JPS60226414A - Production of lanthanum-alumina based compound oxide - Google Patents

Production of lanthanum-alumina based compound oxide

Info

Publication number
JPS60226414A
JPS60226414A JP59080752A JP8075284A JPS60226414A JP S60226414 A JPS60226414 A JP S60226414A JP 59080752 A JP59080752 A JP 59080752A JP 8075284 A JP8075284 A JP 8075284A JP S60226414 A JPS60226414 A JP S60226414A
Authority
JP
Japan
Prior art keywords
lanthanum
alumina
salt
compound oxide
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59080752A
Other languages
Japanese (ja)
Other versions
JPH0445452B2 (en
Inventor
Akira Kato
明 加藤
Hisao Yamashita
寿生 山下
Mamoru Mizumoto
水本 守
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59080752A priority Critical patent/JPS60226414A/en
Publication of JPS60226414A publication Critical patent/JPS60226414A/en
Publication of JPH0445452B2 publication Critical patent/JPH0445452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12

Abstract

PURPOSE:To produce the titled compound oxide capable of giving a heat-resistant carrier having a high specific surface area even at high temperatures, by neutralizing a mixture solution of an La salt and an Al salt, and producing the compound oxide consisting of La and Al from the resultant precipitates. CONSTITUTION:A solution, e.g. an aqueous solutioln, prepared by mixing an Al salt, e.g. Al2(SO4)3, with an La salt, e.g. La(NO3)3, within 2/98-20/80 atomic ratio range between La and Al is neutralized with aqueous ammonia, etc. to give >=7pH and coprecipitates of Al with La, which are then fired at >=800 deg.C to produce the aimed compound oxide of La-beta-Al2O3. The resultant compound oxide can be used to prepare a heat-resistant carrier, which is applicable to catalysts or adsorbents used at high temperatures.

Description

【発明の詳細な説明】 〔発明の利用分野〕 ÷1改ロロ1斗 4すh+ノL+P−コ+1− シ h
也1備へ錦化物の製造法に係り、特に1sooc以下の
温度域において安定して使用できる耐熱性担体の製造方
法に関する。
[Detailed description of the invention] [Field of application of the invention] ÷1 Kai Roro 1 to 4th+ノL+P-ko+1-shih
The present invention also relates to a method for producing a brocade, and in particular to a method for producing a heat-resistant carrier that can be stably used in a temperature range of 1 sooc or less.

〔発明の背景〕[Background of the invention]

触媒を用い高温下で反応を行わせる方法としては、自動
車排ガス浄化、高温水蒸気改質などが知られている。最
近、ボイラーやガスタービンなどへ触媒燃焼技術を応用
する動きが起きているが、これらの方法では反応温度が
1oooc以上、条件によっては1400〜1500C
にまで達する。このような高温域で安定に使用できる触
媒の開発が望まれているが、そのためには高温域でも高
い比表面積を有する耐熱性担体が必要である。
Automobile exhaust gas purification, high-temperature steam reforming, and the like are known as methods for carrying out reactions at high temperatures using catalysts. Recently, there has been a movement to apply catalytic combustion technology to boilers, gas turbines, etc., but with these methods, the reaction temperature is 100C or higher, or 1400 to 1500C depending on the conditions.
reach up to. There is a desire to develop a catalyst that can be used stably in such a high temperature range, but for this purpose a heat-resistant carrier is required that has a high specific surface area even in the high temperature range.

従来、700Cないし800Cの比較的高い温度で使用
されている担体は主に活性アルミナである。しかし活性
アルミナは800C以上、特に10001:’以上では
熱的に不安定で種々の遷移型アルミナを経て最終的には
α・アルミナへ相変化する。それに伴い結晶成長も進行
し、比表面積が大きく低下する。担体の比表面積の低下
は担体に分散担持されている活性成分の凝集を引き起こ
し、触媒性能の低下につながる。
Conventionally, supports used at relatively high temperatures of 700C to 800C are mainly activated alumina. However, activated alumina is thermally unstable at temperatures above 800C, especially above 10001:', and undergoes a phase change to α-alumina through various transition-type aluminas. Along with this, crystal growth also progresses, and the specific surface area decreases significantly. A decrease in the specific surface area of the carrier causes aggregation of active ingredients dispersedly supported on the carrier, leading to a decrease in catalyst performance.

