JPS63241921A - Substrate heating device for molecular beam epitaxy system - Google Patents

Substrate heating device for molecular beam epitaxy system

Info

Publication number
JPS63241921A
JPS63241921A JP7406787A JP7406787A JPS63241921A JP S63241921 A JPS63241921 A JP S63241921A JP 7406787 A JP7406787 A JP 7406787A JP 7406787 A JP7406787 A JP 7406787A JP S63241921 A JPS63241921 A JP S63241921A
Authority
JP
Japan
Prior art keywords
substrate
heater
heating element
heater base
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7406787A
Other languages
Japanese (ja)
Inventor
Ryokichi Kaji
鍛治 亮吉
Nushito Takahashi
主人 高橋
Naoyuki Tamura
直行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7406787A priority Critical patent/JPS63241921A/en
Publication of JPS63241921A publication Critical patent/JPS63241921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality of a thin film to be subjected to a crystal growth on a substrate by constructing a heater with a heating element and a heater base, placing the heating element on a plane which is not opposed to the substrate, and forming the heating element on the heater base by evaporation. CONSTITUTION:A substrate 1 is held by a susceptor 2 and a board 3, and the susceptor 2 is fixed by a claw 4 and is rotatively movable by a driver mechanism. A heating element 5 is formed and created, by a chemical vapor deposition, spputering, vacuum deposition or the like of tungsten, tantalum, carbon or the like which is a high-melting metal, on a heater base made of an insulating material such as thermally decomposed boron nitride. This heating element is placed on a plane which is not opposed to the substrate 1, which is opposed to the heater base 6 on the rear of the heating element 5. Also, a reflecting board 9 is placed opposite the heating element 5. A thermocouple 7 performing a temperature measurement to control the temperature of the substrate 1 is attached to the center of a sample holder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシ装置の基板加熱装置に係り
、特に基板を効率良く、均一に加熱するのに好適な分子
線エピタキシ装置の基板加熱装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a substrate heating device for a molecular beam epitaxy device, and particularly to a substrate heating device for a molecular beam epitaxy device suitable for efficiently and uniformly heating a substrate. It is related to the device.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭60−112691号に記載のよ
うに、基板を均一に加熱するためにヒータと基板の間に
加熱均一化部材(ここでは加熱板と称する。)を設けて
いる。しかし、加熱板を挿入すると、ヒータからの輻射
熱で加熱板を加熱し、さらに加熱板の輻射熱で基板を加
熱するため、加熱板が無い場合、に比較し、基板を所定
の温度にするための消費電力が多くなる。また、ヒータ
材料が加熱板に蒸着し、加熱板の透過率、輻射率2反射
率等が変わり、経時的に加熱効率が変わる。
In the conventional apparatus, as described in Japanese Patent Application Laid-Open No. 112691/1982, a heating equalizing member (herein referred to as a heating plate) is provided between a heater and a substrate in order to uniformly heat the substrate. However, when a heating plate is inserted, the radiant heat from the heater heats the heating plate, and the radiant heat from the heating plate also heats the board, so compared to when there is no heating plate, it takes longer to bring the board to the specified temperature. Power consumption increases. Further, the heater material is deposited on the heating plate, and the transmittance, emissivity 2 reflectance, etc. of the heating plate change, and the heating efficiency changes over time.

また、タンタルなどの高融点金属から成るヒータで基板
を直接加熱する場合には、ヒータ材料が蒸発し基板を汚
染する恐れがある。また、一般に、ヒータはヒータベー
スに細線で固定されているが、これらの方法でヒータを
ヒータベースに接触固定する場合は、ヒータからヒータ
ベースへ熱伝導で伝わる熱量がヒータとヒータベースの
接触状態に依存するし、加熱、冷却を繰り返すことでヒ
ータが膨張、収縮を繰り返し、ヒータとヒータベースの
接触状態が変わり、ヒータがヒータ同士や他の部材と短
絡する恐れがある。
Furthermore, if the substrate is directly heated with a heater made of a high-melting point metal such as tantalum, there is a risk that the heater material will evaporate and contaminate the substrate. Generally, the heater is fixed to the heater base with a thin wire, but when the heater is fixed in contact with the heater base using these methods, the amount of heat transferred from the heater to the heater base by thermal conduction is determined by the contact state between the heater and the heater base. By repeating heating and cooling, the heater expands and contracts repeatedly, changing the contact state between the heater and the heater base, and there is a risk that the heater may short-circuit with each other or with other components.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、基板を均一に加熱することに重点を置
き、基板の加熱効率を向上させることや加熱効率の経時
的な変化やヒータの短絡を防止することについて配慮さ
れていなかった。すなわち。
The above-mentioned conventional technology places emphasis on uniformly heating the substrate, and does not give consideration to improving the heating efficiency of the substrate, changing the heating efficiency over time, or preventing short circuits of the heater. Namely.

