JPS63242324A - Exhaust gas purifying method - Google Patents

Exhaust gas purifying method

Info

Publication number
JPS63242324A
JPS63242324A JP62079309A JP7930987A JPS63242324A JP S63242324 A JPS63242324 A JP S63242324A JP 62079309 A JP62079309 A JP 62079309A JP 7930987 A JP7930987 A JP 7930987A JP S63242324 A JPS63242324 A JP S63242324A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel
alkali metal
carbon
resistant filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62079309A
Other languages
Japanese (ja)
Other versions
JPH0616817B2 (en
Inventor
▲吉▼田 清英
Kiyohide Yoshida
Satoshi Kadoya
聡 角屋
Akitsugu Ibusuki
指宿 堯嗣
Tamotsu Kobuchi
存 小渕
Heigoro Aoyama
青山 兵五郎
Akihiko Oi
明彦 大井
Hideo Ouchi
日出夫 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Riken Corp filed Critical Agency of Industrial Science and Technology
Priority to JP7930987A priority Critical patent/JPH0616817B2/en
Publication of JPS63242324A publication Critical patent/JPS63242324A/en
Publication of JPH0616817B2 publication Critical patent/JPH0616817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To efficiently remove NOX, by adding an alkali metal compound to fuel and supporting a catalyst containing one or more kind of a transition metal containing the Group IIB and Sn by a heat resistant filter and using fine carbon particles in the exhaust gas as a reducing agent. CONSTITUTION:Fuel is sent to a diesel engine while an alkali metal compound such as KOH is added to the fuel and burnt to generate exhaust gas which is, in turn, passed through a heat resistant filter supporting one or more kind of a catalyst selected from Sn and a transition metal containing the Group IIB such as Ce, Ni, Mn, Th, Cu, Zn, Sn or the like and NOX is reduced and removed by the fine carbon particles contained in the exhaust gas.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、排ガス浄化方法に関する。[Detailed description of the invention] B. Industrial application fields The present invention relates to an exhaust gas purification method.

口、従来技術 近年、ディーゼルエンジンの排気ガス中の微粒子状物質
(主として固体状炭素微粒子と液体乃至固体状の高分子
量炭化水素微粒子などよりなる)が環境衛生上問題化し
ている。以下、このような微粒子を炭素系微粒子と呼ぶ
、これらの炭素系微粒子は平均粒径約0.1〜1μmで
あり、大気中に浮遊し易く、また、呼吸により人体内に
取り込まれ易く最近の臨床試験結果では、発ガン性物質
をも含んでいることが確認されたためである。
BACKGROUND OF THE INVENTION In recent years, particulate matter (mainly composed of solid carbon particles and liquid or solid high molecular weight hydrocarbon particles) in the exhaust gas of diesel engines has become a problem in terms of environmental health. Hereinafter, such fine particles are referred to as carbon-based fine particles.These carbon-based fine particles have an average particle size of approximately 0.1 to 1 μm, and are easily suspended in the atmosphere and easily taken into the human body through breathing. This is because clinical test results have confirmed that it also contains carcinogenic substances.

これらの微粒子の除去方法としては、大別して以下の2
つの方法が検討されている。その一つは、耐熱フィルタ
を用いて排ガスを濾過することにより微粒子を捕捉し、
これによる圧損失が上昇したらバーナ、電気ヒータ等に
よって捕捉した微粒子を燃焼せしめてフィルタを再生す
る方法である。
Methods for removing these fine particles can be roughly divided into the following two methods.
Two methods are being considered. One is to capture particulates by filtering exhaust gas using a heat-resistant filter.
When the pressure loss increases due to this, the filter is regenerated by burning the captured particles using a burner, electric heater, etc.

モノリスが挙げられる。他の一つは、触媒物質を担持さ
せた耐熱フィルタに濾過操作と共に燃焼操作をも行わせ
て、前記の微粒子燃焼とフィルタ再生の頻度を少なくす
るとか、再生の必要のない程に上記触媒の燃焼活性を高
める方法である。
Examples include monoliths. Another method is to have a heat-resistant filter carrying a catalyst material carry out a combustion operation as well as a filtration operation, thereby reducing the frequency of the above-mentioned particulate combustion and filter regeneration, or reducing the frequency of the above-mentioned particulate combustion and filter regeneration to the extent that regeneration is not necessary. This is a method of increasing combustion activity.

