JPS63237482A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS63237482A
JPS63237482A JP7207887A JP7207887A JPS63237482A JP S63237482 A JPS63237482 A JP S63237482A JP 7207887 A JP7207887 A JP 7207887A JP 7207887 A JP7207887 A JP 7207887A JP S63237482 A JPS63237482 A JP S63237482A
Authority
JP
Japan
Prior art keywords
substrate
film
single crystal
pressure sensor
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7207887A
Other languages
Japanese (ja)
Other versions
JPH0831608B2 (en
Inventor
Tetsuo Fujii
哲夫 藤井
Susumu Azeyanagi
進 畔柳
Mineichi Sakai
峰一 酒井
Akira Kuroyanagi
晃 黒柳
Shinji Yoshihara
晋二 吉原
Tomohiro Funahashi
舟橋 知弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62072078A priority Critical patent/JPH0831608B2/en
Priority to US07/132,573 priority patent/US4975390A/en
Priority to DE3743080A priority patent/DE3743080C2/en
Publication of JPS63237482A publication Critical patent/JPS63237482A/en
Publication of JPH0831608B2 publication Critical patent/JPH0831608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To isolate electrically and completely a strain gauge from a substrate even at a high temperature, and stabilize the output characteristics, by forming a pressure sensitivity element in a specified region on the insulating part of a diaphgram formed on the recessed part made in a substrate and on the peripheral part thereof. CONSTITUTION:By using a silicon oxide film 2 formed in a specified region on the main surface of a single crystal silicon substrate 1 as a mask, a recessed part 3 is formed, in which a through hole 4 is made with a laser beam. By using a silicon oxide film formed in a specified region on the main surface of a second substrate 5 of single crystal silicon as a mask, a piezo resistance layer 7 in which P-type impurity like boron is diffused with high concentration is formed in the direction of <110>. A BPSG film 9 is formed on a silicon nitride film 8 formed on the whole surface of the substrate 5. On the main surface of the substrate 1, the BPSG film 9 is so arranged that the upper and the lower patterns are lapped with each other as an initial setting. The film 9 is fused to bond the substrates 1 and 5. The substrate 5 is eliminated. The resistance layer 7 can be electrically and completely isolated from the substrate 1 by the film 8 and the like, and its characteristics are stabilized even at a high temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体圧力センサに係り、詳しくは高温におい
ても好適な小型半導体圧力センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor pressure sensor, and more particularly to a small-sized semiconductor pressure sensor suitable even at high temperatures.

(従来の技術〉 機械的応力を加える事によってピエゾ抵抗効果によりそ
の抵抗値が変化することを利用して、単結晶シリコン基
板の一部の肉厚を薄くしダイレフラムを形成し、そのグ
イX7フラムに歪ゲージを拡散層等で形成して、ダイヤ
フラムに加わる圧力により歪ゲージを変形させ、ピエゾ
抵抗効果による抵抗値の変化を検出して圧力を測定覆る
半導体圧力センサが用いられている。
(Conventional technology) Utilizing the fact that the resistance value changes due to the piezoresistance effect when mechanical stress is applied, the wall thickness of a part of the single crystal silicon substrate is thinned to form a direflame. Semiconductor pressure sensors are used that measure pressure by forming a strain gauge with a diffusion layer or the like, deforming the strain gauge by pressure applied to a diaphragm, and detecting changes in resistance due to the piezoresistive effect.

(発明が解決しようとする問題点) しかしながら、上記の半導体圧力ゼンリーによると、単
結晶シリコン基板と歪ゲージとの電気的分離はj11結
晶シリコン基板内に形成されるPN接合にて行ってあり
、この様なセンサを高温において使用する場合、PN接
合部においてリーク電流が増加してしまい安定した測定
が困難になるという問題があった。
(Problems to be Solved by the Invention) However, according to the above-mentioned semiconductor pressure sensor, the single crystal silicon substrate and the strain gauge are electrically separated by a PN junction formed within the J11 crystal silicon substrate. When such a sensor is used at high temperatures, there is a problem in that leakage current increases at the PN junction, making stable measurement difficult.

