JPS63237497A - Multilayer printed circuit - Google Patents

Multilayer printed circuit

Info

Publication number
JPS63237497A
JPS63237497A JP7025487A JP7025487A JPS63237497A JP S63237497 A JPS63237497 A JP S63237497A JP 7025487 A JP7025487 A JP 7025487A JP 7025487 A JP7025487 A JP 7025487A JP S63237497 A JPS63237497 A JP S63237497A
Authority
JP
Japan
Prior art keywords
copper
resin
printed circuit
conductive paste
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7025487A
Other languages
Japanese (ja)
Other versions
JPH081989B2 (en
Inventor
邦夫 西原
小沢 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62070254A priority Critical patent/JPH081989B2/en
Publication of JPS63237497A publication Critical patent/JPS63237497A/en
Publication of JPH081989B2 publication Critical patent/JPH081989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子機器の軽量小型化に必須の高密度のプリ
ント回路基板を積層して成る多重層プリント回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multilayer printed circuit formed by laminating high-density printed circuit boards essential for reducing the weight and size of electronic equipment.

〔従来の技術〕[Conventional technology]

電子機器分野における高密度化の要求は、ますます高度
化し、プリント回路基板の多重層化が進みつつある。従
来、多重層プリント回路の製造にあたっては両面に銅箔
を張ったプリント基板をサブトラスト法(不要な銅箔を
エツチング除去して導体形成を行う方法)にて予め回路
形成を行い、このプリント回路基板を複数枚1a!シ、
更に未加工のプリント基板及びプリプレグと’111H
した後、外面部の回路加工及び多重層回路間のスルーホ
ールメッキによる接続を行って多重層プリント回路を作
成する。
The demand for higher density in the field of electronic equipment is becoming increasingly sophisticated, and printed circuit boards are becoming more multi-layered. Conventionally, when manufacturing multilayer printed circuits, a circuit is formed in advance on a printed circuit board with copper foil covered on both sides using the subtrust method (a method in which conductors are formed by etching away unnecessary copper foil). Multiple boards 1a! C,
Furthermore, unprocessed printed circuit board and prepreg and '111H
After that, a multilayer printed circuit is created by processing the circuit on the outer surface and connecting the multilayer circuits by through-hole plating.

しかし、上記方法により複数枚積層されるプリント回路
基板の製造は、工程が長く、より一層効率的なプリント
回路基板の作成法の開発が望まれている。
However, manufacturing a printed circuit board in which a plurality of printed circuit boards are laminated by the above method requires a long process, and it is desired to develop an even more efficient method for manufacturing printed circuit boards.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来技術における複数枚lri層されるプリ
ント回路基板の製造の工程を合理化することを目的とし
ており、種々の導電性ペーストの印刷法によるプリント
回路基板の作成を検討した。導電性ペーストとして最も
ポピユラーである銀を導電材料とした導電性ペーストの
使用も可能であるが、高価であるため製造コストの低減
を図ることはできなかった。工程の合理化が可能で製造
コストの低減を図り得るプリント回路基板の製法は、銅
系の導電性ペース1−の使用によって可能となった。
The present invention aims to streamline the manufacturing process of a printed circuit board having multiple LRI layers in the prior art, and investigated the production of printed circuit boards using various conductive paste printing methods. Although it is possible to use a conductive paste made of silver, which is the most popular conductive paste, it is expensive, so it has not been possible to reduce the manufacturing cost. A method of manufacturing a printed circuit board that can streamline the process and reduce manufacturing costs has become possible through the use of copper-based conductive paste 1-.