また、これらの方法に於いて、排ガス中の可燃成分を増
加したり、燃料中に炭素酸化促進剤を添加して、微粒子
の着火温度を下げる試みもなされている。
Furthermore, in these methods, attempts have been made to lower the ignition temperature of particulates by increasing the combustible components in the exhaust gas or adding a carbon oxidation promoter to the fuel.

前者の場合、微粒子の除去効果を高めれば高めるほど圧
損失上昇が早く、再生頻度も多(なり、再生に高い信頼
性が要求され、しかも経済的にも不利になると考えられ
ている。
In the former case, it is believed that the higher the particle removal effect, the faster the pressure drop will rise, the more frequently the regeneration will be required, and the more reliable the regeneration will be, which will also be economically disadvantageous.

これに対し、後者の方法は、ディーゼルエンジン排気ガ
スの排出条件(ガス組成及び温度)において触媒活性を
維持しうる触媒があればはるかに優れた方法と考えられ
る。しかし、ディーゼルエンジンの排気ガス温度はガソ
リンエンジンの場合と比較して格段に低く、しかも燃料
として軽油を用いるために排ガス中にSO2量も多い。
On the other hand, the latter method is considered to be a much better method if there is a catalyst that can maintain catalytic activity under the exhaust conditions (gas composition and temperature) of diesel engine exhaust gas. However, the exhaust gas temperature of a diesel engine is much lower than that of a gasoline engine, and since light oil is used as fuel, the amount of SO2 in the exhaust gas is also large.

このような排ガス条件下で蓄積した微粒子を良好に着火
燃焼し、しかも二次公害を起こさない再生方法はまだ確
立されていない。
A regeneration method that successfully ignites and burns the accumulated particulates under such exhaust gas conditions and does not cause secondary pollution has not yet been established.

例えば、卑金属だけを担持した耐熱性フィルタでの微粒
子の燃焼反応は通常、約350℃以上の温度で起こる。
For example, particulate combustion reactions in heat-resistant filters carrying only base metals typically occur at temperatures above about 350°C.

通常運転時の多くは、排ガス温度がそれ以下であり燃焼
反応は起こらないで微粒子は一端触媒担持フィルタに捕
捉され、やがて温度が上昇したときに燃え出すというプ
ロセスでフィルタが再生される。この場合は、所定の温
度に達するまでは圧損失上昇が早く、バーナ、電気ヒー
タなどによ゛る燃焼再生の頻度が高くなり、実用性に欠
ける。また、貴金属を添加した触媒を用いた場合は、よ
り低温で微粒子の燃焼反応が起こり易く、圧損失上昇は
ゆるやかにはなる。しかし、同時に排ガス中の802の
酸化も起こり、このため非常に有害なSO3や硫酸ミス
トを生成し、二次公害を生むことになる。
In most cases during normal operation, the exhaust gas temperature is below this temperature and no combustion reaction occurs, and the particulates are temporarily captured by the catalyst-supported filter, and then when the temperature rises, the filter is regenerated by a process in which it burns out. In this case, the pressure loss increases rapidly until the predetermined temperature is reached, and the frequency of combustion regeneration using a burner, electric heater, etc. increases, making it impractical. Furthermore, when a catalyst containing noble metals is used, the combustion reaction of fine particles is more likely to occur at a lower temperature, and the increase in pressure loss becomes more gradual. However, at the same time, 802 in the exhaust gas also oxidizes, producing extremely harmful SO3 and sulfuric acid mist, resulting in secondary pollution.