(発明の目的〉 この発明の目的は上記問題点を解消し、高温においても
歪ゲージと基板とを電気的に完全に分離でき、その出力
特性が安定である小型の半導体圧力センサを提供するこ
とにある。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems and to provide a small semiconductor pressure sensor that can completely electrically separate the strain gauge and the substrate even at high temperatures and has stable output characteristics. It is in.

(問題点を解決するための手段) この発明は上記目的を達成するためになされたものであ
って、凹部及び該凹部に貫通孔をその一部に有する基板
と、前記凹部上及び該凹部の周辺にほぼ平滑に形成され
、その少なくとも一部に絶縁性を有する部分を形成した
ダイヤフラムと、前記絶縁性を有する部分上の所定領域
に形成される感圧素子部とを備えた半導体圧力センサを
その要旨とする。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and includes a substrate having a recess and a through hole in the recess, and A semiconductor pressure sensor comprising: a diaphragm formed substantially smoothly around the periphery and having an insulating part formed on at least a part of the diaphragm; and a pressure sensitive element part formed in a predetermined area on the insulating part. This is the summary.

(実施例) 以下、この発明を具体化した一実施例を図面に従って説
明する。
(Example) An example embodying the present invention will be described below with reference to the drawings.

第1図(a)〜(C1)は本発明の実施例を示す断面図
であって、その製造工程を順に説明する。
FIGS. 1(a) to (C1) are cross-sectional views showing an embodiment of the present invention, and the manufacturing process thereof will be explained in order.

まず、第1図(a>において、1は(100)面の第1
の単結晶シリコン基板であり、2は第1の単結晶シリコ
ン基板1の主表面上の所定領域に形成するシリコン酸化
膜(S! 02 )である。このシリコン酸化膜2をマ
スクとして水酸化カリウム(KOH>等による異方性の
エツチング液を用いてエツチングし、同図(b)に示す
にうな凹部3を形成する。次に、凹部3内にレーザビー
ムによって20〜50Iim径の貫通孔4を形成する。
First, in Figure 1 (a), 1 is the first point on the (100) plane.
2 is a silicon oxide film (S! 02 ) formed in a predetermined region on the main surface of the first single crystal silicon substrate 1 . Using this silicon oxide film 2 as a mask, etching is performed using an anisotropic etching solution such as potassium hydroxide (KOH) to form a concave recess 3 as shown in FIG. A through hole 4 having a diameter of 20 to 50 Im is formed using a laser beam.

尚、ここで用いる基板としてはその結晶面は(110)
でもよく、又、パイレックスガラス、サファイア等に凹
部及び貫通孔を形成したものであってもよい。
The crystal plane of the substrate used here is (110)
Alternatively, it may be made of Pyrex glass, sapphire, or the like with recesses and through holes formed therein.

一方、同図(C)に示すように、例えば、その比抵抗が
3〜5ΩcmのN型導電型であって、結晶面が(100
)あるいは(110)の第2の単結晶シリコン基板5の
主表面上の所定領域に、シリコン酸化膜6を形成し、そ
のシリコン酸化膜6をマスクとしてボロン(B)等のP
型不純物を高濃度に拡散しピエゾ抵抗層7を、<110
>方向に形成する。引き続き、シリコン酸化膜6を除去
した後に、同図(d)に示すように第2の単結晶シリコ
ン基板5の主表面上の全面にL P CV D法又はプ
ラズマCVD法により膜厚が0.1〜2.0μmのシリ
コン窒化膜(Si 3 N4 ) 8を形成し、ざらに
このシリコン窒化膜8上にBPSG膜9を形成する。尚
、この時、BPSG膜9の表面は4ぼ平滑な状態となっ
ている。
On the other hand, as shown in FIG.
) Alternatively, a silicon oxide film 6 is formed in a predetermined region on the main surface of the second single crystal silicon substrate 5 (110), and P such as boron (B) is deposited using the silicon oxide film 6 as a mask.
The type impurity is diffused at a high concentration to form the piezoresistive layer 7 with <110
> direction. Subsequently, after removing the silicon oxide film 6, as shown in FIG. 4(d), a film with a thickness of 0.00 mm is formed on the entire main surface of the second single-crystal silicon substrate 5 by L P CV D method or plasma CVD method. A silicon nitride film (Si 3 N4 ) 8 having a thickness of 1 to 2.0 μm is formed, and a BPSG film 9 is roughly formed on this silicon nitride film 8 . Incidentally, at this time, the surface of the BPSG film 9 is approximately smooth.