又、従来より銅系の導電性ペーストの組成改良や銅系の
導電性ペーストを用いて印刷回路を形成する試みは、特
公昭52−24936号、特公昭57−11158号及
び特開昭57−34606号等にて、種々なされてきた
が、近年の要求性能の高度化に伴うより厳しい条件下、
例えば高湿度雰囲気中に於ける長期の信頼性、冷熱サイ
クルに対する信頼性等に問題があり、現実にはアンダー
コート、オーバーコート等によっての解決が試みられて
いるが、未だ満足の行くレベルに至っていない。上記の
ような銅系の印刷回路は、一般に酸化による導電性の劣
化が危惧されるが、本発明の銅系ペーストをプリント回
路基板に用いた多重層プリント回路においては、(1)
プリプレグとの一体化により十分な酸化に対する保護が
なされる。(2)導通部はスルーホールメッキにより酸
化雰囲気より遮断される等によって極めて高い信頼性を
実現することができた。
In addition, attempts to improve the composition of copper-based conductive pastes and to form printed circuits using copper-based conductive pastes have been made in Japanese Patent Publication No. 52-24936, Japanese Patent Publication No. 11158-1981, and Japanese Patent Application Laid-Open No. 1983-1989. 34606, etc., but under more severe conditions due to the increasing sophistication of required performance in recent years,
For example, there are problems with long-term reliability in high-humidity environments, reliability with respect to cooling and heating cycles, etc., and in reality, attempts have been made to solve these problems by using undercoats, overcoats, etc., but they have not yet reached a satisfactory level. not present. Generally, there is a concern that the conductivity of copper-based printed circuits as described above may deteriorate due to oxidation, but in the multilayer printed circuit using the copper-based paste of the present invention for the printed circuit board, (1)
Integration with prepreg provides sufficient protection against oxidation. (2) Extremely high reliability could be achieved by shielding the conductive part from the oxidizing atmosphere by through-hole plating.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、公知の下加工を施した樹脂基板に銅系導電性
ペーストにより回路パターンを印刷して回路を形成した
プリント回路基板を複数枚積層し、電気的に接続して成
る多重層プリント回路である。
The present invention is a multilayer printed circuit made by laminating and electrically connecting a plurality of printed circuit boards in which a circuit is formed by printing a circuit pattern using a copper-based conductive paste on a resin substrate that has been subjected to known preliminary processing. It is.

上記樹脂基板としてはガラス繊維、セルロース、アラミ
ド等の有機繊維等の繊維強化成分の織布、不織布或いは
ペーパー等にエポキシ樹脂、ポリイミド樹脂、フェノー
ル樹脂等の熱硬化樹脂を含浸積層して硬化した板であり
、通常0.1〜1.0龍の絶縁板である。本発明におい
ては、該樹脂基板の種類は特に限定されないが、含浸樹
脂成分は、エポキシ樹脂、又は、ポリイミド樹脂、ポリ
イミド樹脂で変性されたエポキシ樹脂が、印刷で形成さ
れる導電性ペーストによる回路パターンとの接着性に優
れ特に好ましい。上記導電性ペーストは、印刷後加熱乾
燥して導電回路を形成する。
The above-mentioned resin substrate is a board made by impregnating and curing a thermosetting resin such as epoxy resin, polyimide resin, or phenolic resin on woven fabric, non-woven fabric, or paper made of fiber-reinforced components such as organic fibers such as glass fiber, cellulose, and aramid. It is usually an insulating plate of 0.1 to 1.0. In the present invention, the type of the resin substrate is not particularly limited, but the impregnated resin component is an epoxy resin, a polyimide resin, or an epoxy resin modified with a polyimide resin, and a circuit pattern is formed by a conductive paste formed by printing. It is particularly preferred because of its excellent adhesion to. After printing, the conductive paste is heated and dried to form a conductive circuit.

銅系の導電性ペーストの成分としては、基本的には金属
銅粉を熱硬化樹脂成分に分散することにより得られる。
The components of the copper-based conductive paste are basically obtained by dispersing metallic copper powder in a thermosetting resin component.

上記金属銅粉としては、通常100μ以下のフレーク状
、樹脂状、球状或いは不定型のいずれかであっても良く
、又、金、銀、ニッケル等の他、金属によって被覆また
は混合されても良く、又、その製法は、限定されない。
The above-mentioned metallic copper powder may be in the form of flakes, resin, spherical, or amorphous, usually 100μ or less, and may be coated with or mixed with metals other than gold, silver, nickel, etc. , and the manufacturing method thereof is not limited.

又、上記熱硬化樹脂成分としてはエポキシ樹脂、ポリビ
ニルブチラール樹脂、アルキッド樹脂、アクリル樹脂、
ポリイミド樹脂、ウレタン樹脂、フェノール樹脂等の樹
脂成分が挙げられる。上記金属銅粉と熱硬化樹脂成分の
配合比率は、通常全固形分を1゜0重量%とじた時に金
属銅粉50〜90重量%に対し熱硬化樹脂成分10〜5
0重量%の範囲にある。
In addition, the above thermosetting resin components include epoxy resin, polyvinyl butyral resin, alkyd resin, acrylic resin,
Examples include resin components such as polyimide resin, urethane resin, and phenol resin. The mixing ratio of the above metallic copper powder and thermosetting resin component is usually 50 to 90% by weight of the metallic copper powder and 10 to 5% of the thermosetting resin component when the total solid content is 1.0% by weight.
It is in the range of 0% by weight.

好ましくは本発明の銅系の導電性ペーストの成分として
は、更に銅化合物及び前記銅化合物を還元させる還元性
物質を含有することが望ましい。
Preferably, the components of the copper-based conductive paste of the present invention further contain a copper compound and a reducing substance that reduces the copper compound.

