JPS63238580A - X-ray quantity measuring instrument - Google Patents

X-ray quantity measuring instrument

Info

Publication number
JPS63238580A
JPS63238580A JP7180487A JP7180487A JPS63238580A JP S63238580 A JPS63238580 A JP S63238580A JP 7180487 A JP7180487 A JP 7180487A JP 7180487 A JP7180487 A JP 7180487A JP S63238580 A JPS63238580 A JP S63238580A
Authority
JP
Japan
Prior art keywords
ray
thin film
anode
rays
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7180487A
Other languages
Japanese (ja)
Inventor
Hiroshige Yamada
廣成 山田
Hiromitsu Nakafuse
仲伏 廣光
Yoshiyuki Takahashi
高橋 令幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP7180487A priority Critical patent/JPS63238580A/en
Publication of JPS63238580A publication Critical patent/JPS63238580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the quantity of X rays without intercepting the X rays by providing an X-ray photoelectric film which transmits the X rays and converts part of it photoelectrically in front of an X-ray exposure device and measuring the quantity of photoelectrons emitted by the photoelectric film. CONSTITUTION:The X-ray beam is absorbed partially by a photoelectron emission thin film 1 and converted into photoelectrons, but the majority of it is transmitted through this film 1 and incident on an X-ray exposure device 3. The photoelectrons emitted by the thin film 1 are gathered on an anode 2, and consequently a current proportional to the intensity of said photoelectrons emitted by the thin film 1, i.e. the quantity of the X-ray flows from the anode 2 to the thin film 1. Electric power caught by the anode 2 is inputted to and integrated by a preamplifier 5, and then inputted to a discriminator 6, so that the quantity of the light is decided. Thus, the quantity of the X rays can be measured without intercepting the C rays, so exposure is performed quantitatively at the time of X-ray exposure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線ビームの光量測定装置に関し、特に、X線
露光におけるX線強度全測定する光量測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray beam light intensity measurement device, and more particularly to a light intensity measurement device that measures the total X-ray intensity during X-ray exposure.

(従来の技術) 従来から、シンクロトン放射によるSOR光を用いて半
導体ウェハーに微細加工を施す技術が知られている。こ
の際、 SOR光の強度全知ることにより、半導体ウェ
ハーへのSOR光の照射量を決定している。即ち、半導
体ウェハーの微細加工において、半導体ウェハーに照射
されるSOR光の強度を知ることが不可欠である。
(Prior Art) Conventionally, a technique has been known in which semiconductor wafers are subjected to microfabrication using SOR light generated by synchroton radiation. At this time, the amount of irradiation of the SOR light to the semiconductor wafer is determined by knowing the total intensity of the SOR light. That is, in microfabrication of semiconductor wafers, it is essential to know the intensity of SOR light irradiated onto the semiconductor wafer.

従来、 SOR光の強度を知る際には、シンクロトロン
の蓄積電子ビームの電流値と観測されるSOR光の強度
とが一対一に対応していると仮定して。
Conventionally, when determining the intensity of SOR light, it is assumed that there is a one-to-one correspondence between the current value of the synchrotron's accumulated electron beam and the observed intensity of SOR light.

SOR光強度を求めるか、あるいは、 SOR光を完全
に遮断してSOR光の強度全求めている。
Either the SOR light intensity is determined, or the SOR light is completely blocked and the total SOR light intensity is determined.

(発明が解決しようとする問題点) ところが、 SOR元u 1 m rad以下の極めて
狭いバンドで放射されるから、実際には電子ビームの位
置により光ビームの強度が時間的に変動してしまい、従
って、前述の仮定によりSOR光の強度を正確に求める
ことができない。一方、 SOROR完全完全断してし
まうと、 SOR光を利用できないという問題点がある
(Problem to be Solved by the Invention) However, since it is emitted in an extremely narrow band with an SOR value of u 1 m rad or less, the intensity of the light beam actually fluctuates over time depending on the position of the electron beam. Therefore, the intensity of the SOR light cannot be determined accurately based on the above assumption. On the other hand, if SOROR is completely cut off, there is a problem that SOR light cannot be used.