そして、同図(e)に示すように、第1の単結晶シリコ
ン基板1の主表面上に、上下のパターンが設定通り重な
るように例えば赤外顕微鏡で位置合けを行い第2の単結
晶シリコン基板5に形成されたBPSG膜9を配置する
Then, as shown in FIG. 2(e), the second single crystal is aligned on the main surface of the first single crystal silicon substrate 1 using, for example, an infrared microscope so that the upper and lower patterns overlap as set. A BPSG film 9 formed on a silicon substrate 5 is placed.

ここで、本実施例においては第1.第2の単結晶シリコ
ン基板1,5(あるいはそれらのウェハ)の周辺部を真
空中でレーザにより溶融接着して仮市のを行う。しかる
後に真空炉内に入れ約1000°C〜1100’Cに加
熱し、BPSG膜9を溶融し第1.第2の単結晶シリコ
ン基板1,5の両者の接着を行う。又、接着が完全に行
われるように基板上に重しを乗せて行っている。
Here, in this embodiment, the first. The peripheral portions of the second single-crystal silicon substrates 1 and 5 (or their wafers) are melted and bonded using a laser in a vacuum to perform a temporary market. Thereafter, it is placed in a vacuum furnace and heated to approximately 1000°C to 1100'C to melt the BPSG film 9. Both second single crystal silicon substrates 1 and 5 are bonded. Also, a weight is placed on the substrate to ensure complete adhesion.

尚、両者の接着を行う為の接着(接合)層としてBPS
G膜9を用いているが、他の低融点ガラス等を用いても
よく、又、その両者の接合は低融点ガラスの溶融接着に
限定されることなく、例えば第1の単結晶シリコン基板
1上のシリコン酸化膜2を除去して、いわゆる陽極接合
(アノ−ディックボンディング)により接合してもよく
、又、高温炉内で3iとSiO2等間の、いわゆる直接
接合を利用してもよい。
In addition, BPS is used as an adhesive (bonding) layer to bond the two.
Although the G film 9 is used, other low-melting glass or the like may be used, and the bonding between the two is not limited to melt bonding of low-melting glass. For example, the first single-crystal silicon substrate 1 The upper silicon oxide film 2 may be removed and bonding may be performed by so-called anodic bonding, or so-called direct bonding between 3i and SiO2 etc. may be utilized in a high temperature furnace.

又、接着用のBPSG膜9はシリコン窒化膜B上の全面
に形成することなく接着部分のみに部分的に形成しても
よい。又、絶縁膜としてのシリコン窒化膜8はシリコン
酸化膜等の他の絶縁膜であってもよい。
Further, the BPSG film 9 for adhesion may not be formed on the entire surface of the silicon nitride film B, but may be formed partially only on the bonding portion. Further, the silicon nitride film 8 as an insulating film may be another insulating film such as a silicon oxide film.

そして、同図(f>に示すように、第1の単結晶シリコ
ン基板1の他主面(@面)をワックス等で覆い(図示は
しない)、第2の中結晶シリ:lン基板5の仙主面(裏
面)側より、例えばエチレンジ7ミン(260mJ2 
) 、ヒcl力T]−)Lt (45q)、水(120
m、Q)を主成分とする異方性エツチング液により第2
の単結晶シリコン基板5をエツチング除去する。この際
、エツチングはN型導電型である領域を選択的に進行し
、高温度にボロンを拡散したピエゾ抵抗層7部分及びシ
リコン窒化膜8はほとんどエツチングされずに残る。こ
のようにして絶縁膜としてのシリコン窒化膜8−トに単
結晶のピエゾ抵抗層7が形成される。そして、同図(g
)に示すように、表面保護膜10、及びΔg等から成る
配線層11を形成して本実施例の半導体圧力センサを構
成する。
Then, as shown in FIG. For example, ethylenedi7mine (260mJ2
), Hcl force T]-)Lt (45q), water (120
The second etching process is carried out using an anisotropic etching solution mainly composed of
The single crystal silicon substrate 5 is removed by etching. At this time, the etching proceeds selectively in the N-type conductivity type region, and the piezoresistive layer 7 and the silicon nitride film 8 in which boron is diffused at high temperature remain almost unetched. In this way, a single crystal piezoresistive layer 7 is formed on the silicon nitride film 8 as an insulating film. And the same figure (g
), a surface protective film 10 and a wiring layer 11 made of Δg, etc. are formed to constitute the semiconductor pressure sensor of this embodiment.

