを加え、120℃の油浴中で30分
間あたため攪拌した。これに4.0gの5r(Oiso
−P r) 2を加え完全に溶解して後、同温度でさら
に1時間攪拌した0次に油浴温度を80℃に下げ、1時
間攪拌した。この溶液をあらかじめ80℃に加熱してお
いた320gの水の中へ加えることにより沈澱物を形成
させた。
Comparative Example 1 300+nL; A l (Osec-B
Take 87.6g of u ) 3ゝ and add 50g to this
of isopropanol was added, and the mixture was warmed and stirred in a 120°C oil bath for 30 minutes. Add to this 4.0g of 5r (Oiso
-Pr) 2 was added and completely dissolved, and the mixture was further stirred at the same temperature for 1 hour.Then, the oil bath temperature was lowered to 80°C and stirred for 1 hour. A precipitate was formed by adding this solution into 320 g of water previously heated to 80°C.

この溶液を一夜放置し、1!過乾燥して後、実施例1と
同様の焼成手順に従い10wt%5rO−A l 20
3を得た。比表面積を表1に示す。
Leave this solution overnight and do 1! After over-drying, 10 wt% 5rO-Al 20 was added according to the same firing procedure as in Example 1.
I got 3. Table 1 shows the specific surface area.

比較例2〜5 S r (Oiso−P r) 2を比較例2〜5では
、それぞれ3 、Ogc7)Ba (QC2H5)2.
3.7gc7)Ba (o !1−Bu)   3.9
gc7)L a (O1so−P r) 3および6,
3gのZr(On−Pr)4に変えた以外は比較例1と
同様にして、比較例2〜5の各試料を得た。各々の試料
の比表面積を表1に示す。
Comparative Examples 2-5 In Comparative Examples 2-5, S r (Oiso-P r) 2 was replaced with 3, Ogc7)Ba (QC2H5) 2.
3.7gc7)Ba (o!1-Bu) 3.9
gc7) L a (O1so-P r) 3 and 6,
Each sample of Comparative Examples 2 to 5 was obtained in the same manner as Comparative Example 1 except that 3 g of Zr(On-Pr)4 was used. Table 1 shows the specific surface area of each sample.

比較例6 300m1容ビーカーに72.1gのAn(O1so−
P r) 3を入れ、これに100gのヘキシレングリ
コールを加え、120℃の油浴中であたため攪拌する。
Comparative Example 6 72.1g of An(O1so-
P r) 3 is added thereto, 100 g of hexylene glycol is added thereto, and the mixture is warmed in an oil bath at 120° C. and stirred.

この溶液にエタノール20g中に12.7gの硝酸マグ
ネシウム・6水増を溶解し、2時間同温度で攪拌した。
In this solution, 12.7 g of magnesium nitrate (6 ml) was dissolved in 20 g of ethanol, and the mixture was stirred at the same temperature for 2 hours.

以後の操作を実施例1と同様に行い、10wt%M g
 O−A l 203を得た。このものの比表面積を表
1に示す。
The subsequent operations were performed in the same manner as in Example 1, and 10 wt% M g
O-Al 203 was obtained. Table 1 shows the specific surface area of this product.

比較例7〜11 硝酸マグネシウム・6水塩の代りに、8.4gの硝酸カ
ルシウム・4水場、4.1g(7)硝酸ストロンチウム
、3.4gの硝酸バリウム、5.3gの硝酸ランタン−
6水塩および6.4gの硝酸セリウムアンモニウム(C
e(NH4)2(N03)65をそれぞれ用い。
Comparative Examples 7 to 11 Instead of magnesium nitrate/hexahydrate, 8.4 g of calcium nitrate/4 water, 4.1 g (7) strontium nitrate, 3.4 g of barium nitrate, 5.3 g of lanthanum nitrate.
hexahydrate and 6.4 g of cerium ammonium nitrate (C
e(NH4)2(N03)65 was used, respectively.

比較例6と同様の操作でアルミナ複合酸化物を得た。こ
れを比較例7〜itとした。ただし、硝酸ストロンチウ
ムおよび硝酸バリウムはエタノールに溶けにくいので添
加の際に、この2者の場合は8.5gの水に溶解して加
えた。それぞれの複合酸化物の比表面積を表1に示す。
An alumina composite oxide was obtained in the same manner as in Comparative Example 6. This was designated as Comparative Example 7-it. However, since strontium nitrate and barium nitrate are hardly soluble in ethanol, they were added after being dissolved in 8.5 g of water. Table 1 shows the specific surface area of each composite oxide.