上記従来の基板加熱装置では、基板を所定の温度に加熱
するためにはヒータの温度を高める必要があり、したが
って、消′R電力が多くなり、ヒータの周囲からの放出
ガスが多くなったり、ヒータ材料の蒸発による基板の汚
染が増加するといった問題があった。
In the above-mentioned conventional substrate heating apparatus, in order to heat the substrate to a predetermined temperature, it is necessary to increase the temperature of the heater. Therefore, the consumption of R power increases, and the amount of gas released from around the heater increases. There was a problem that contamination of the substrate due to evaporation of the heater material increased.

本発明の目的は、基板を均一に加熱するとともに基板の
加熱効率を向上させ成長膜の品質が向上できる分子線エ
ピタキシ装置の基板加熱装置を提供することである。
An object of the present invention is to provide a substrate heating device for a molecular beam epitaxy apparatus that can uniformly heat a substrate, improve the heating efficiency of the substrate, and improve the quality of the grown film.

〔問題点を解決するための手段〕 上記目的は、ヒータを発熱体とヒータベースで構成し1
発熱体と基板と対向しない面に配置し。
[Means for solving the problem] The above purpose is to configure the heater with a heating element and a heater base.
Place it on a surface that does not face the heating element and the board.

発熱体を化学蒸着、スパッタ法、真空蒸着などによって
ヒータベース上に形成することにより、達成される。
This is accomplished by forming the heating element on the heater base by chemical vapor deposition, sputtering, vacuum deposition, or the like.

〔作用〕[Effect]

本発明では、ヒータベースにヒータを直接形成している
ので、ヒータベースは、ヒータからの熱伝ぷで加熱され
る。ヒータベースに伝わった熱は、ヒータベース面内に
熱伝導で伝わり、ヒータベースからの熱輻射で基板を加
熱する。従来の加熱板を挿入する方式のように、ヒータ
からの熱輻射で加熱板を加熱し、加熱された加熱板の熱
輻射で基板を加熱していたのに比較して加熱効率を向上
できる。加熱効率を向上させることによって基板を所定
の温度に加熱するのにヒータの温度を従来より低くでき
、しいては、消費電力を少なくでき、放出ガスを少なく
できる。また、タンタルなどの高融点金属で直接基板を
加熱していないので、ヒータ材料が蒸発し基板を汚染す
る恐れがない。
In the present invention, since the heater is directly formed on the heater base, the heater base is heated by heat transfer from the heater. The heat transmitted to the heater base is transmitted within the surface of the heater base by thermal conduction, and the substrate is heated by thermal radiation from the heater base. Heating efficiency can be improved compared to the conventional method of inserting a heating plate, in which the heating plate is heated by thermal radiation from the heater, and the board is heated by the thermal radiation from the heated heating plate. By improving the heating efficiency, the temperature of the heater can be lower than before to heat the substrate to a predetermined temperature, thereby reducing power consumption and emitted gas. Furthermore, since the substrate is not directly heated with a high melting point metal such as tantalum, there is no risk of the heater material evaporating and contaminating the substrate.

また、ヒータはヒータベースに蒸着して形成しているの
で、加熱、冷却を繰り返すことでヒータが膨張、収縮を
繰り返し、ヒータとヒータベースの接触状態が変るとい
ったことがない、したがって、ヒータからヒータベース
へ熱伝導量の変化や。
In addition, since the heater is formed by vapor deposition on the heater base, repeated heating and cooling will not cause the heater to expand and contract repeatedly and the contact state between the heater and the heater base will not change. Changes in the amount of heat conduction to the base.