そこで本実施例によると、ピエゾ抵抗層7はシリコン窒
化膜8等にJ二り第1の単結晶シリコン基板1と電気的
に完全に分離でき、高温において使用してもその特性は
安定となる。しかも、本実施例においては、シリコン窒
化膜8上に単結晶のピエゾ抵抗層7が形成されるので、
従来の多結晶のピエゾ抵抗層と比較して感度を高く、ば
らつきを小さくできる。
Therefore, according to this embodiment, the piezoresistive layer 7 can be completely electrically separated from the first single crystal silicon substrate 1 by the silicon nitride film 8, etc., and its characteristics are stable even when used at high temperatures. . Moreover, in this embodiment, since the single crystal piezoresistive layer 7 is formed on the silicon nitride film 8,
Compared to conventional polycrystalline piezoresistive layers, the sensitivity can be increased and variations can be reduced.

又、従来、絶縁膜上に多結晶のシリコンを形成し、それ
を再結晶化してピエゾ抵抗層を形成するものがあるが、
そのようなピエゾ抵抗層と比較しても特性のばらつきを
小さくでき、製造コストを低くできるという点で本実施
例の半導体圧力セン11は有効である。
In addition, conventionally, polycrystalline silicon is formed on an insulating film and then recrystallized to form a piezoresistive layer.
The semiconductor pressure sensor 11 of this embodiment is effective in that variations in characteristics can be reduced and manufacturing costs can be reduced compared to such a piezoresistive layer.

さらに、本実施例によると、第1の単結晶シリコン基板
1のピエゾ抵抗層7側に必たる表面(主表面)に凹部3
が形成されており、凹部3を形成するのにエツチングさ
れる体積は比較的小さくなっており、その分、第1の単
結晶シリコン基板1を有効に使用することができ、第1
の単結晶シリコン基板1内に半導体圧力センサからの信
号を処理する回路を形成する場合、全体として小型にJ
ることができる。又、本実施例の場合、シリコン窒化膜
8とBPSG膜9とで構成されるダイヤフラムは、凹部
3の上部、及び凹部3の周)22である第1の単結晶シ
リコン基板1上にわたってほぼ平滑に形成されており、
従来の圧力センサにおいて空洞部を対土するために形成
されるエツチング孔は存在することがなく、従来そのエ
ツチング孔にり機械的応力が弱くなっていたが本センサ
は機械的応力に対してその分強く、又、出力特性もその
分安定である。
Furthermore, according to this embodiment, the recesses 3 are formed on the surface (main surface) of the first single crystal silicon substrate 1 on the piezoresistive layer 7 side.
is formed, and the volume that is etched to form the recess 3 is relatively small, so that the first single crystal silicon substrate 1 can be used effectively.
When forming a circuit for processing signals from a semiconductor pressure sensor in the single-crystal silicon substrate 1 of
can be done. Further, in the case of this embodiment, the diaphragm composed of the silicon nitride film 8 and the BPSG film 9 is substantially smooth over the first single crystal silicon substrate 1, which is the upper part of the recess 3 and the circumference 22 of the recess 3. It is formed in
Conventional pressure sensors do not have etched holes formed to expose the cavity to the ground, and conventionally, the etched holes weaken mechanical stress, but this sensor has no effect on mechanical stress. It is stronger, and its output characteristics are also more stable.

しかし、従来の方法では貫通孔を形成させる際には、エ
ツチングにより貫通孔を形成していたので末広がりとな
りセンサの小形化を行なう上での降雪となっていたが、
上記実施例においては直線的な貫通孔4を形成できセン
サを小形化することができる。
However, in the conventional method, when forming a through hole, the through hole was formed by etching, which caused the hole to widen at the end, which was a problem when downsizing the sensor.
In the above embodiment, the linear through hole 4 can be formed and the sensor can be made smaller.