ここで銅化合物としては、例えば塩化第二銅のiき銅の
ハロゲン化物、ナフテン酸銅の如き銅の有機酸塩、アセ
チルアセトンのCu(■)キレートの如き銅の錯体及び
酸化第一銅や酸化第二銅の如き銅の酸化物などが代表的
である。この銅化合物により上記金属銅粉の表面を被覆
するか、それに付着させておくことが望ましい。而して
、本発明では、表面を銅化合物で被覆するか、又は銅化
合物が付着した金属銅粉は金属銅粉と銅化合物とで構成
されるものとみなされる。例えば、通常市販される銅粉
は酸化第二銅の如きwI酸化物で大なり小なり被覆され
、又はそれらが付着しているので、上記市販銅粉は金属
銅粉と銅化合物とから成るものと見なし得る。
Examples of copper compounds include copper halides such as cupric chloride, organic acid salts of copper such as copper naphthenate, copper complexes such as Cu(■) chelate of acetylacetone, and cuprous oxide and oxidized copper. Copper oxides such as cupric are representative. It is desirable to coat the surface of the metallic copper powder with this copper compound or to make it adhere thereto. Accordingly, in the present invention, metallic copper powder whose surface is coated with a copper compound or to which a copper compound is attached is considered to be composed of metallic copper powder and a copper compound. For example, commercially available copper powders are usually coated with wI oxides such as cupric oxide to a greater or lesser extent, or have them attached to them, so the commercially available copper powders are composed of metallic copper powder and copper compounds. It can be considered as

上記銅化・合物を還元させる還元性物質としては、例え
ば還元糖類、アスコルビン酸、ヒドラジン化合物、ホル
マリン、水素化ホウ素化合物、ホスフィン誘導体、トル
エンスルフィン酸、ベンゼンスルフィン酸、ハイドロキ
ノン、カテコール等、及び標準電極電位値によって銅よ
り卑なる金属類、還元性基を有する樹脂などの如きもの
がある。
Examples of reducing substances that reduce the copper compounds and compounds include reducing sugars, ascorbic acid, hydrazine compounds, formalin, boron hydride compounds, phosphine derivatives, toluenesulfinic acid, benzenesulfinic acid, hydroquinone, catechol, etc., and standard Depending on the electrode potential value, there are metals baser than copper, resins having reducing groups, and the like.

これら還元性物質は一種でも良いが、2種以上混合使用
しても構わない。
These reducing substances may be used alone or in combination of two or more.

上記銅化合物の使用量は金属銅100重量部に対して銅
化合物の銅分として0.1〜30重量部が好ましく、上
記還元性物質の使用量は前記銅化合物の使用量や上記還
元性物質が、その分子量適りに示す還元能により左右さ
れるために上記還元性物質の種類により決まるが、前記
銅化合物の銅分全■を金属銅に還元析出せしめるに足る
量を用いるのが好ましい。
The amount of the copper compound to be used is preferably 0.1 to 30 parts by weight as the copper content of the copper compound based on 100 parts by weight of metal copper, and the amount of the reducing substance to be used is determined by the amount of the copper compound used and the reducing substance. However, it is determined by the type of the above-mentioned reducing substance because it depends on the reducing ability shown in proportion to its molecular weight, but it is preferable to use an amount sufficient to reduce and precipitate all the copper content of the copper compound into metallic copper.

上記銅化合物及び還元性物質を用いることにより、後述
の多重層プリント回路の加工工程における積層プレス後
のスルーホールメッキにおいては銅系の導電性ペースト
に対するメッキ付き信頼性に優れた効果を示すことが判
明した。
By using the above-mentioned copper compound and reducing substance, it is possible to show an excellent effect on plating reliability for copper-based conductive paste in through-hole plating after lamination pressing in the processing process of multilayer printed circuits described below. found.

更に好ましくは、上記還元性物質である還元性の基を有
する樹脂としては下記の構造の還元性基を有する熱硬化
樹脂が望ましいく以下、還元性熱硬化樹脂とする)。
More preferably, the resin having a reducing group, which is the reducing substance, is a thermosetting resin having a reducing group having the following structure (hereinafter referred to as a reducing thermosetting resin).