このような活性アルミナの欠点を改良する方法として、
アルミナ粉末とアルミナ粉末との混合物を高温で焼成し
たマグネシア−アルミナスピネル全担体とする方法(%
公昭57−3419号公報)、アルミナにクロム、タン
グステン、セリウム等を加えた担体(特開昭50−99
988号公報)、アルミナに高級アルカリ生類と三酸化
モリブデン、ジルコニア、シリカ、酸化錫、酸化ランタ
ンとシリカ、酸化ランタンと酸化すずを加えた担体(特
開昭54−117387号公報)などが知られている。
As a way to improve these drawbacks of activated alumina,
A method in which a mixture of alumina powder and alumina powder is fired at high temperature to form a magnesia-alumina spinel whole carrier (%
Publication No. 57-3419), a carrier prepared by adding chromium, tungsten, cerium, etc. to alumina (Japanese Unexamined Patent Publication No. 50-99)
988), carriers made of alumina with higher alkaline compounds, molybdenum trioxide, zirconia, silica, tin oxide, lanthanum oxide and silica, lanthanum oxide and tin oxide (Japanese Patent Application Laid-open No. 117387/1987) are known. ing.

上記したアルミナの改質法はそれぞれ利点はあるが、耐
熱性の面で充分ではない。
Although each of the above alumina modification methods has advantages, they are not sufficient in terms of heat resistance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を改善し、高
温度の反応条件下においても高い比表面積を有する耐熱
性担体用材料の製造法を提供することにある。
An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a method for producing a heat-resistant carrier material that has a high specific surface area even under high-temperature reaction conditions.

〔発明の概要j 一般に活性アルミナは高比表面積を有し、担体やコーテ
イング材として多く使用さnているが、8000以上特
に1000t:’以上においてはα・アルミナへの相転
移及び結晶粒子径の成長などによυ比表面積が低下し、
ひいては触媒活性の低下を引き起こす。
[Summary of the Invention j Generally, activated alumina has a high specific surface area and is often used as a carrier or coating material. However, when the particle size exceeds 8,000 t, especially 1,000 t:', a phase transition to α-alumina and a change in crystal particle size occur. The specific surface area decreases due to growth etc.
This in turn causes a decrease in catalytic activity.

本発明者等は、アルミナの上記の様な熱的不安定性を改
良するために鋭意研究を重ねた結果、酸化ランタンとア
ルミナの複合酸化物の1種であるランタン拳β・アルミ
ナ(La2 Q3 m 11〜14AJ40s) t。
As a result of extensive research in order to improve the thermal instability of alumina as described above, the present inventors have developed lanthanum oxide β alumina (La2 Q3 m 11-14AJ40s) t.

を主成分とする担体は高温度でも比表面積の低下が少な
いことを見出た。さらにその製造方法を種々検討した結
果、本発明をなすに至ったものである。
It has been found that the specific surface area of the carrier mainly composed of is less reduced even at high temperatures. Further, as a result of various studies on manufacturing methods, the present invention has been completed.

活性アルミナにセリウム、ランタン等の希土金属酸化物
を添加し、高温時のアルミナ結晶相転移を防止する方法
については、特開昭48−14600号公報に記載され
ているように公知であろうしかしながらこれら従来法で
は1.1000C以上の高温下で用いられる耐熱性担体
としては要求される性能を充分満足し得るものではない
。すなわち高温で高い比表面積を保持することができな
い。この原因の一つとして、活性アルミナ担体に硝酸ラ
ンタンのような水溶性塩を含浸する方法においては、焼
成時にアルミナと酸化ランタンが反応し、ペロプスカイ
ト型構造をもつランタンアルミネート(LahtOs 
)が主に生成する。この化合物は結晶成長が進み易く、
比表面積も低下することが確認された。
A method of adding rare earth metal oxides such as cerium and lanthanum to activated alumina to prevent alumina crystal phase transition at high temperatures is known, as described in JP-A-48-14600. However, these conventional methods cannot sufficiently satisfy the performance required for a heat-resistant carrier used at high temperatures of 1.1000 C or higher. That is, it is not possible to maintain a high specific surface area at high temperatures. One of the reasons for this is that in the method of impregnating an activated alumina support with a water-soluble salt such as lanthanum nitrate, alumina and lanthanum oxide react during firing, resulting in lanthanum aluminate (LahtOs) having a perovskite structure.
) is mainly generated. This compound is prone to crystal growth,
It was confirmed that the specific surface area also decreased.