又、従来の圧力センサ、例えば素子形成面に圧力を加え
る雰囲気を直接接触させないものの例を第9図、第10
図に示し、そのセンサチップ101の概略の寸法は第1
0図に示すにうに厚さ方向に対して横(平面〉の寸法が
大きくセンサチップ101とパッケージ等の熱膨張係数
の差がピエゾ抵抗に影響を及ぼし特性面の安定性に欠け
、その対策として、センサデツプ101と熱膨張係数の
等しい(又は、はぼ同じ>S+又はパイレックスの台座
102を当てかい高さ方向を大きくしてその影響を除い
ている。本実施例のセンサチップ12の寸法関係は第2
図、第3図に示すようなものであり、第3図に示すよう
にダイヤフラム部の平面寸法に比較して高さ方向は十分
な余裕があり台座等の対策は一切必要としない。よって
、]ス1〜面だけでなく接着部を減らすことが可能であ
り信頼性の向上につながる。
Also, examples of conventional pressure sensors, such as those that do not bring the element forming surface into direct contact with the atmosphere that applies pressure, are shown in Figures 9 and 10.
The approximate dimensions of the sensor chip 101 are as shown in the figure.
As shown in Figure 0, the horizontal (plane) dimensions are large with respect to the thickness direction, and the difference in thermal expansion coefficient between the sensor chip 101 and the package affects the piezoresistance, resulting in a lack of stability in terms of characteristics. The pedestal 102 is made of Pyrex or Pyrex, which has the same coefficient of thermal expansion as the sensor depth 101 (or has the same coefficient of thermal expansion as that of the sensor depth 101), and increases the height in the height direction to eliminate the influence.The dimensional relationship of the sensor chip 12 of this embodiment is as follows. Second
3, and as shown in FIG. 3, there is a sufficient margin in the height direction compared to the planar dimension of the diaphragm portion, and no measures such as a pedestal are required. Therefore, it is possible to reduce not only the number of surfaces but also the number of bonded parts, leading to improved reliability.

尚、この発明は−F記実施例に限定される”bのでなく
、例えば、上記実施例ではグイA7フラムの厚ざはシリ
コン窒化膜8の膜厚によって調整されるが、接着前の第
2の単結晶シリコン基板5を、第4図に示すように、シ
リコン窒化膜8上に適当な熱膨張係数を有する多結晶シ
リコン層あるいは再結晶化した単結晶シリコン層13を
形成し、その上にB P S G Ilu 9を形成す
る構成とし、ダイヤフラムの厚さを例えば多結晶シリコ
ン層13の厚さにより任意に調整してもよい。
Note that this invention is not limited to the embodiment described in -F. For example, in the above embodiment, the thickness of the Gui A7 flam is adjusted by the thickness of the silicon nitride film 8, As shown in FIG. 4, a polycrystalline silicon layer or a recrystallized single-crystalline silicon layer 13 having an appropriate coefficient of thermal expansion is formed on a silicon nitride film 8, and then The structure is such that a B P S G Ilu 9 is formed, and the thickness of the diaphragm may be arbitrarily adjusted by, for example, the thickness of the polycrystalline silicon layer 13 .

又、上記実施例ではピエゾ抵抗層7のパターンは予め形
成されているが、第2の単結晶シリコン基板5内に主表
面側より所定の厚みをもって全面にP型不純物を拡散し
、第2の単結晶シリコン基板5のエツチング後に所定の
パターンを形成してもよい。
Further, in the above embodiment, the pattern of the piezoresistive layer 7 is formed in advance, but P-type impurities are diffused over the entire surface of the second single crystal silicon substrate 5 from the main surface side to a predetermined thickness. A predetermined pattern may be formed after etching the single crystal silicon substrate 5.