ヒータ同士、またはヒータと他の部材(例えばサセプタ
や1反射板)との接触に起因する短絡の恐れがない。
There is no risk of short circuits caused by contact between the heaters or between the heaters and other members (for example, a susceptor or a reflector).

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は、本発明
の基板加熱装置を分子線エピタキシ装置の試料ホルダー
に設置した時の縦断面図である。基板1はサセプタ2と
板3で保持され、該サセプタ2は爪4で固定され、図中
に示していない駆動機構により回転(自転)運動が可能
である6発熱体5は高融点金属のタングステン、タンタ
ルや炭素などを化学蒸着、スパッタ法、真空蒸着などに
より、熱分解窒化はう素(PBN)等の絶縁物で製作さ
れたヒータベース6上に形成して作成する。
An embodiment of the present invention will be described below. FIG. 1 is a longitudinal sectional view when the substrate heating device of the present invention is installed in a sample holder of a molecular beam epitaxy device. The substrate 1 is held by a susceptor 2 and a plate 3, and the susceptor 2 is fixed by claws 4, and can be rotated (rotated) by a drive mechanism not shown in the figure.6 The heating element 5 is made of tungsten, a high melting point metal. , tantalum, carbon, or the like is formed on the heater base 6 made of an insulator such as pyrolytic boron nitride (PBN) by chemical vapor deposition, sputtering, vacuum deposition, or the like.

この発熱体5は、基板1と対向しない面に配置され、基
板1は発熱体5の裏側のヒータベース6と対向する。ま
た1発熱体5と対向して反射板9を配置している。基板
1の温度制御を行うために温度計測を行う熱電対7が試
料ホルダーの中央に取り付けている6本実施例では熱電
対7の碍子9にヒータベース6や反射板9、さらにラジ
エーションシールド板10を取り付ける構造にしている
This heating element 5 is arranged on a surface not facing the substrate 1, and the substrate 1 faces the heater base 6 on the back side of the heating element 5. Further, a reflecting plate 9 is arranged opposite to the first heating element 5. In this embodiment, a thermocouple 7 that measures temperature in order to control the temperature of the substrate 1 is attached to the center of the sample holder.6 In this embodiment, the insulator 9 of the thermocouple 7 is equipped with a heater base 6, a reflector 9, and a radiation shield plate 10. It has a structure that allows it to be attached.

次に本実施例の基板加熱装置の伝熱形態を説明する。た
とえば、ヒータベース6をPBNとすると、PBNは1
μm程度以上の波長の赤外線の一部を透過する6したが
って、発熱体5が発生する熱の一部は、ヒータベース6
を透過して基板1を加熱する。また、発熱体5の発生す
る熱の一部は熱伝導によってヒータベース6に伝わりヒ
ータベース6を加熱する。ヒータベース6に伝わった熱
は、ヒータベース6面内に熱伝導で伝わり、ヒータベー
ス6からの熱輻射で基板1を加熱する。従来の技術とし
て説明した特開昭60−112691号の例のように、
加熱板とヒータが接触していない場合は、ヒータの輻射
で加熱板が加熱される。この輻射による加熱効率と本方
式の熱伝導による加熱効率を比較すると、本方式の方が
著しく加熱効率が良い。加熱効率を向上させることによ
って基板1を所定の温度に加熱するのに発熱体5の温度
を従来より低くでき、しいては、消費電力を少なくでき
、発熱体5の周囲の放出ガスを少なくできるので、基板
1上に結晶成長させる薄膜の品質を向上できる効果があ
る。
Next, the heat transfer form of the substrate heating device of this embodiment will be explained. For example, if the heater base 6 is PBN, the PBN is 1
Part of the infrared rays with a wavelength of approximately μm or more is transmitted 6 Therefore, part of the heat generated by the heating element 5 is transferred to the heater base 6
passes through and heats the substrate 1. Further, a part of the heat generated by the heating element 5 is transmitted to the heater base 6 by thermal conduction and heats the heater base 6. The heat transmitted to the heater base 6 is transmitted within the surface of the heater base 6 by thermal conduction, and the substrate 1 is heated by thermal radiation from the heater base 6. As in the example of Japanese Patent Application Laid-Open No. 112691/1983, which was explained as a conventional technique,
When the heating plate and the heater are not in contact with each other, the heating plate is heated by radiation from the heater. Comparing the heating efficiency of this radiation and the heating efficiency of this method based on heat conduction, this method has significantly better heating efficiency. By improving the heating efficiency, the temperature of the heating element 5 can be lowered than before to heat the substrate 1 to a predetermined temperature, which in turn can reduce power consumption and reduce the amount of gas released around the heating element 5. Therefore, there is an effect that the quality of the thin film grown on the substrate 1 can be improved.