本発明者らは元に酸化ランタンとアルミナの機付酸化物
の一鴇であるランタン・β・アルミナ(Law 03 
・11〜14At20s )を主成分とする担体は高温
でも高い比表面積を持つことを明らかにした。本発明こ
の化合物の製造法を詳細に検討した結果、到達したもの
である。
The present inventors originally developed lanthanum β alumina (Law 03), which is a functionalized oxide of lanthanum oxide and alumina.
・11-14At20s) was found to have a high specific surface area even at high temperatures. The present invention was arrived at as a result of detailed studies on the method for producing this compound.

具体的にはアルミニウム塩とランタン塩の水溶液をラン
タン/アルミナが原子比で2/98〜20/801−有
するように調製し、この溶液を中和して沈殿を生成せし
め、その沈殿物よシランタソ・β−アルミナを本F#昼
シすみ複合酸化物を製造するものである、具体的には沈
殿物を洗浄、乾燥、焼成した後成型することにより、ラ
ンタン・β−アルミナを主成分とするランタンとアルミ
ナの複合酸化物を製造するものである。この方法におけ
る特徴はアルミニウム塩とランタン塩の水溶液から中和
によりアルミニウムとランタンの水酸化物、塩基性炭酸
塩などの沈殿を生成させる工程を含むことにある。特に
この沈殿を生成させる場合には、アルミニウムとランタ
ンのそれぞれの水酸化物などを別々に沈殿させ、後で混
合するよりも、同時に沈殿を生じせしめる、いわゆる共
沈法によるのが好ましい。共沈法を用いることによりア
ルミニウムとランタンはミクロのオーダーで良く混合す
るためにランタン・β−アルミナの前駆体を生成し易く
焼成過程でランタン拳β−アルミナを容易に生成する。
Specifically, an aqueous solution of an aluminum salt and a lanthanum salt is prepared so that the lanthanum/alumina atomic ratio is 2/98 to 20/801, and this solution is neutralized to form a precipitate.・This F# day stain composite oxide is produced from β-alumina. Specifically, by washing, drying, and calcining the precipitate, and then molding, the main ingredients are lanthanum and β-alumina. It manufactures a composite oxide of lanthanum and alumina. A feature of this method is that it includes a step of producing precipitates of aluminum and lanthanum hydroxides, basic carbonates, etc. by neutralization from an aqueous solution of aluminum salt and lanthanum salt. In particular, in the case of producing this precipitate, it is preferable to use a so-called coprecipitation method in which the hydroxides of aluminum and lanthanum are precipitated at the same time, rather than precipitating separately and mixing them later. By using the coprecipitation method, aluminum and lanthanum are well mixed on a microscopic scale, so that a lanthanum/β-alumina precursor is easily produced, and lanthanum β-alumina is easily produced during the firing process.

この共沈法以外ではランタン/ルミナー) (LaAt
Os ) が生成し易く、ランタン・β−アルミナを生
成させるためにはx500G以上の高温が必要でこの場
合、多孔質の担体とはなJAMい。共沈法の具体的な方
法とじては、アルミニウム塩とランタン塩の混合水溶液
にアンモニア水などを添加して沈殿を生成せしめるのも
良いし、また逆に、アンモニア水などの沈殿剤中にアル
ミニウム塩とランタン塩の水溶液を同時に滴下して沈殿
を生成せしめるのも良い。また、蒸留水中にアンモニア
水などの沈殿剤とアルミニウム塩とランタン塩の水溶亜
を同時に滴下して沈殿を生成せしめても良い。
Other than this coprecipitation method, lanthanum/luminar) (LaAt
In order to generate lanthanum and β-alumina, a high temperature of 500 G or higher is required, and in this case, a porous carrier is not used. As for the specific coprecipitation method, it is good to add aqueous ammonia to a mixed aqueous solution of aluminum salt and lanthanum salt to form a precipitate, or conversely, add aluminum to a precipitant such as aqueous ammonia. It is also good to drop an aqueous solution of salt and lanthanum salt at the same time to form a precipitate. Alternatively, a precipitant such as ammonia water and an aqueous solution of aluminum salt and lanthanum salt may be simultaneously dropped into distilled water to form a precipitate.