例えば、ハイドロキノン、カテコール、2−メチル−ハ
イドロキノン、ビニルハイドロキノン、ターシャリ−ブ
チルハイドロキノン、クロルハイドロキノン、フェニル
ハイドロキノン等をフェノールホルムアルデヒド樹脂、
メラミンホルムアルデヒド樹脂、尿素ホルムアルデヒド
樹脂、ベンゾグアナミンホルムアルデヒド樹脂等のホル
ムアルデヒド縮合樹脂にブレンド又は共縮合するか、又
はこれらの化合物をホルムアルデヒドと縮合せしめて樹
脂化して得られるものであり、かつ有機成分中小なくと
も10重量%以上、好ましくは20重量%以上の上記還
元性基を含有することが望ましい。
For example, hydroquinone, catechol, 2-methyl-hydroquinone, vinylhydroquinone, tertiary-butylhydroquinone, chlorohydroquinone, phenylhydroquinone, etc. are combined with phenol formaldehyde resin,
It is obtained by blending or co-condensing with formaldehyde condensation resins such as melamine formaldehyde resin, urea formaldehyde resin, and benzoguanamine formaldehyde resin, or by condensing these compounds with formaldehyde to form a resin, and containing at least 10% of organic components. It is desirable to contain at least 20% by weight, preferably at least 20% by weight, of the above-mentioned reducing groups.

この限りにおいて上記還元性熱硬化樹脂成分中には、更
にエポキシ樹脂、ポリビニルブチラール樹脂、アルキッ
ド樹脂、アクリル樹脂、ポリイミド樹脂、ウレタン樹脂
等の他の樹脂成分を含有しても良い。
To this extent, the reducing thermosetting resin component may further contain other resin components such as epoxy resin, polyvinyl butyral resin, alkyd resin, acrylic resin, polyimide resin, and urethane resin.

上記(all底屈銅粉(b)銅化合物、及び(C1銅化
合物を還元させる還元性物質及び/又は還元性基を含有
する還元性熱硬化樹脂成分(以下、(a)、(bl及び
(C)と略)の成分からなる導電性ペーストの(81、
(bl及び(C1の配合割合は、通常全固形分を100
重量%とした時に(al、(b)及び(C)が各々(a
)50〜85重量%(b)0.1〜10重量%及びtc
+1o〜40重量%の範囲にあり、好ましくは(816
0〜80重量%(b)0.5〜8重量%及びFC115
〜35重量%の範囲にあることが望ましい。
(hereinafter referred to as (a), (bl and ( A conductive paste consisting of the components (81, C)
The blending ratio of (bl and (C1) is usually 100% of the total solid content.
When expressed as weight%, (al, (b) and (C) are each (a
) 50-85% by weight (b) 0.1-10% by weight and tc
+1o to 40% by weight, preferably (816
0-80% by weight (b) 0.5-8% by weight and FC115
It is desirable that the amount is in the range of ~35% by weight.

上記組成の銅系の導電性ペーストを用いることにより積
層プレス後のスルーホールの孔明はドリル加工にてスミ
ア−現象(ドリル切削時、高速ドリルによる発熱にて樹
脂部分の軟化、溶融を生じメッキ接続を行うべきプリン
ト回路面の樹脂付着にて導通不良となる現象)の防止に
効果のあることが判明した。
By using a copper-based conductive paste with the above composition, the holes in the through holes after laminated pressing can be prevented by a smear phenomenon (during cutting, the heat generated by the high-speed drill causes the resin part to soften and melt, resulting in plating connections). It has been found that this method is effective in preventing the phenomenon of poor conductivity caused by resin adhesion to the printed circuit surface.

又、銅系の導電性ペースト中に公知の貯蔵安定性改良助
剤であるキレート化剤、樹脂成分の硬化反応を調整する
硬化促進助剤、印刷性向上の為のレベリング剤、チクソ
トロピック性付与剤、消泡剤等の助剤、非導電性の充填
剤を導電性を阻害しない範囲において混合使用しても差
し支えない。
In addition, copper-based conductive paste contains a chelating agent that is a known storage stability improving aid, a curing accelerating aid that adjusts the curing reaction of resin components, a leveling agent to improve printability, and a thixotropic property imparting agent. Auxiliary agents such as antifoaming agents, antifoaming agents, and non-conductive fillers may be mixed and used within the range that does not impede conductivity.

上記銅系の導電性ペーストの各成分は、通常有機溶剤に
熔解又は分散せしめて印刷用ペーストとし、スクリーン
印刷法等の手段によって樹脂基板上に所望の回路パター
ンを形成し、通常80〜220℃好ましくは100〜1
80℃の温度で加熱して有機溶剤を蒸発除去せしめ、か
つ樹脂成分の硬化反応を行わせる。本工程において銅系
導電性ペーストの表面酸化防止のため、不活性ガス雰囲
気にて加熱硬化することが望ましい。
Each component of the copper-based conductive paste is usually dissolved or dispersed in an organic solvent to form a printing paste, and a desired circuit pattern is formed on a resin substrate by means such as screen printing, usually at 80 to 220°C. Preferably 100-1
It is heated at a temperature of 80° C. to evaporate the organic solvent and cause a curing reaction of the resin component. In this step, in order to prevent surface oxidation of the copper-based conductive paste, it is desirable to heat and harden it in an inert gas atmosphere.