また、発熱体5はヒータベース6に蒸着して形成してい
るので、加熱、冷却を繰り返すことで発熱体5が膨張、
収縮を繰り返し1発熱体5とヒータベース6の接触状態
が変るといったことがないしたがって、発熱体5からヒ
ータベース6への熱伝導量の変化や1発熱体5同士、ま
たは発熱体5と他の部材(例えば、サセプタ2や反射板
9)との接触に起因する短絡の恐れがない。
Moreover, since the heating element 5 is formed by vapor deposition on the heater base 6, the heating element 5 expands by repeating heating and cooling.
There is no possibility that the contact state between the heating element 5 and the heater base 6 will change due to repeated contractions. Therefore, there will be no change in the amount of heat conduction from the heating element 5 to the heater base 6, or between the heating elements 5 or between the heating element 5 and other heater bases. There is no risk of short circuiting due to contact with members (for example, the susceptor 2 or the reflector 9).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板を効率良く、均一に加熱でき、ヒ
ータ温度を低くでき、しいては、消費電力を少なく、ヒ
ータの周囲からの放出ガスを少なくできるので、基板上
に結晶成長させるgt膜の品質を向上できる効果がある
According to the present invention, the substrate can be efficiently and uniformly heated, the heater temperature can be lowered, power consumption can be reduced, and gas released from around the heater can be reduced. It has the effect of improving the quality of the membrane.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の基板加熱装置を分子線エピタキシ装置
の試料ホルダーに設置した時の縦断面図である。 l・・・基板、2・・一基板ホルダー、3・・・板、4
・・・爪、5・・・発熱体、6・・・ヒータベース、7
・・・熱電対、8・・・碍子、9・・・反射板、1o・
・・ラジェーションシールド。           
              ・X;、ノ
The drawing is a longitudinal sectional view when the substrate heating device of the present invention is installed in a sample holder of a molecular beam epitaxy device. l... Board, 2... One board holder, 3... Board, 4
...Claw, 5...Heating element, 6...Heater base, 7
...Thermocouple, 8...Insulator, 9...Reflector, 1o.
...Radiation shield.
・X;、ノ

Claims (1)

【特許請求の範囲】 1、基板を保持する基板ホルダーと、該基板ホルダーに
保持された基板と、該基板を加熱するヒータより成る分
子線エピタキシ装置の基板加熱装置において、該ヒータ
を絶縁体のヒータベースと発熱体で形成し、該発熱体を
該基板と対向しない面に配置したことを特徴とする分子
線エピタキシ装置の基板加熱装置。 2、特許請求の範囲第1項記載のものにおいて、発熱体
を化学蒸着、スパッタ法、真空蒸着によつてヒータベー
ス上に形成したことを特徴とする分子線エピタキシ装置
の基板加熱装置。
[Claims] 1. In a substrate heating device for a molecular beam epitaxy apparatus that includes a substrate holder that holds a substrate, a substrate held by the substrate holder, and a heater that heats the substrate, the heater is made of an insulator. 1. A substrate heating device for a molecular beam epitaxy apparatus, comprising a heater base and a heating element, the heating element being disposed on a surface not facing the substrate. 2. A substrate heating device for a molecular beam epitaxy apparatus according to claim 1, wherein the heating element is formed on the heater base by chemical vapor deposition, sputtering, or vacuum deposition.
JP7406787A 1987-03-30 1987-03-30 Substrate heating device for molecular beam epitaxy system Pending JPS63241921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7406787A JPS63241921A (en) 1987-03-30 1987-03-30 Substrate heating device for molecular beam epitaxy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7406787A JPS63241921A (en) 1987-03-30 1987-03-30 Substrate heating device for molecular beam epitaxy system