このように、ディーゼルエンジン等の排ガス中の微粒子
を効率的に除去する方法は未だ見出されておらず、その
うえ、酸素l濃度が数%〜13%の広範囲に変化する排
ガス中の窒素酸化物の除去は大変困難であり大きな問題
として残されている。
As described above, a method for efficiently removing particulates from exhaust gas from diesel engines, etc., has not yet been found, and furthermore, nitrogen oxides from exhaust gas whose oxygen concentration varies over a wide range from several percent to 13%. Removal is extremely difficult and remains a major problem.

ハ0発明の目的 本発明は、ディーゼルエンジン等の排出する比較的低温
であって酸素濃度変化の大きい排ガス中に含まれる炭素
系微粒子を効率的に燃焼除去し、同時に窒素酸化物をも
効果的に除去できる排ガス浄化方法を提供することを目
的としている。
Object of the Invention The present invention efficiently burns and removes carbon-based particulates contained in exhaust gas emitted from diesel engines, etc., which is relatively low temperature and has a large change in oxygen concentration, and at the same time effectively removes nitrogen oxides. The purpose of this project is to provide an exhaust gas purification method that can remove

二8発明の構成 即ち、本発明は、アルカリ金属化合物の1種又は2種以
上を燃料に添加し、周期表nB族元素をも含む遷移金属
及び錫からなる群から選ばれた1種又は2 ft以上を
少なくとも含有する触媒が耐熱フィルタに担持されてい
る排ガス浄化材を使用して、排ガス中の炭素系微粒子を
還元剤として排ガス中の窒素酸化物を還元する排ガス浄
化方法に係る。
28 Structure of the invention, that is, the present invention adds one or more alkali metal compounds to the fuel, and one or more alkali metal compounds selected from the group consisting of a transition metal including an nB group element of the periodic table and tin. The present invention relates to an exhaust gas purification method for reducing nitrogen oxides in exhaust gas using carbon-based fine particles in exhaust gas as a reducing agent using an exhaust gas purifying material in which a catalyst containing at least ft or more is supported on a heat-resistant filter.

水2発明の作用効果 本発明者は、鋭意研究の結果、窒素酸化物の除去剤とし
て、周期表■B族元素をも含む遷移金属及び錫からなる
群から選ばれた1種又は2種以上を耐熱フィルタに担持
させ、燃料にアルカリ金属化合物の1種又は2種以上を
添加し、比較的低温の排ガスにあっても排ガス中の炭素
系微粒子を還元剤として用いて排ガス中の窒素酸化物を
還元し、排ガス中の炭素系微粒子と窒素酸化物との双方
を効果的に除去することに成功した。
Water 2 Functions and Effects of the Invention As a result of intensive research, the present inventor has determined that one or more types selected from the group consisting of transition metals including group B elements of the periodic table and tin can be used as nitrogen oxide removers. is supported on a heat-resistant filter, one or more alkali metal compounds are added to the fuel, and carbon-based fine particles in the exhaust gas are used as a reducing agent to reduce nitrogen oxides in the exhaust gas even at relatively low temperatures. , and succeeded in effectively removing both carbon-based particulates and nitrogen oxides in exhaust gas.

燃料に添加されたアルカリ金属成分と、耐熱フィルタ上
の遷移金属及び錫とが、炭素系微粒子と共存することに
より両者の相乗効果によって、排ガス中の窒素酸化物を
効果的に還元し、排ガスが効果的に浄化されるものと考
えられる。また、同時に炭素系微粒子も還元剤として消
費されてC’02として酸化され、消滅し、耐熱フィル
タ上に必要以上に蓄積されることがな(、フィルタ上に
蓄積して圧損失の原因となる炭素系微粒子の燃焼、除去
という、前述したようなフィルタ再生を屡々行わなくて
済むようになる。
When the alkali metal component added to the fuel and the transition metal and tin on the heat-resistant filter coexist with carbon-based fine particles, their synergistic effect effectively reduces nitrogen oxides in the exhaust gas, reducing the amount of exhaust gas. It is considered that it is effectively purified. At the same time, carbon-based fine particles are also consumed as reducing agents and oxidized as C'02, disappearing, and are prevented from accumulating on the heat-resistant filter more than necessary. This eliminates the need to often perform filter regeneration as described above, which involves burning and removing carbon-based particulates.