沈殿を生成させるためのpHは通常7〜12の範囲が好
ましい。pH7以下ではランタンの水酸化物の沈殿生成
が完全には進まず、pH12以上ではアルミニウムの水
酸化物がアルミ/酸イオンを生成し再溶解する恐れがあ
る。共沈法により得られた沈殿は、通常、熟成、洗浄の
工程の後で濾過、乾燥されるが、熟成や洗浄工程はなく
とも良い。共沈法により得られたランタンとアルミニウ
ムの水酸化物の沈殿は8ooc以上、好ましくは9oo
c以上で焼成するとランタンβアルミナを生成する。こ
の焼成工程祉沈殿物を種々の形状に成型した後でも良い
し、予め焼成してランタンβアルミナの粉体を製造した
後、成型しても良い。
The pH for producing a precipitate is generally preferably in the range of 7 to 12. At a pH of 7 or lower, precipitation of lanthanum hydroxide does not proceed completely, and at a pH of 12 or higher, aluminum hydroxide may generate aluminum/acid ions and be redissolved. The precipitate obtained by the coprecipitation method is usually filtered and dried after the aging and washing steps, but the aging and washing steps may be omitted. The precipitation of lanthanum and aluminum hydroxide obtained by the coprecipitation method is 8 ooc or more, preferably 9 ooc.
When fired at temperatures higher than c, lanthanum β-alumina is produced. The precipitate may be molded into various shapes after the firing process, or the lanthanum β-alumina powder may be pre-fired and then molded.

焼成温度の上限は1500Cとすることが望ましいうア
ルミニウム原料としては、可溶性の硝酸塩、硫酸塩、塩
化物などが使用できる。一方、ランタン原料としては、
可溶性の硝酸塩、塩化物、シュウ酸塩、酢酸塩などが使
用できる。
It is desirable that the upper limit of the firing temperature is 1500C.As the aluminum raw material, soluble nitrates, sulfates, chlorides, etc. can be used. On the other hand, as a raw material for lanthanum,
Soluble nitrates, chlorides, oxalates, acetates, etc. can be used.

沈殿剤としては、アルミニウム塩とランタン塩の溶液の
pHを7以上に上げることができる塩基性の物質であれ
ば良く、アンモニア水、水酸化ナトリウム、水酸化カリ
ウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウ
ム、炭酸水素ナトリウム、炭酸水素カリウムなどが代表
的なちのとして挙げられる。また水溶液中で加熱すると
分解してアンモニアを発生する尿素などでも良い。
The precipitating agent may be any basic substance that can raise the pH of the solution of aluminum salt and lanthanum salt to 7 or higher, such as aqueous ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and carbonic acid. Typical examples include potassium, sodium hydrogen carbonate, and potassium hydrogen carbonate. Alternatively, urea, which decomposes to generate ammonia when heated in an aqueous solution, may be used.

担体中のランタンとアルミニウムの組成は金属成分の原
子比でLa/At=2/98〜20/80の範囲が好ま
しい。この範囲よりランタンが少ない場合には、ランタ
ン・β−アルミナ以外にアルミナが多量に生成し、高温
で比表面積が低下する。
The composition of lanthanum and aluminum in the carrier is preferably in the range of La/At=2/98 to 20/80 in terms of the atomic ratio of the metal components. When the amount of lanthanum is less than this range, a large amount of alumina is produced in addition to lanthanum and β-alumina, and the specific surface area decreases at high temperatures.

また、ランタンが多い場合には、ランタン・β−アルミ
ナ以外に、ランタンアルミネートが多量に生成し、比表
面積が低下する。
Further, when there is a large amount of lanthanum, a large amount of lanthanum aluminate is produced in addition to lanthanum/β-alumina, and the specific surface area is reduced.

本発明によって得られた担体はランタン・β−アルミナ
を主成分とするが、主成分以外の成分として酸化ランタ
ンとアルミナの他の形態の化合物を含んでいても良いし
、化合しなかった余剰のアルミナおよび/または酸化ラ
ンタンを含んでいても良い。更にシリカ、マグネシウム
、カルシア。
The carrier obtained by the present invention has lanthanum/β-alumina as its main components, but it may also contain compounds in other forms of lanthanum oxide and alumina as components other than the main components, or it may contain uncombined surplus. It may also contain alumina and/or lanthanum oxide. Furthermore, silica, magnesium, and calcia.