(問題点を解決するための手段) 本発明による光量測定装置は、X線ビームを透過すると
ともにX線ビームの一部と光電変換を行うX線光電膜と
、X線ビームが通過する通路が規定され、X線光電膜か
ら放出される光電子を補獲する光電子捕獲手段とを有し
、光電子捕獲手段によって補獲された電子の量に基づい
てX線ビームの光量を測定するようにしたことを特徴と
している。
(Means for Solving the Problems) The light amount measuring device according to the present invention includes an X-ray photoelectric film that transmits an X-ray beam and performs photoelectric conversion with a part of the X-ray beam, and a path through which the X-ray beam passes. and photoelectron capture means for capturing photoelectrons emitted from the X-ray photoelectric film, and the light intensity of the X-ray beam is measured based on the amount of electrons captured by the photoelectron capture means. It is characterized by

(実施例) 以下本発明に実施例によって説明する。(Example) The present invention will be explained below using examples.

第1図全参照して、シンクロトロン放射によるSOR光
の通路には9元電子放出薄膜1が配置され。
Referring to FIG. 1, a nine-element electron emitting thin film 1 is disposed in the path of SOR light generated by synchrotron radiation.

この光電子放出薄膜1の後段には、 SOR光の通路を
規定する円筒形状のアノード2が配設されている。この
アノード2の後側にはX線露光装置3が配置されている
A cylindrical anode 2 that defines the path of the SOR light is disposed downstream of the photoelectron emitting thin film 1. An X-ray exposure device 3 is arranged behind the anode 2 .

光電子放出薄膜1とアノード2には図示のように高電圧
発生装置4により直流高電圧が印加されている。一方ア
ノード2には増幅器(プリアンプ)5が接続されて一@
力このプリアンプ5は判別器(ディスクリミネータ)6
に接続されている。
A high DC voltage is applied to the photoelectron emitting thin film 1 and the anode 2 by a high voltage generator 4 as shown in the figure. On the other hand, an amplifier (preamplifier) 5 is connected to the anode 2.
This preamplifier 5 is a discriminator 6
It is connected to the.

X線ビームは光電子放出薄膜1によって一部吸収されて
、光電子に変換されるが、大半のX線ビームは光電子放
出薄板1を透過する。つまり、光電子放出薄膜1はX線
ビームの大半が透過する膜厚であり、しかも光電子全放
出し易い物質である。
A portion of the X-ray beam is absorbed by the photoelectron emission thin film 1 and converted into photoelectrons, but most of the X-ray beam is transmitted through the photoelectron emission thin plate 1. In other words, the photoelectron emitting thin film 1 has a thickness that allows most of the X-ray beam to pass through it, and is a material that easily emits all photoelectrons.

光電子放出薄膜1から放出された光電子はアノード2に
集められ、この結果、アノード2から光電子放出薄膜1
に向う電流が流れる。この電流の大きさは光電子放出薄
膜1から放出される光電子に比例する。つまり、X線ビ
ームの光量に比例する。
Photoelectrons emitted from the photoelectron emitting thin film 1 are collected at the anode 2, and as a result, the photoelectrons emitted from the photoelectron emitting thin film 1 are transferred from the anode 2 to the anode 2.
A current flows towards. The magnitude of this current is proportional to the photoelectrons emitted from the photoelectron emitting thin film 1. In other words, it is proportional to the amount of light of the X-ray beam.

アノード2に補獲された電子、即ち、アノード2の出力
電流は例えば、積分器として作用するプリアンプ(積分
型プリアンプ)5に入力され、露光期間中積分される。
The electrons captured by the anode 2, ie, the output current of the anode 2, are input to, for example, a preamplifier (integrating preamplifier) 5 that acts as an integrator, and are integrated during the exposure period.

この結果はディスクリミネータ6に入力されて、光量が
判別される。つ葦り。
This result is input to the discriminator 6 to determine the amount of light. Tsureed.

ディスクリミネータ6は必要とする露光量に達したこと
をプリアンプ5に蓄積された荷電量で知る。
The discriminator 6 knows from the amount of charge accumulated in the preamplifier 5 that the required exposure amount has been reached.