上記の如き導電性インクを用いたプリント回路の形成は
、樹脂基板の片面でも又、両面にも形成されプリント回
路基板として用いられる。上記のプリント回路基板は、
両側にプリプレグを、その外側に最も一般的には銅張り
プリント基板を重ね、加熱加圧することによって積層さ
れる。プリプレグとは、ガラス等の繊維系強化材にエポ
キシ樹脂又はポリイミド樹脂等の樹脂成分を含浸してな
る未反応又は部分反応した熱硬化樹脂材料であり、通常
150〜200℃、20〜120分、5〜60kg/L
J2で加圧によって内層板と外側の銅張りプリント基板
を強固に一体化し、かつプリント回路の絶縁材となる。
A printed circuit using conductive ink as described above can be formed on one side or both sides of a resin substrate and used as a printed circuit board. The above printed circuit board is
It is laminated by placing prepreg on both sides and, most commonly, a copper-clad printed circuit board on the outside, and applying heat and pressure. Prepreg is an unreacted or partially reacted thermosetting resin material made by impregnating a fiber reinforced material such as glass with a resin component such as epoxy resin or polyimide resin, and is usually heated at 150 to 200°C for 20 to 120 minutes. 5-60kg/L
By applying pressure at J2, the inner layer board and the outer copper-clad printed circuit board are firmly integrated, and it also serves as an insulating material for the printed circuit.

(第1図参照) 又、プリント回路基板を2枚以上用い、その間にプリプ
レグを挟み、上記と同様にして積層することも勿論可能
である。これらのプリント回路基板に、通常の両面に回
路を有するプリント回路基板と同様に、孔明け、スルー
ホールメッキ、バターニング、レジスト膜形成等の加工
を施し、外面部の回路加工及び外面部配線と内層部配線
の電気的導通を取り多重層プリント回路を得る。又、外
面には銅張りプリント回路基板ではなく、通常の樹脂基
板を用い、アディティブ法(銅等の導体金属の無電解メ
ッキ又は無電解メッキと電解メッキの組合せ法)によっ
て外面部の回路形成及び外面部配線と内層部配線の電気
的導通を取り多重層プリント回路とすることも可能であ
る。
(See FIG. 1) It is also possible, of course, to use two or more printed circuit boards, sandwich the prepreg between them, and laminate them in the same manner as above. These printed circuit boards are subjected to processing such as hole drilling, through-hole plating, buttering, and resist film formation in the same way as ordinary printed circuit boards that have circuits on both sides, and are processed with external circuit processing and external wiring. A multilayer printed circuit is obtained by establishing electrical continuity between the inner layer wiring. In addition, a regular resin board is used instead of a copper-clad printed circuit board for the outer surface, and the circuit is formed on the outer surface by an additive method (electroless plating of conductive metal such as copper or a combination of electroless plating and electrolytic plating). It is also possible to create a multilayer printed circuit by establishing electrical continuity between the outer surface wiring and the inner layer wiring.

以上の工程によって得られた銅系導電性ペーストを用い
た多重層プリント回路基板は効率の高い生産性、低価格
及び信頼性を兼備えた工業的に有用なものである。
The multilayer printed circuit board using the copper-based conductive paste obtained by the above process is industrially useful because it has high productivity, low cost, and reliability.

〔実 施 例〕〔Example〕

第1図は、本発明に係る多重層プリント回路の構成の一
実施例を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the configuration of a multilayer printed circuit according to the present invention.

第1図中、1.1′は外層銅張基板、2.21はその銅
箔、3.31.3“は各層の基板に挟まれるプリプレグ
、4.4′は内層のプリント回路基板、5.5′、5“
、5′はその所望の形状にプリント加工された銅系導電
性ペースト印刷回路である。
In Figure 1, 1.1' is the outer layer copper-clad board, 2.21 is its copper foil, 3.31.3'' is the prepreg sandwiched between the boards of each layer, 4.4' is the inner layer printed circuit board, 5 .5', 5"
, 5' is a copper-based conductive paste printed circuit printed into the desired shape.