バリア、ベリリア、ジルコニア、チタニア、ドリア、酸
化すずなどの酸化物、コージェライト、ムライト、スボ
ジュメン、チタン酸アルミニウム。
Barrier, beryllia, zirconia, titania, doria, oxides such as tin oxide, cordierite, mullite, subodumene, aluminum titanate.

炭化ケイ素、窒化ケイ素などの化合物から選ばれた1種
以上を含むことが可能である。また、ランタン以外の希
土類元素、すなわち、セリウム、プラセオジウム、ネオ
ジウム、プロメチウム、サマリウム、ユーロピウム、ガ
ドリニウム、テルビウム。
It is possible to contain one or more selected from compounds such as silicon carbide and silicon nitride. and rare earth elements other than lanthanum, namely cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, and terbium.

ジスプロシウム、ホルミウム、エルビウム、ツリウム、
イッテルビウム、イツトリウム、スカンジウム、ルテチ
ウムなどから選ばれた1種以上を含〔発明の実施例〕 以下、本発明方法を実施例により更に詳細に説明するが
、本発明方法はこれらの実施例によシ限定されるもので
はない。
dysprosium, holmium, erbium, thulium,
Contains one or more selected from ytterbium, yttrium, scandium, lutetium, etc. [Examples of the Invention] The method of the present invention will be explained in more detail with reference to Examples below. It is not limited.

実施例1 硝酸アルミニウム1.88&りと硝酸ランタン114g
を蒸留水lO6に溶解した。この溶液を攪拌しながら3
Nアンモニア水′t−Mj下しpH8まで中和した。得
られたアルミニウムとランタンの共沈物t濾過し、沈殿
を蒸留水で光分洗浄した後150Cで一昼夜乾燥した。
Example 1 Aluminum nitrate 1.88g & lanthanum nitrate 114g
was dissolved in distilled water lO6. While stirring this solution,
The mixture was neutralized to pH 8 by adding N ammonia water 't-Mj. The resulting coprecipitate of aluminum and lanthanum was filtered, and the precipitate was photospectrally washed with distilled water and then dried at 150C for one day.

次いで5oocの温度で2時間電気炉で焼成し、得られ
た粉体をボールミルで粉砕した後60メツシユ以下に分
級した。
The powder was then fired in an electric furnace for 2 hours at a temperature of 50°C, and the resulting powder was pulverized in a ball mill and then classified into 60 meshes or less.

この微粉末にグラファイト11t−加えてプレス成型機
で直径3mI、長さ31aIの円柱状にした後、最終的
に1200Cで3時間焼成して担体とした。担体の組成
比は原子比でLa/At=5/95である。
11 tons of graphite was added to this fine powder and formed into a cylinder with a diameter of 3 mI and a length of 31 aI using a press molding machine, and finally fired at 1200C for 3 hours to obtain a carrier. The composition ratio of the carrier is La/At=5/95 in atomic ratio.

この担体の比表面積はN!ガス吸着によるB 、 E、
T 。
The specific surface area of this carrier is N! B, E, due to gas adsorption
T.

法で測定したところ58.5m”7gであった。ま今 
V−8餌&F F L幼且慟為値が^−皿 →ソ虐ン・
β−アルミナの回折ピークが観察された、比較例1 実施例1の方法において硝酸ランタンを添加しない以外
は同様に調製し、アルミナのみから成る比較例担体i−
1得た。この担体の比表面積は6.0m′/gであった
。またX線回折の結果、α−アルミナの回折ピークのみ
が観察された。
When measured using the method, it was 58.5m" and 7g.
V-8 Bait &F
Comparative Example 1 in which the diffraction peak of β-alumina was observed Comparative example carrier i-
I got 1. The specific surface area of this carrier was 6.0 m'/g. Further, as a result of X-ray diffraction, only the diffraction peak of α-alumina was observed.