燃料へのアルカリ金属成分の添加は、添加物が燃料に溶
解又は懸濁するよう、アルカリ金属化合物として燃料に
添加する。
The alkali metal component is added to the fuel as an alkali metal compound so that the additive is dissolved or suspended in the fuel.

このようにして、本発明に基づ<17/)汐流スXN排
ガス浄化方法により、排ガス中の炭素系微粒子と窒素酸
化物との双方が効果的に除去され、比較的低温の排ガス
にあっても効果的に浄化される。
In this way, with the <17/) Shioryu S It is also effectively purified.

ヘ、実施例 以下、本発明の詳細な説明する。F. Example The present invention will be explained in detail below.

前記「周期表nB族元素をも含む遷移金属」としては、
例えば、コバルト、マンガン、鉄、ニッケル、亜鉛、銅
、セリウム、ランタン、トリウム等が挙げられる。また
、上記遷移金属及び錫からなる群から選ばれた2種以上
を触媒中に含有させた場合、即ち、セリウム−マンガン
、トリウム−ニッケルなどのようにこれらを多元的に用
いた場合には、炭素系数粒子の着火温度が下がり、炭素
系微粒子の燃焼(酸化)、除去がより効率的となり、従
って、窒素酸化物の還元、除去もより効率的に遂行され
る。
The above-mentioned "transition metals that also include elements of group nB of the periodic table" include:
Examples include cobalt, manganese, iron, nickel, zinc, copper, cerium, lanthanum, and thorium. In addition, when two or more selected from the group consisting of the above transition metals and tin are contained in the catalyst, that is, when these are used in plurality such as cerium-manganese, thorium-nickel, etc., The ignition temperature of the carbon-based particles is lowered, and the combustion (oxidation) and removal of the carbon-based fine particles becomes more efficient, and therefore the reduction and removal of nitrogen oxides is also performed more efficiently.

また、触媒フィルタは、その使用に先立ち不活性ガス中
又は真空中450℃〜500℃で加熱処理すると、着火
効果が上がる。
Further, the ignition effect of the catalyst filter is improved if it is heat-treated at 450°C to 500°C in an inert gas or vacuum prior to its use.

耐熱性フィルタに遷移金属や錫を含浸させるに加えて乾
燥処理する。またフェロシアン化アルカリなどの溶液に
耐熱性フィルタを加え乾燥処理し、アルカリとFeを同
時に担持する方法もとり得る。
In addition to impregnating the heat-resistant filter with transition metals and tin, it is also subjected to a drying process. It is also possible to add a heat-resistant filter to a solution of an alkali ferrocyanide or the like and carry out a drying process to support the alkali and Fe at the same time.

「耐熱性フィルタ」は必要な捕集性能、許容出来る圧損
失をもつことが必要で、通常担体として用いられ゛るア
゛ルミナ、シリカ、チタニア、ジルコニア、シリカ−ア
ルミナ、アルミナ−ジルコニア、アルミナ−チタニア、
シリカ−チタニア、シリカ−ジルコニア、チタニア−ジ
ルコニア等からなるセラミックファイバー、セラミック
フオーム、セラミックモノリス等や、金属ワイヤメツシ
ュ等を挙げることができるが、これらに限定されるもの
ではない。
"Heat-resistant filters" must have the necessary collection performance and allowable pressure loss, and are usually made of alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina, etc., which are used as carriers. titania,
Examples include, but are not limited to, ceramic fibers, ceramic foams, ceramic monoliths, etc. made of silica-titania, silica-zirconia, titania-zirconia, etc., and metal wire meshes.

前記「触媒」は、耐熱フィルタに直接担持されている必
要はなく、上記したアルミナ、シリカ、チタニア等の通
常用いられている担体を介して耐熱フィルタに間接的に
担持されておれば足り、また実用的でもある。
The above-mentioned "catalyst" does not need to be directly supported on the heat-resistant filter; it is sufficient that it is indirectly supported on the heat-resistant filter via a commonly used carrier such as the above-mentioned alumina, silica, titania, etc. It's also practical.