以下に実施例を記載するが、以下に記載する部及び%は
それぞれ重量部及び重量%を意味し、又例中に記載する
濃度は、全成分中の該成分の割合を重量%で表す。
Examples will be described below. Parts and % described below mean parts by weight and % by weight, respectively, and concentrations described in the examples represent the proportion of the component in all components in % by weight.

以下に記載する実施例のスクリーン印刷法による印刷体
は下記の如き方法で形成したものである。
The printed bodies by the screen printing method of the Examples described below were formed by the following method.

被印刷物面に、全長200 ***、幅5龍の線状の印
刷体を180メツシユ テトロン製のスクリーンを用い
て銅系の導電性ペーストで回路パターンを印刷し、それ
ぞれの実験の硬化条件で硬化させて印刷体を形成した。
A linear printing material with a total length of 200 mm and a width of 5 mm was printed on the printing surface using a 180 mesh Tetron screen with a copper-based conductive paste, and the circuit pattern was printed under the curing conditions of each experiment. It was cured to form a print.

又、導電性の目安として記載した抵抗値、比抵抗値はそ
れぞれテスター(横河電機社製 Type−32C) 
、ホイーストンブリッジ(横河電機社製 Type−2
755)を′用いて抵抗値を測定し、上記硬化物の厚み
、長さ及び幅を測定して比抵抗値を算出した。
In addition, the resistance value and specific resistance value listed as a guideline for conductivity are measured using a tester (Type-32C manufactured by Yokogawa Electric Corporation).
, Wheatstone Bridge (Yokogawa Electric Corporation Type-2
755) was used to measure the resistance value, and the thickness, length, and width of the cured product were measured to calculate the specific resistance value.

以下に記載する実施例中の耐久試験は、MIL −10
7D記載の熱衝撃試験10サイクル後、旧L −106
0記載の耐湿試験100サイクルを行い、抵抗値の変化
を測定した。又、メッキ付き性及びスミア−状態は銅系
導電性ペーストと接続しているスルーホールを任意に1
00孔選択し、断面を観察し不良数を表示した。
The durability test in the examples described below is MIL-10
After 10 cycles of thermal shock test described in 7D, old L-106
100 cycles of the moisture resistance test described in 0 were conducted, and changes in resistance were measured. In addition, the plating property and smear condition can be determined by arbitrarily changing the through hole connected to the copper-based conductive paste.
00 hole was selected, the cross section was observed, and the number of defects was displayed.

実施例−1 工業用銅粉(不定型、平均粒径15μ、酸化銅約2.0
%含有)における表面の銅酸化物を溶去した金属銅粉1
00部、エチレングリコールモツプチルエーテルに熔解
した樹脂分80%であるアルコール可溶性レゾール型フ
ェノール樹脂20.9部を混合してなる導電性ペースト
をガラス繊維にエポキシ樹脂を含浸積層硬化した0、6
部m厚の片面銅張樹脂基板(三菱ガス化学0聯社!りの
樹脂面に印刷し150℃1時間加熱硬化した。その後、
ガラス繊維織布にエポキシ樹脂を含浸した0、1龍厚の
プリプレグ2枚及び上記0.6部厚の片面銅張樹脂基板
を積層し180℃50分4Qkg / cm 2条件に
て硬化一体化した。
Example-1 Industrial copper powder (amorphous, average particle size 15μ, copper oxide approximately 2.0
Metallic copper powder 1 from which copper oxides on the surface have been eluted
0,6 in which a conductive paste made by mixing 20.9 parts of an alcohol-soluble resol type phenolic resin with a resin content of 80% dissolved in ethylene glycol motuptyl ether is laminated and cured by impregnating glass fiber with an epoxy resin.
It was printed on the resin surface of a one-sided copper-clad resin substrate (Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 150 mm and cured by heating at 150°C for 1 hour.
Two prepreg sheets of 0.1 and 1.0 mm thickness, each made of glass fiber woven fabric impregnated with epoxy resin, and the above-mentioned single-sided copper-clad resin substrate of 0.6 part thickness were laminated and cured into one piece at 180°C for 50 minutes at 4Qkg/cm2. .

印刷体の測定点にドリルで孔明けしメッキ法によりドリ
ル孔に銅メッキを施し、印刷体のドリル部の保護と外層
部との電気的導通を取った後、ドライフィルムを用いて
、外層の銅箔をスルーホールのランドを残してエツチン
グ除去し、測定用サンプルとした。
Holes are drilled at measurement points on the printed material, copper plating is applied to the drilled holes using a plating method, and after protecting the drilled portion of the printed material and establishing electrical continuity with the outer layer, the outer layer is coated using a dry film. The copper foil was etched away leaving the land of the through hole and used as a sample for measurement.