比較例2 直径3飄の球状のγ−アルミナ担体(市販品)x00g
’に150Cで一昼夜乾燥した後、硝酸ランタン44.
7gを蒸留水に予め溶解した5 0mtの溶液に含浸し
た。次いで150Cで一昼夜乾燥し、引き続き110 
QCで5時間焼成した。この担体の組成比は原子比でL
a/At=5/95である。比表面積は18m”7gで
あった。またX線回折の結果、ペロブスカイト構造を持
つランタンアルミネート(LaAtOs )の大きく鋭
い回折ピークが主に観察され、ランタン・β−アルミナ
の回折ピークは非常に小さく、本比較例の方法で調製す
ると主にランタンアルミネートが生成し、ランタン・β
−アルミナは生成しにくいことがわかった。
Comparative Example 2 Spherical γ-alumina carrier (commercially available) with a diameter of 3 mm x 00 g
' After drying at 150C for a day and night, lanthanum nitrate 44.
7 g was impregnated into 50 mt of a solution previously dissolved in distilled water. Next, dry at 150C for a day and night, and then dry at 110C.
It was baked in QC for 5 hours. The composition ratio of this carrier is L in atomic ratio.
a/At=5/95. The specific surface area was 18m"7g. Also, as a result of X-ray diffraction, a large and sharp diffraction peak of lanthanum aluminate (LaAtOs) with a perovskite structure was mainly observed, and the diffraction peak of lanthanum/β-alumina was very small. , when prepared by the method of this comparative example, mainly lanthanum aluminate is produced, and lanthanum and β
- It was found that alumina is difficult to generate.

実施例2 硝酸アルミニウムと硝酸ランタンの添加量を変えた以外
は実施例1と全く同様にして調製し、担体A (L a
/At= 2/98 、原子比、以下同じ)、B(La
/At=3/97)、C(La/At=7/93)。
Example 2 A carrier A (L a
/At=2/98, atomic ratio, same below), B(La
/At=3/97), C(La/At=7/93).

D (La/At=10/90)、E (La/At=
20/80)を製造した。
D (La/At=10/90), E (La/At=
20/80) was produced.

これらの担体1x000Cまたは1200Gの温度で3
時間焼成した。比表面積の測定結果を図に示す。また、
X線回折を行って結晶構造を調べた結果を表に示す。表
に示されるように本実施例担体中の酸化物の形態は主に
ランタン・β−アルミナ(La−β−kt203 )で
あり、そのほかにA403やLaAtOst含んでいる
ことが明らかである。
3 at a temperature of 1x000C or 1200G for these carriers.
Baked for an hour. The measurement results of specific surface area are shown in the figure. Also,
The results of examining the crystal structure by X-ray diffraction are shown in the table. As shown in the table, the form of the oxide in the carrier of this example is mainly lanthanum/β-alumina (La-β-kt203), and it is clear that it also contains A403 and LaAtOst.

〔発明の効果〕〔Effect of the invention〕

以上、述べてきたように本発明の方法によれば高温にお
いても萬比表面!X+有するランタン・β−アルミナを
主成分とする耐熱性担体が製造でき、その結果本担体を
鍋温で用いる触媒またはe、着剤に応用することができ
る。
As mentioned above, according to the method of the present invention, even at high temperatures, the surface is smooth! A heat-resistant carrier mainly composed of lanthanum and β-alumina having X+ can be produced, and as a result, this carrier can be applied to a catalyst or an adhesive used at a pot temperature.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、 アルミニウム塩とランタン塩をランタン/アルミ
ニウムが原子比で2/98〜20/80の範囲内となる
ように混合した溶液を中和してランタンとアルミニウム
を沈殿させ、この沈殿物よりランタンとアルミナよりな
る複合酸化物を製造することを特徴とするランタン・ア
ルミナ系複合酸化物の製造法。 2、特許請求の範囲第1項において、前記混合溶液にア
ンモニア水を添加して中和させることt−特徴とするラ
ンタン・アルミナ系複合酸化物の製造法。 3、特許請求の範囲第1項において、前記混合溶液を中
和してpH7〜12とすることを特徴とするランタン・
4+アルミナ系複合酸化物の製造法。
[Claims] 1. Precipitating lanthanum and aluminum by neutralizing a solution in which aluminum salt and lanthanum salt are mixed so that the atomic ratio of lanthanum/aluminum is in the range of 2/98 to 20/80; A method for producing a lanthanum-alumina composite oxide, which comprises producing a composite oxide consisting of lanthanum and alumina from this precipitate. 2. A method for producing a lanthanum-alumina composite oxide according to claim 1, characterized in that the mixed solution is neutralized by adding aqueous ammonia. 3. In claim 1, the lanthanum solution is characterized in that the mixed solution is neutralized to a pH of 7 to 12.
4+ Method for producing alumina-based composite oxide.
JP59080752A 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide Granted JPS60226414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080752A JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080752A JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Publications (2)

Publication Number Publication Date
JPS60226414A true JPS60226414A (en) 1985-11-11
JPH0445452B2 JPH0445452B2 (en) 1992-07-24