燃料にアルカリ金属成分を添加するには、水酸化ナトリ
ウム(NaOH)、水酸化カリウム(KOH)のような
アルカリ金属化合物を添加するのが好適である。
To add an alkali metal component to the fuel, it is preferable to add an alkali metal compound such as sodium hydroxide (NaOH) or potassium hydroxide (KOH).

次に、本発明の具体的実施例について説明する。Next, specific examples of the present invention will be described.

市販のコージェライト質セラミックス(マグネシア、ア
ルミナ及びシリカを主成分とするセラミックス)モノリ
ス(嵩密度0.37g/cl、空孔率86.0%、容積
2.Ol)にチタニアを担持させ、これにセリウム、ニ
ッケル、マンガンを含浸させた。この触媒担持セラミッ
クスモノリスは、使用に先立って150℃で4時間乾燥
し、800〜900℃で3時間焼成した(実施例1)。
Titania was supported on a commercially available cordierite ceramic (ceramic whose main components are magnesia, alumina and silica) monolith (bulk density 0.37 g/cl, porosity 86.0%, volume 2.0 l). Impregnated with cerium, nickel and manganese. Prior to use, this catalyst-supported ceramic monolith was dried at 150°C for 4 hours and fired at 800-900°C for 3 hours (Example 1).

以後このような排ガス浄化材をCe / N i / 
M nのように表記する。
From now on, such exhaust gas purification materials will be used as Ce/Ni/
It is written like M n.

上記と同様にして、T h / Cu / Z n排ガ
ス浄化材(実施例2)、Ce排ガス浄化材(実施例3)
及びCe/Sn排ガス浄化材(実施例4)を製造した。
In the same manner as above, T h / Cu / Z n exhaust gas purification material (Example 2), Ce exhaust gas purification material (Example 3)
and Ce/Sn exhaust gas purification material (Example 4) was manufactured.

実施例1〜4の排ガス浄化材について、燃料に水酸化カ
リウム(K OH) 100 ppmを添加し、それぞ
れ排気量510 ccの単気筒ディーゼルエンジンを用
いて背圧変化を連続的に測定してその評価試験を行った
。このときエンジンは回転数15(fOrpn 。
Regarding the exhaust gas purification materials of Examples 1 to 4, 100 ppm of potassium hydroxide (KOH) was added to the fuel, and changes in back pressure were continuously measured using a single-cylinder diesel engine with a displacement of 510 cc. An evaluation test was conducted. At this time, the engine speed is 15 (fOrpn).

負荷90%で運転され、このとき排ガス温度は350℃
で酸素濃度は3%であった。第1図にエンジン運転時間
に対する背圧変化を示す。
It is operated at 90% load, and the exhaust gas temperature is 350℃ at this time.
The oxygen concentration was 3%. Figure 1 shows back pressure changes with respect to engine operating time.

また、上記排ガス浄化材について、夫々N OxのN2
へ6転化率(NO×除去率)を排ガス温度250〜45
0℃で化学発光法により連続的に測定した。第2図に各
排ガス温度での運転時間60分後のNO,c除去率を示
す。
In addition, regarding the above exhaust gas purification materials, each of the N2 of NOx
6 conversion rate (NO x removal rate) at exhaust gas temperature of 250 to 45
Measurement was carried out continuously at 0°C by chemiluminescence method. Figure 2 shows the NO and c removal rates after 60 minutes of operation at each exhaust gas temperature.

比較のために、前記実施例1〜4と同様なセラミックス
モノリスと触媒担持なしで前記実施例と同様の方法で背
圧変化について評価試験を行った(比較例1)。また、
Ce / N i / M n排ガス浄化材を使用し、
燃料にアルカリ金属成分を添加しないで同様の試験を行
った(比較例2)。これらの結果は第1図に併記しであ
る。
For comparison, an evaluation test was conducted regarding back pressure changes using the same ceramic monolith as in Examples 1 to 4 and without supporting a catalyst in the same manner as in the above Examples (Comparative Example 1). Also,
Using Ce/Ni/Mn exhaust gas purification materials,
A similar test was conducted without adding an alkali metal component to the fuel (Comparative Example 2). These results are also shown in FIG.