実施例−2゛ 工業用銅粉(不定型、平均粒径15μ、酸化銅約2.0
%含有)を110部、硬化後年揮発分80%であるアル
コール可溶性レゾール型フェノール樹脂(フェノール1
モルとホルマリン3モルとかう得うれたレゾール型フェ
ノール樹脂)23部、2−ヒドロキシ−3−フェノキシ
プロピルホスファイト20部、ジメチルアミノエタノー
ル4部、ジアセトンアルコールとエチレングリコールモ
ノメチルエーテル(1: 1)からなる混合溶媒29部
、酢酸2部を混合してなる導電性ペーストを用いて、実
施例−1と同様に測定用サンプルを作製した。
Example-2 Industrial copper powder (amorphous, average particle size 15μ, copper oxide approximately 2.0
110 parts of alcohol-soluble resol type phenolic resin (containing phenol 1%) and 80% volatile content after curing.
23 parts of the obtained resol type phenolic resin (1 mole and 3 moles of formalin), 20 parts of 2-hydroxy-3-phenoxypropyl phosphite, 4 parts of dimethylaminoethanol, diacetone alcohol and ethylene glycol monomethyl ether (1:1) A measurement sample was prepared in the same manner as in Example-1 using a conductive paste prepared by mixing 29 parts of a mixed solvent consisting of 2 parts of acetic acid and 2 parts of acetic acid.

実施例−3 工業用銅粉(不定型、平均粒径15μ、酸化銅約2.0
%含有)を110部、エチレングリコールモノブチルエ
ーテルに熔解した樹脂分80%のハイドロキノン変性レ
ゾール型フェノール樹脂(ハイドロキノン2モルとフェ
ノール0.5モルとホルマリン6モルをアンモニア触媒
の存在下で反応させて得た。)を42部、トリス(N、
N ’−ジメチルアミノ)フェノール0.2部、アセト
酢酸エチル12部を混合してなる導電性ペーストを用い
て、実施例−1と同様に測定サンプルを作製した。
Example-3 Industrial copper powder (amorphous, average particle size 15μ, copper oxide approximately 2.0
%) dissolved in ethylene glycol monobutyl ether and a hydroquinone-modified resol type phenolic resin with a resin content of 80% (obtained by reacting 2 moles of hydroquinone, 0.5 moles of phenol, and 6 moles of formalin in the presence of an ammonia catalyst). 42 copies of Tris (N,
A measurement sample was prepared in the same manner as in Example 1 using a conductive paste prepared by mixing 0.2 parts of N'-dimethylamino)phenol and 12 parts of ethyl acetoacetate.

比較例−1 実施例−1にて得られた導電性ペーストを用い、実施例
−1と同様の片面銅張樹脂基板に印刷し、150℃1時
間加熱硬化し測定用サンプルを作製した。
Comparative Example-1 Using the conductive paste obtained in Example-1, it was printed on the same single-sided copper-clad resin substrate as in Example-1, and heated and cured at 150° C. for 1 hour to prepare a measurement sample.

比較例−2 実施例−2にて得られた導電性ペーストを用い、比較例
−1と同様にして測定サンプルを作製した。
Comparative Example-2 A measurement sample was prepared in the same manner as Comparative Example-1 using the conductive paste obtained in Example-2.

比較例−3 実施例−3にて得られた導電性ペーストを用い、比較例
−1と同様にして測定用サンプルを作製した。
Comparative Example-3 Using the conductive paste obtained in Example-3, a measurement sample was prepared in the same manner as Comparative Example-1.

比較例−4 前述の片面銅張樹脂基板にクレゾールノボラック型エポ
キシ系樹脂を塗布し150℃30分加熱硬化しアンダー
コートとした。厚みは15μであった。
Comparative Example 4 A cresol novolac type epoxy resin was applied to the single-sided copper-clad resin substrate described above and cured by heating at 150° C. for 30 minutes to form an undercoat. The thickness was 15μ.

その上に実施例−3にて得られた導電性ペーストを印刷
し、150℃1時間加熱硬化した後、更に上記エポキシ
系樹脂を印刷し150℃30分加熱硬化しオーバーコー
トとして測定用サンプルとした。ここでオーバーコート
の厚みは13μであった。
The conductive paste obtained in Example 3 was printed thereon and heated and cured at 150°C for 1 hour, and then the above epoxy resin was printed and heated at 150°C for 30 minutes to form an overcoat and used as a measurement sample. did. Here, the thickness of the overcoat was 13μ.