比較例12.13 ストロンチウムイソプロポキシドの代りにストロンチウ
ムn−プロポキシドまたはバリウムエトキシドを用いた
以外は比較例1と同様にして2種のアルミナ複合酸化物
を得、これをさらに実施例6,7.8と同様に1200
℃で3時間焼成した。この試料の比表面積を比較例12
.13として表1に示した。
Comparative Example 12.13 Two types of alumina composite oxides were obtained in the same manner as in Comparative Example 1, except that strontium n-propoxide or barium ethoxide was used instead of strontium isopropoxide. 1200 like 7.8
It was baked at ℃ for 3 hours. Comparative Example 12
.. It is shown in Table 1 as No. 13.

実施例16〜19 A l (Oiso−P r) 、、とBa(On−B
u)。
Examples 16-19 Al (Oiso-P r) , , and Ba (On-B
u).

の使用量を変え、最終的な複合化合物中の酸化バリウム
の重量がそれぞれ5wt%、15wt%、20wt%、
25wt%になるようW整したことを除いて、実施例3
と全く同様な操作でそれぞれの組成のアルミナ複合酸化
物を得た。XRDではいずれの組成のBad−An。0
3とも明白な回折線を示さず、非晶質であることがわか
った。それぞれの比表面積を表2に示す。
The weight of barium oxide in the final composite compound was 5 wt%, 15 wt%, 20 wt%, respectively.
Example 3 except that W was adjusted to 25 wt%
Alumina composite oxides with respective compositions were obtained in exactly the same manner as above. Bad-An of any composition in XRD. 0
No. 3 showed any obvious diffraction lines and was found to be amorphous. Table 2 shows the specific surface area of each.

比較例14.15 B a (On−Bu) 2を全く用いない以外は実施
例16と全く同様にしてアルミナ複合酸化物を調製し比
較例14とした。このものの比表面積を表2に示した。
Comparative Example 14.15 An alumina composite oxide was prepared as Comparative Example 14 in exactly the same manner as in Example 16 except that Ba (On-Bu) 2 was not used at all. The specific surface area of this product is shown in Table 2.

さらにこの試料を1000℃で100時間焼成し、これ
を比較例15とし、比表面積を表2に示した。
Further, this sample was fired at 1000° C. for 100 hours, and this was designated as Comparative Example 15, and the specific surface area is shown in Table 2.

実施例20 実施例17で得られた試料を、1200℃で3時間、さ
らに焼成した。XRDではBabe6A見203のマグ
ネトプラムバイトおよびα−Ai、03のコランダム構
造に基づく巾広い回折ピークが認められた。比表面積を
表2に示した。
Example 20 The sample obtained in Example 17 was further fired at 1200° C. for 3 hours. In XRD, a wide diffraction peak based on the magnetoplumbite of Babe6A 203 and the corundum structure of α-Ai,03 was observed. The specific surface area is shown in Table 2.

実施例21 実施例1Bで得られた試料を1200℃で3時間焼成し
、さらに1450℃で3時間焼成した。XRDからBa
O・AfL203のマグネトプラムバイト構造をとって
いることがわかった。比表面積を表2に示した。
Example 21 The sample obtained in Example 1B was fired at 1200°C for 3 hours, and further fired at 1450°C for 3 hours. XRD to Ba
It was found that it has a magnetoplumbite structure of O.AfL203. The specific surface area is shown in Table 2.

実施例22 実施例3で得られた試料を1000℃でさらに97時間
焼成し、焼成時間を合計ioo時間とし、その影響を調
べた。XRDでは何の回折線も認められず非晶質である
ことがわかった。
Example 22 The sample obtained in Example 3 was further fired at 1000° C. for 97 hours, the firing time was set as a total of ioo hours, and the influence thereof was investigated. No diffraction lines were observed in XRD, indicating that the material was amorphous.