第1図の結果から明らかなように、比較例1のセラミッ
クスモノリス(排ガス浄化材)を使用した場合は、炭素
系微粒子がフィルタにMHIされ、60分運転後には背
圧が当初の6倍以上にまで増加し、比較例2では約5倍
増加するが、実施例1〜4の排ガス浄化材を使用した場
合には、60分運転後の背圧増加は最も高いものでも約
2倍半程度にとどまり、しかも、60分運転後には背圧
増加が殆ど見られない。このように、実施例の排ガス浄
化材を使用すると、ディーゼルエンジンの排ガス中の微
粒子を効率的に燃焼除去できる。
As is clear from the results in Figure 1, when the ceramic monolith (exhaust gas purification material) of Comparative Example 1 is used, carbon-based fine particles are MHIed into the filter, and after 60 minutes of operation, the back pressure is more than 6 times the initial level. In Comparative Example 2, the increase is about 5 times, but when the exhaust gas purifying materials of Examples 1 to 4 are used, the back pressure increase after 60 minutes of operation is about 2 and a half times at the highest. Moreover, almost no increase in back pressure was observed after 60 minutes of operation. In this way, when the exhaust gas purifying material of the example is used, particulates in the exhaust gas of a diesel engine can be efficiently burned and removed.

更に、実施例1〜4の排ガス浄化材を用いた場合は、第
2図から明らかなように良好なNO8除去効果も得られ
、そのNo、除去率は、排ガス温度450℃において4
0%に達する。また、排ガス温度250℃という非常な
低温においても、No−c除去効果が見られる。
Furthermore, when the exhaust gas purification materials of Examples 1 to 4 were used, a good NO8 removal effect was obtained as is clear from FIG. 2, and the No. removal rate was 4.
Reach 0%. Furthermore, the No-c removal effect can be seen even at a very low exhaust gas temperature of 250°C.

第1図及び第2図から、実施例1〜4の排ガス浄化材を
使用するときは、フィルタ再生を行わずして長時間に亘
って効果的に排ガスを浄化しながらエンジンの運転を続
行できることが理解されよう。
From FIG. 1 and FIG. 2, when using the exhaust gas purifying materials of Examples 1 to 4, it is possible to continue operating the engine while effectively purifying exhaust gas for a long time without performing filter regeneration. will be understood.

なお、上記実施例1〜4に於いて、SO3や硫酸ミスト
の発生は、実質的に認められなかった。
In addition, in the above-mentioned Examples 1 to 4, generation of SO3 and sulfuric acid mist was not substantially observed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示すものであって・ 第1図はエンジン運転時間と背圧との関係を示すグラフ
、 第2図はエンジンの運転時間60分の時点での排ガス温
度と窒素酸化物除去率との関係を示すグラフ である。
The drawings all show examples of the present invention. Figure 1 is a graph showing the relationship between engine operating time and back pressure, and Figure 2 is a graph showing the relationship between engine operating time and back pressure. It is a graph showing the relationship with the nitrogen oxide removal rate.

Claims (1)

【特許請求の範囲】[Claims] 1.アルカリ金属化合物の1種又は2種以上を燃料に添
加し、周期表IIB族元素をも含む遷移金属及び錫からな
る群から選ばれた1種又は2種以上を少なくとも含有す
る触媒が耐熱フィルタに担持されている排ガス浄化材を
使用して、排ガス中の炭素系微粒子を還元剤として排ガ
ス中の窒素酸化物を還元する排ガス浄化方法。
1. One or more types of alkali metal compounds are added to the fuel, and a catalyst containing at least one type or two or more types selected from the group consisting of tin and transition metals including group IIB elements of the periodic table is used in the heat-resistant filter. An exhaust gas purification method that uses a supported exhaust gas purification material to reduce nitrogen oxides in exhaust gas by using carbon-based fine particles in the exhaust gas as a reducing agent.
JP7930987A 1987-03-31 1987-03-31 Exhaust gas purification method Expired - Lifetime JPH0616817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7930987A JPH0616817B2 (en) 1987-03-31 1987-03-31 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7930987A JPH0616817B2 (en) 1987-03-31 1987-03-31 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPS63242324A true JPS63242324A (en) 1988-10-07
JPH0616817B2 JPH0616817B2 (en) 1994-03-09