一方、光量の時間的変動を測定する場合には、アノード
2の出力を微分型のプリアンプに結合して。
On the other hand, when measuring temporal fluctuations in the amount of light, the output of the anode 2 is coupled to a differential preamplifier.

微分型のプリアンf5の出力によりディスクリミネータ
6は時間的変動を記録する。
The discriminator 6 records temporal fluctuations using the output of the differential preamp f5.

光電子放出薄膜1を透過したX線ビームはアノード2に
規定された通路を通ってX線露光装置4に至る。
The X-ray beam transmitted through the photoelectron emitting thin film 1 passes through a path defined by the anode 2 and reaches the X-ray exposure device 4 .

ところで、光電子放出薄膜1からの放出光電子量が少な
い場合には、第2図に示すように1元電子放出薄膜1と
アノード2との間には環状のダイノード7が配置され、
光電子放出薄膜1からの光電子をダイノード7に衝突さ
せて、二次電子を放出しつつ二次電子を増倍させ、この
二次電子をアノード2で受けるようにすればよい。なお
、この場合1元電子放出薄膜1を透過したX線ビームは
ダイノード7及びアノード2で規定される通路を通って
X@露光装置に至る なお、X線ビームの通路(X線ビームライン)は通常高
真空中に置かれるが、この通路に気体を充填してもよく
、この場合には、気体による電子増倍作用を利用するこ
とができる。
By the way, when the amount of photoelectrons emitted from the photoelectron emitting thin film 1 is small, as shown in FIG.
The photoelectrons from the photoelectron emitting thin film 1 may be made to collide with the dynode 7 to emit and multiply the secondary electrons, and the anode 2 may receive the secondary electrons. In this case, the X-ray beam that has passed through the one-element electron-emitting thin film 1 passes through the path defined by the dynode 7 and the anode 2 and reaches the X@exposure device.The path of the X-ray beam (X-ray beam line) is Although it is usually placed in a high vacuum, this passage may be filled with gas, and in this case, the electron multiplication effect of the gas can be utilized.

また1例えば1元電子放出薄膜として、厚さ10μmの
カーボン膜を用いた場合= 650 MeVの’を子ビ
ームで軌道半径50crnのシンクロトロンからのSO
R光は、エネルギーにして約57%が透過する。同様に
厚さ2μmのカーボン膜では約80チが透過する。例え
ば、300mAの蓄積電予電することが可能である。
For example, if a carbon film with a thickness of 10 μm is used as a one-element electron emitting thin film, SO of = 650 MeV from a synchrotron with an orbital radius of 50 crn is used as a child beam.
Approximately 57% of the energy of the R light is transmitted. Similarly, a carbon film with a thickness of 2 μm transmits about 80 inches. For example, it is possible to pre-charge a stored charge of 300 mA.