Family

ID=13727134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080752A Granted JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Country Status (1)

Country Link
JP (1) JPS60226414A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242917A (en) * 1987-03-27 1988-10-07 Agency Of Ind Science & Technol Production of heat resistant alumina complex oxide
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
FR2663319A1 (en) * 1990-06-13 1991-12-20 Rhone Poulenc Chimie POROUS MATRIX MATERIAL CONTAINING SECOND ELEMENT IN DISPERSE FORM AND METHOD OF MANUFACTURING THE SAME.
FR2697832A1 (en) * 1992-11-12 1994-05-13 Rhone Poulenc Chimie Lanthanum stabilized alumina and process for its preparation
KR100388030B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Method for preparing lanthanum-containing thermal stabilized alumina by electrodeposition precipitation
JP2006514600A (en) * 2002-08-14 2006-05-11 アルティアー ナノマテリアルズ インコーポレイテッド Rare earth metal compound, production method and method using the compound
US8715603B2 (en) 2002-05-24 2014-05-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US8961917B2 (en) 2010-05-12 2015-02-24 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242917A (en) * 1987-03-27 1988-10-07 Agency Of Ind Science & Technol Production of heat resistant alumina complex oxide
JPH0333644B2 (en) * 1987-03-27 1991-05-17 Kogyo Gijutsuin
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
FR2663319A1 (en) * 1990-06-13 1991-12-20 Rhone Poulenc Chimie POROUS MATRIX MATERIAL CONTAINING SECOND ELEMENT IN DISPERSE FORM AND METHOD OF MANUFACTURING THE SAME.
FR2697832A1 (en) * 1992-11-12 1994-05-13 Rhone Poulenc Chimie Lanthanum stabilized alumina and process for its preparation
US5718879A (en) * 1992-11-12 1998-02-17 Rhone-Poulenc Chimie Lanthanum-stabilized alumina particulates
KR100388030B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Method for preparing lanthanum-containing thermal stabilized alumina by electrodeposition precipitation
US8715603B2 (en) 2002-05-24 2014-05-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US8852543B2 (en) 2002-05-24 2014-10-07 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US9511091B2 (en) 2002-05-24 2016-12-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
JP2006514600A (en) * 2002-08-14 2006-05-11 アルティアー ナノマテリアルズ インコーポレイテッド Rare earth metal compound, production method and method using the compound
US8961917B2 (en) 2010-05-12 2015-02-24 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US10350240B2 (en) 2010-05-12 2019-07-16 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US11406663B2 (en) 2010-05-12 2022-08-09 Unicycive Therapeutics, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Also Published As

Publication number Publication date
JPH0445452B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
JP2818171B2 (en) Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
KR100922919B1 (en) Process for preparing zirconium-cerium-based mixed oxides
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
US4959339A (en) Heat-resistant noble metal catalyst and method of producing the same
US6013313A (en) Methods for making highly dispersed homogeneous compositions
JPH0852352A (en) Oxidative catalyst withstanding high temperature,method for preparation thereof and method for combustion using said catalyst
KR20000011064A (en) Composition having cerium oxide and zirconium oxide as substrate, producing method thereof and its use as catalyst
JPH10194742A (en) Zirconium-cerium-based compound oxide and its production
JP2017095336A (en) Method for producing oxygen occlusion material, and oxygen occlusion material
WO2006049137A1 (en) Method for producing noble metal-containing heat-resistant oxide
JP2013129554A (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
JPS60226414A (en) Production of lanthanum-alumina based compound oxide
CN101466469B (en) Inorganic oxide and exhaust gas purification catalyst made by using the same
JP2013129553A (en) Compound oxide, production method thereof and exhaust gas purification catalyst
JP2886867B2 (en) Manufacturing method of catalyst carrier
EP2990107A1 (en) Support for exhaust gas purification catalyst, catalyst for exhaust gas purification, and catalyst structure for exhaust gas purification
KR20070028975A (en) Metal oxide with high thermal stability and preparing method thereof
JPH064133B2 (en) Zirconia carrier
JPS60238146A (en) Heat resistant carrier composition
JPS6138626A (en) Carrier for catalyst
JPS6320035A (en) Production of heat resistant catalyst carrier composition
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JPH0417910B2 (en)
JPS62176542A (en) Preparation of heat resistant carrier
JPS60202744A (en) Heat-resistant honeycomb carrier

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term