作製した測定用サンプルの初期比抵抗値、初期抵抗値及
び耐久試験後の抵抗値、又、実施例の積層プレ、スした
サンプルについては、耐久試験後の断面観察によるスル
ーホールメッキと銅系導電性ペーストとの剥れ数とスミ
ア−発生数を下記の表−1に示す。表−1に見られる如
(銅系導電性ペーストを内層に用いることにより優れた
抵抗値の安定性が得られることが分かる。
The initial resistivity value, initial resistance value, and resistance value after the durability test of the prepared measurement sample, as well as the through-hole plating and copper-based conductivity obtained by cross-sectional observation after the durability test, for the laminated pressed sample of the example. The number of peelings and the number of smears from the adhesive paste are shown in Table 1 below. As seen in Table 1, it can be seen that excellent resistance value stability can be obtained by using a copper-based conductive paste for the inner layer.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより得られる銅系導電性
ペーストを用いた多ff1fflプリント回路基板は効
率の高い生産性、低価格及び信頼性を兼備えた工業的に
有用なものである。
A multi-FF1FFL printed circuit board using a copper-based conductive paste obtained by carrying out the method of the present invention is industrially useful because it has high productivity, low cost, and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る多重層プリント回路の構成の一
実施例を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the configuration of a multilayer printed circuit according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1)公知の下加工を施した樹脂基板に銅系導電性ペース
トにより回路パターンを印刷して回路を形成したプリン
ト回路基板を複数枚積層し、電気的に接続して成る多重
層プリント回路。
1) A multilayer printed circuit made by laminating and electrically connecting a plurality of printed circuit boards in which a circuit is formed by printing a circuit pattern using a copper-based conductive paste on a resin substrate that has been subjected to known preliminary processing.
JP62070254A 1987-03-26 1987-03-26 Multilayer printed circuit Expired - Lifetime JPH081989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070254A JPH081989B2 (en) 1987-03-26 1987-03-26 Multilayer printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070254A JPH081989B2 (en) 1987-03-26 1987-03-26 Multilayer printed circuit

Publications (2)

Publication Number Publication Date
JPS63237497A true JPS63237497A (en) 1988-10-03
JPH081989B2 JPH081989B2 (en) 1996-01-10

Family

ID=13426237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070254A Expired - Lifetime JPH081989B2 (en) 1987-03-26 1987-03-26 Multilayer printed circuit

Country Status (1)

Country Link
JP (1) JPH081989B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198618A (en) * 2000-12-27 2002-07-12 Aiwa Raito:Kk Wiring board and game machine
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202690A (en) * 1983-05-04 1984-11-16 松下電工株式会社 Multilayer printed circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202690A (en) * 1983-05-04 1984-11-16 松下電工株式会社 Multilayer printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198618A (en) * 2000-12-27 2002-07-12 Aiwa Raito:Kk Wiring board and game machine
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks

Also Published As

Publication number Publication date
JPH081989B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
EP0955795B1 (en) Conductive paste for filing via-hole, double-sided and multilayer printed circuit boards using the same, and method for producing the same
JP2777747B2 (en) Multilayer printed circuit board with built-in printed resistor having electromagnetic wave shielding layer
KR101327712B1 (en) Conductive paste and multilayer printed wiring board using the same
JPH11126978A (en) Multilayered wiring board
US6080336A (en) Via-filling conductive paste composition
US6692664B2 (en) Printed wiring board conductive via hole filler having metal oxide reducing capability
US8309853B2 (en) Flexible printed wiring board
TWI417903B (en) Conductive paste
JP3038210B2 (en) Conductor paste composition for filling via hole, double-sided and multilayer printed circuit board using the same, and method for producing the same
JPS63237497A (en) Multilayer printed circuit
JPS58117606A (en) Conduction of through hole section
JP4354047B2 (en) Conductive paste composition for via filling
JP2690744B2 (en) Multilayer printed circuit board
JP2000077849A (en) Wiring board and its manufacture
JPH0575225A (en) Metallic base printed wiring substrate and its manufacture
JPH0992029A (en) Conductive paste
JPH10261319A (en) Electrically conductive copper paste composition
JP2002289038A (en) Conductive paste composition for use in filling via
JP4301152B2 (en) Via hole forming metal clad laminate and through hole forming unclad plate
CN113950204B (en) Manufacturing method of prefabricated circuit board and prefabricated circuit board
JP2009070724A (en) Conductive paste
JPH06100708A (en) Composite laminated sheet
JP3290348B2 (en) Conductive copper paste composition
JPH0953032A (en) Conductive paste and production of electrical circuit board
JP3064020B2 (en) Manufacturing method of multilayer printed wiring board with built-in printed resistor