Publications (1)

Publication Number Publication Date
JPS63241921A true JPS63241921A (en) 1988-10-07

Family

ID=13536467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7406787A Pending JPS63241921A (en) 1987-03-30 1987-03-30 Substrate heating device for molecular beam epitaxy system

Country Status (1)

Country Link
JP (1) JPS63241921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126533A (en) * 1990-03-19 1992-06-30 Conductus, Inc. Substrate heater utilizing protective heat sinking means
US5331134A (en) * 1992-05-21 1994-07-19 Shin-Etsu Chemical Co., Ltd. Double-layered ceramic heater
US6087632A (en) * 1999-01-11 2000-07-11 Tokyo Electron Limited Heat processing device with hot plate and associated reflector
US6953918B2 (en) 2002-11-01 2005-10-11 Shin-Etsu Chemical Co., Ltd. Heating apparatus which has electrostatic adsorption function, and method for producing it
JP2011144422A (en) * 2010-01-14 2011-07-28 Showa Denko Kk Sputtering apparatus, and method for manufacturing semi-conductor light emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126533A (en) * 1990-03-19 1992-06-30 Conductus, Inc. Substrate heater utilizing protective heat sinking means
US5331134A (en) * 1992-05-21 1994-07-19 Shin-Etsu Chemical Co., Ltd. Double-layered ceramic heater
US6087632A (en) * 1999-01-11 2000-07-11 Tokyo Electron Limited Heat processing device with hot plate and associated reflector
US6953918B2 (en) 2002-11-01 2005-10-11 Shin-Etsu Chemical Co., Ltd. Heating apparatus which has electrostatic adsorption function, and method for producing it
JP2011144422A (en) * 2010-01-14 2011-07-28 Showa Denko Kk Sputtering apparatus, and method for manufacturing semi-conductor light emitting element
US8882971B2 (en) 2010-01-14 2014-11-11 Toyoda Gosei Co., Ltd. Sputtering apparatus and manufacturing method of semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US6046435A (en) Method of heating a substrate with multiple selectively deactuated heaters
WO1993019484A1 (en) Rapid thermal annealing using thermally conductive overcoat
US4535227A (en) Method for heating semiconductor wafer by means of application of radiated light
JP4633264B2 (en) Combined heater with serrated plate of ceramic foil and gas assist
JP2001023759A (en) Pyrolytic boron nitride radiation heater
JPS63241921A (en) Substrate heating device for molecular beam epitaxy system
JPH1197448A (en) Apparatus and method for heat treatment of semiconductor crystal
JP2002146540A (en) Substrate heater
NL8400317A (en) SUBSTRATE HEATING DEVICE FOR MOLECULAR BUNDLE EPITAXY.
JPS5992019A (en) Vacuum vapor deposition of material onto heating plate
JPH027415A (en) Formation of soi thin film
JPH1025200A (en) Film-forming substrate and electric element
JPH03145123A (en) Semiconductor manufacturing device
CN101300666A (en) Semiconductor production apparatus and semiconductor device
JP2944426B2 (en) Molecular beam epitaxy equipment
JPH0853766A (en) Vapor growth device
JP2002184790A (en) Plate material for heating substrate, and method of manufacturing cadmium telluride film
JPS6074425A (en) Substrate heating apparatus
JPH07249576A (en) Substrate heater of thin film forming device
JPH0215520B2 (en)
JPH01208394A (en) Substrate heating mechanism for vacuum film-forming device
JP2778137B2 (en) Thin film forming method and apparatus
JPS62279624A (en) Substrate holder for molecular beam epitaxy
JPH10256170A (en) Method and device for heat treatment
JP3198971B2 (en) Molecular beam epitaxy equipment