比表面積を表2に示した。The specific surface area is shown in Table 2.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の官能基を有する含酸素有機化合物の1種あ
るいは2種以上の存在下で、アルミニウムアルコキシド
と、ストロンチウムアルコキシド、バリウムアルコキシ
ド、ランタニウムアルコキシドおよびジルコニウムアル
コキシドから選ばれた少なくとも1種とを混合して均一
溶液とし、次いでこの溶液を加水分解してゾルを形成さ
せたのちゲル化させ、ゲルを乾燥後1000℃以上で熱
処理することを特徴とする耐熱性アルミナ複合酸化物の
製造方法。
(1) Aluminum alkoxide and at least one selected from strontium alkoxide, barium alkoxide, lanthanium alkoxide, and zirconium alkoxide in the presence of one or more oxygen-containing organic compounds having multiple functional groups. A method for producing a heat-resistant alumina composite oxide, which comprises mixing to form a homogeneous solution, then hydrolyzing this solution to form a sol, gelling it, drying the gel, and then heat-treating it at 1000° C. or higher.
(2)複数の官能基を有する含酸素有機化合物が三級炭
素に結合した水酸基を官能基として有する特許請求範囲
第1項記載の耐熱性アルミナ複合酸化物の製造方法。
(2) The method for producing a heat-resistant alumina composite oxide according to claim 1, wherein the oxygen-containing organic compound having a plurality of functional groups has a hydroxyl group bonded to a tertiary carbon as a functional group.
(3)生成したアルミナ複合酸化物において、酸化スト
ロンチウム、酸化バリウム、ランタニアおよびジルコニ
アから選ばれた少なくとも1種の含有量が3〜25重量
%である特許請求の範囲第1項記載の耐熱性アルミナ複
合酸化物の製造方法。
(3) The heat-resistant alumina according to claim 1, wherein the produced alumina composite oxide contains 3 to 25% by weight of at least one selected from strontium oxide, barium oxide, lanthania, and zirconia. Method for producing composite oxide.
JP62075719A 1987-03-27 1987-03-27 Production of heat resistant alumina complex oxide Granted JPS63242917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075719A JPS63242917A (en) 1987-03-27 1987-03-27 Production of heat resistant alumina complex oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075719A JPS63242917A (en) 1987-03-27 1987-03-27 Production of heat resistant alumina complex oxide

Publications (2)

Publication Number Publication Date
JPS63242917A true JPS63242917A (en) 1988-10-07
JPH0333644B2 JPH0333644B2 (en) 1991-05-17

Family

ID=13584347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075719A Granted JPS63242917A (en) 1987-03-27 1987-03-27 Production of heat resistant alumina complex oxide

Country Status (1)

Country Link
JP (1) JPS63242917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701471A1 (en) * 1993-02-10 1994-08-19 Rhone Poulenc Chimie Process for the synthesis of compositions based on mixed oxides of zirconium and cerium, compositions thus obtained and uses thereof.
WO1996009247A1 (en) * 1992-12-22 1996-03-28 Asec Manufacturing Company Barium-containing alumina
JP2003137541A (en) * 2001-08-20 2003-05-14 Rikogaku Shinkokai Method of manufacturing high specific surface area alumina and obtained high specific surface area alumina
JP2017186225A (en) * 2016-03-31 2017-10-12 株式会社豊田中央研究所 Core-shell type oxide material, method for producing the same, catalyst for exhaust purification prepared therewith, and exhaust purifying method using the same
WO2018021192A1 (en) 2016-07-29 2018-02-01 住友化学株式会社 Alumina and method for producing automotive catalyst using same
WO2019082905A1 (en) 2017-10-24 2019-05-02 Sumitomo Chemical Company, Limited Alumina material
WO2021192752A1 (en) * 2020-03-26 2021-09-30 株式会社ルネッサンス・エナジー・リサーチ Porous alumina and catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455013A (en) * 1977-10-06 1979-05-01 Gen Electric Ceramic based on coreemateriallgrade alumina
JPS57196704A (en) * 1981-05-18 1982-12-02 Westinghouse Electric Corp Manufacture of metallic hydroxide and oxide powder for forming ceramic
JPS5879866A (en) * 1981-11-09 1983-05-13 三井東圧化学株式会社 Manufacture of fine powder for ceramics
JPS59128268A (en) * 1983-01-14 1984-07-24 呉羽化学工業株式会社 Composite ceramic powder and manufacture
JPS60226414A (en) * 1984-04-20 1985-11-11 Hitachi Ltd Production of lanthanum-alumina based compound oxide
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455013A (en) * 1977-10-06 1979-05-01 Gen Electric Ceramic based on coreemateriallgrade alumina
JPS57196704A (en) * 1981-05-18 1982-12-02 Westinghouse Electric Corp Manufacture of metallic hydroxide and oxide powder for forming ceramic
JPS5879866A (en) * 1981-11-09 1983-05-13 三井東圧化学株式会社 Manufacture of fine powder for ceramics
JPS59128268A (en) * 1983-01-14 1984-07-24 呉羽化学工業株式会社 Composite ceramic powder and manufacture
JPS60226414A (en) * 1984-04-20 1985-11-11 Hitachi Ltd Production of lanthanum-alumina based compound oxide
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009247A1 (en) * 1992-12-22 1996-03-28 Asec Manufacturing Company Barium-containing alumina
FR2701471A1 (en) * 1993-02-10 1994-08-19 Rhone Poulenc Chimie Process for the synthesis of compositions based on mixed oxides of zirconium and cerium, compositions thus obtained and uses thereof.
EP0614854A1 (en) * 1993-02-10 1994-09-14 Rhone-Poulenc Chimie Process for the synthesis of mixed zirconium und cerium oxides based compositions, the obtained compositions and use thereof
US5607892A (en) * 1993-02-10 1997-03-04 Rhone-Poulenc Chimie Zirconium/cerium mixed oxide catalyst/catalyst support compositions having high/stable specific surfaces
US5626826A (en) * 1993-02-10 1997-05-06 Rhone-Poulenc Chimie Zirconium/cerium mixed oxide catalyst/catalyst support compositions having high/stable specific surfaces
EP0930271A3 (en) * 1993-02-10 1999-07-28 Rhodia Chimie Compositions based on mixed oxides of zirconium and cerium and use of these compositions
JP2003137541A (en) * 2001-08-20 2003-05-14 Rikogaku Shinkokai Method of manufacturing high specific surface area alumina and obtained high specific surface area alumina
JP2017186225A (en) * 2016-03-31 2017-10-12 株式会社豊田中央研究所 Core-shell type oxide material, method for producing the same, catalyst for exhaust purification prepared therewith, and exhaust purifying method using the same
WO2018021192A1 (en) 2016-07-29 2018-02-01 住友化学株式会社 Alumina and method for producing automotive catalyst using same
KR20190035704A (en) 2016-07-29 2019-04-03 스미또모 가가꾸 가부시끼가이샤 Alumina and a method for manufacturing an automobile catalyst using the same
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same
WO2019082905A1 (en) 2017-10-24 2019-05-02 Sumitomo Chemical Company, Limited Alumina material
KR20200093539A (en) 2017-10-24 2020-08-05 스미또모 가가꾸 가부시끼가이샤 Alumina material
US11578000B2 (en) 2017-10-24 2023-02-14 Sumitomo Chemical Company, Limited Alumina material
WO2021192752A1 (en) * 2020-03-26 2021-09-30 株式会社ルネッサンス・エナジー・リサーチ Porous alumina and catalyst
CN115066396A (en) * 2020-03-26 2022-09-16 株式会社新生能源研究 Porous alumina and catalyst