(発明の効果) 以上説明したように本発明によれば、X線ビームを遮断
することなく、即ち、X線ビームを透過させて、X線ビ
ームの光量全測定できるから、X線露光の際、定量的に
露光を行うことができる。
(Effects of the Invention) As explained above, according to the present invention, the total amount of light of the X-ray beam can be measured without blocking the X-ray beam, that is, by transmitting the X-ray beam. , quantitative exposure can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるX蔵元量測定装置の一実施例全概
略的に示す図、第2図は本発明によるX線光量測定装置
の他の実施例の要部を概略的に示す図である。 1・・・光電子放出薄膜、2・・・アノード、3・・・
X線露光装置、4・・・高電圧発生装置、5・・・プリ
アンプ。 6・・・ディスクリミネータ、7・・・ダイノード。 第1図 第2図
FIG. 1 is a diagram schematically showing an entire embodiment of the X-ray amount measuring device according to the present invention, and FIG. 2 is a diagram schematically showing the main parts of another embodiment of the X-ray light amount measuring device according to the present invention. be. 1... Photoelectron emission thin film, 2... Anode, 3...
X-ray exposure device, 4... high voltage generator, 5... preamplifier. 6... Discriminator, 7... Dynode. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、X線ビームを透過するとともに該X線ビームの一部
と光電変換を行うX線光電膜と、前記透過したX線ビー
ムが通過する通路が規定され、前記X線光電膜から放出
される光電子を捕獲する光電子捕獲手段とを有し、該光
電子捕獲手段によって捕獲された電子の量に基づいて前
記X線ビームの光量を測定するようにしたことを特徴と
するX線光量測定装置。
1. An X-ray photoelectric film that transmits an X-ray beam and performs photoelectric conversion with a part of the X-ray beam, and a path through which the transmitted X-ray beam passes is defined, and is emitted from the X-ray photoelectric film. 1. An X-ray light intensity measuring device comprising: a photoelectron capture means for capturing photoelectrons, and the light intensity of the X-ray beam is measured based on the amount of electrons captured by the photoelectron capture means.
JP7180487A 1987-03-27 1987-03-27 X-ray quantity measuring instrument Pending JPS63238580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7180487A JPS63238580A (en) 1987-03-27 1987-03-27 X-ray quantity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7180487A JPS63238580A (en) 1987-03-27 1987-03-27 X-ray quantity measuring instrument

Publications (1)

Publication Number Publication Date
JPS63238580A true JPS63238580A (en) 1988-10-04

Family

ID=13471119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7180487A Pending JPS63238580A (en) 1987-03-27 1987-03-27 X-ray quantity measuring instrument

Country Status (1)

Country Link
JP (1) JPS63238580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382984A (en) * 1989-06-05 1991-04-08 General Electric Co <Ge> Focusing multi-element detector for x rays exposure control
JP2004508544A (en) * 2000-08-31 2004-03-18 ザ ユニバーシティ オブ アクロン Multi-density multi-atomic number detector media with electron multiplier for imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382984A (en) * 1989-06-05 1991-04-08 General Electric Co <Ge> Focusing multi-element detector for x rays exposure control
JP2004508544A (en) * 2000-08-31 2004-03-18 ザ ユニバーシティ オブ アクロン Multi-density multi-atomic number detector media with electron multiplier for imaging

Similar Documents

Publication Publication Date Title
US4937455A (en) Position-sensitive director
EP0397229B1 (en) X-ray measurement apparatus
JP4040789B2 (en) Optical measuring device, scintillation counter, particle counter, optical measuring method, scintillation counting method and particle counting method
US20040109536A1 (en) X-ray detector for feedback stabilization of an X-ray tube
JP6410707B2 (en) Photomultiplier tube, inspection system and method with wide dynamic range
US4814599A (en) Microchannel plate streak camera
JPS63238580A (en) X-ray quantity measuring instrument
Veloso et al. A microstrip gas chamber as a VUV photosensor for a xenon gas proportional scintillation counter
Meyerott et al. Plastic scintillator response to 1–10 keV photons
Basa et al. Test results of the first proximity focused hybrid photodiode detector prototypes
US20110186740A1 (en) System for controlling photomultiplier gain drift and associated method
Jones et al. An image intensifier-scintillator device for determination of profiles and images of weak beams of ionizing particles or X-rays
Savin et al. In situ absolute calibration of a channel electron multiplier for detection of positive ions
JP3014225B2 (en) Radiation dose reader
JP2002257937A (en) Semiconductor radiation detector
Goetze et al. Recent applications of transmission secondary emission amplification
Izumi et al. Efficiency and decay time measurement of phosphors for x-ray framing cameras usable in harsh radiation background
Rome et al. The Photon Scintillator
Delori et al. Further research on the Imperial College cascade image intensifier
EP1329699A1 (en) Optical measurement apparatus and method for optical measurement
Fernandez-Figueroa et al. New diagnostic devices to monitor extraction from LEAR
Chen Hadron blind detector. Final report, FY1994 and 1995
JP2006177841A (en) Nondestructive inspection device and method
Heroux Introduction to a discussion on spectrometers and detectors
CN117388902A (en) Ultra-high dose rate medium-high energy X-ray dose rate detector and application thereof