Family

ID=13686252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7930987A Expired - Lifetime JPH0616817B2 (en) 1987-03-31 1987-03-31 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JPH0616817B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438603A1 (en) * 1989-08-11 1991-07-31 Sakai Chemical Industry Co., Ltd., Method of treating exhaust gas
US6033461A (en) * 1998-01-02 2000-03-07 Gas Research Institute Selective nitrogen oxides adsorption from hot gas mixtures and thermal release by adsorbent
WO2000029726A1 (en) * 1998-11-13 2000-05-25 Engelhard Corporation Catalyst and method for reducing exhaust gas emissions
US6684627B2 (en) 2000-05-26 2004-02-03 Toyota Jidosha Kabushiki Kaisha Method of purifying exhaust gas from internal combustion engine
US7078004B2 (en) 1999-07-02 2006-07-18 Engelhard Corporation Diesel oxidation catalyst
KR100867006B1 (en) 2006-06-16 2008-11-10 주식회사 영우워터라인 Filter for furifying water, method for manufacturing the same and water furifier comprising that

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438603A1 (en) * 1989-08-11 1991-07-31 Sakai Chemical Industry Co., Ltd., Method of treating exhaust gas
US5180567A (en) * 1989-08-11 1993-01-19 Sakai Chemical Industry Co., Ltd. Exhaust gas treating method
US6033461A (en) * 1998-01-02 2000-03-07 Gas Research Institute Selective nitrogen oxides adsorption from hot gas mixtures and thermal release by adsorbent
WO2000029726A1 (en) * 1998-11-13 2000-05-25 Engelhard Corporation Catalyst and method for reducing exhaust gas emissions
US7078004B2 (en) 1999-07-02 2006-07-18 Engelhard Corporation Diesel oxidation catalyst
US6684627B2 (en) 2000-05-26 2004-02-03 Toyota Jidosha Kabushiki Kaisha Method of purifying exhaust gas from internal combustion engine
KR100867006B1 (en) 2006-06-16 2008-11-10 주식회사 영우워터라인 Filter for furifying water, method for manufacturing the same and water furifier comprising that

Also Published As

Publication number Publication date
JPH0616817B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
US7431749B2 (en) Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same
US5340548A (en) Exhaust gas cleaner and method of cleaning exhaust gas
US5290530A (en) Method of cleaning exhaust gas
EP0341832B1 (en) Treatment of diesel exhaust gas
JPS63242346A (en) Exhaust gas purifying material and method
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
JPH10151348A (en) Oxidation catalyst
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
US5154901A (en) Method of cleaning an exhaust gas containing nitrogen oxides and fine carbon-containing particulates
JPS63242324A (en) Exhaust gas purifying method
JPH05184929A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2018513777A (en) Catalytic ceramic candle filter and process off-gas or exhaust gas cleaning method
JP4848662B2 (en) How to use exhaust gas purification material
JP2007032400A (en) Method for processing particulate in diesel engine exhaust gas
JP4792792B2 (en) Exhaust gas purification device
JPH0531330A (en) Decontamination of exhaust gas
JPH05184928A (en) Exhaust gas purifying material and method for purifying exhaust gas
KR100389900B1 (en) Catalyst for the purification of diesel exhaust gas
JP2008168228A (en) Catalyst for purifying nitrogen oxide in exhaust gas of diesel engine using unburnt carbon and nitrogen oxide purifying method
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JPS5982944A (en) Catalystic medium for eliminating fine particle in waste gas
JPH04354518A (en) Material and method for purifying exhaust gas
JPH05245380A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH04363119A (en) Exhaust gas purifying material and method for purifying exhaust gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term