Also Published As

Publication number Publication date
JPH0333644B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US5849659A (en) Exhaust gas purifying catalyst
US5866500A (en) Process for producing exhaust-gas-purifying catalyst
KR100199909B1 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
JPH0521030B2 (en)
JPS63162043A (en) Catalyst for cleaning exhaust gas
WO1997030787A1 (en) Highly dispersed and/or homogeneous compositions, materials and coatings made therefrom and methods for making same
US9597665B2 (en) Catalyst system for exhaust gas purification and method for exhaust gas purification
JPS63242917A (en) Production of heat resistant alumina complex oxide
JPS60187331A (en) Colloid dispersion
JPH044043A (en) Heat-resistant catalyst for purifying exhaust gas
JP5794908B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JPS60226414A (en) Production of lanthanum-alumina based compound oxide
JPH0274522A (en) Production of alumina
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JPH0352642A (en) Production of catalyst for combustion
Narula et al. Incorporation of lanthanides in alumina matrices by a sol–gel process employing heterometallic alkoxides, M [Al (OPr i) 4] 3, as precursors
JP2642657B2 (en) Heat-resistant composite oxide and method for producing the same
JPH04265155A (en) Catalyst for purification of exhaust gas
KR100228241B1 (en) Oxidation catalyst and method of producing the same
CN113634249B (en) High-temperature stable catalytic combustion catalyst and preparation method thereof
MirMoghtadaei et al. Strong Promoting Effect of Gold Nanoparticles on the CO Abatement Catalytic Activity of CoOx/Clay‐Bonded SiC Catalysts Produced by AA‐MOCVD Method Using Co (acac) 2 as Precursor
JPH06218282A (en) Heat resistant catalyst carrier and production thereof
CN112844381B (en) Magnesium aluminate spinel modified Pt-based automobile exhaust catalyst, preparation method and application
JPS63175642A (en) Manufacture of heat-resistant carrier
US20240017245A1 (en) Method for preparing nox storage-reduction catalyst article comprising ruthenium composite, and exhaust treatment system comprising same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term