ざらに、上記実施例の説明では簡単の為に省略したが、
半導体圧力セン9−の出力を処理する回路を第1の単結
晶シリコン基板1内に形成してもよい。そして、例えば
、第5図は出力処理回路の構成要素として、MOSFE
Tを表わす断面図であり、同図において、14は第1の
単結晶シリコン基板1内に形成されるP−ウェル領域、
15,16はP−ウェル領域13内に形成されるそれぞ
れN+ソース拡散領域、ドレイン拡散領域、17はフィ
ールド絶縁膜、18.19はそれぞれソース電極、トレ
イン電極、20はゲート電極、21は絶縁膜であり、そ
の各々は公知の半導体加工技術により形成される。
Roughly, in the explanation of the above example, it was omitted for the sake of brevity.
A circuit for processing the output of the semiconductor pressure sensor 9- may be formed within the first single crystal silicon substrate 1. For example, FIG. 5 shows a MOSFE as a component of the output processing circuit.
14 is a cross-sectional view showing T, in which 14 is a P-well region formed in the first single crystal silicon substrate 1;
15 and 16 are an N+ source diffusion region and a drain diffusion region formed in the P-well region 13, respectively, 17 is a field insulating film, 18 and 19 are a source electrode and a train electrode, respectively, 20 is a gate electrode, and 21 is an insulating film. , each of which is formed using known semiconductor processing techniques.

さらに、又、上記実施例においては貫通孔4の形成はウ
ェハ面に垂直に1本の孔をあけた例で示したが、これに
限定されない。例えば、第6図(a)に示すように斜め
方向に貫通孔4を形成したり、第6図(b)に示すよう
にウェハの上面及び下面方向から別々の角度でもって形
成してもよい。このように、斜め方向に角度をもって形
成すると急激な圧力の変化、及び粒子等が圧力導入孔と
してのこの貫通孔4に飛び込んだ場合にも直接ダイヤフ
ラム而にあたることなく緩和される。又、第6図(C)
は複数個の貫通孔4を設けた場合の例であり、ダイヤフ
ラム形成後の洗浄等において効果が大きく、さらにゴミ
等による貫通孔4のふさがりに対しても効果がある。
Furthermore, in the above embodiment, the through hole 4 is formed by forming one hole perpendicular to the wafer surface, but the present invention is not limited to this. For example, the through holes 4 may be formed obliquely as shown in FIG. 6(a), or may be formed at different angles from the upper and lower surfaces of the wafer as shown in FIG. 6(b). . In this way, if the pressure is formed at an angle in the diagonal direction, even if there is a sudden change in pressure or if particles or the like jump into the through hole 4 serving as the pressure introduction hole, the pressure will be alleviated without directly hitting the diaphragm. Also, Figure 6 (C)
This is an example in which a plurality of through holes 4 are provided, which is highly effective in cleaning after forming the diaphragm, and is also effective against clogging of the through holes 4 by dust and the like.

ざらに、第6図(d)、(e)は貫通孔4の形成におい
て、まずウニハエ程の途中では同図(d)に示すように
貫通孔4を回通させず途中までとし残し部分22を形成
しておく。このようにすればウニハエ程の途中で凹部3
2貫通部4ヘゴミ、不純物、洗浄液等が残留せずきれい
な状歳で保つことができる。そして、ウニハエ程の最終
までいった状態(ピエゾ抵抗1周辺回路、配線層、パッ
シベーション等形成後、本図では省略する)で裏面斜め
方向からレーデビームlbの照射により貫通孔4を形成
する。このように、斜め方向からレーデビームLbを照
射することにより、ダイヤフラム面に直接レーザビーム
Lbが当ることがなく、ダメージを引き起さない。尚、
第6図(a)〜(e)はそれぞれ組み合せて使用するこ
とが可能なことは言うまでもない。
Roughly speaking, FIGS. 6(d) and 6(e) show that in forming the through-hole 4, first, in the middle of the sea urchin fly, the through-hole 4 is not passed through as shown in FIG. Form it. If you do this, the recess 3 will be in the middle of the sea urchin fly.
No dirt, impurities, cleaning liquid, etc. remain in the 2 penetration part 4, so it can be kept in a clean condition. Then, in the final state (after forming the peripheral circuit of the piezoresistor 1, the wiring layer, the passivation, etc., which is omitted from this figure)), the through hole 4 is formed by irradiating the back surface with the Lede beam lb from an oblique direction. In this way, by irradiating the laser beam Lb from an oblique direction, the laser beam Lb does not directly hit the diaphragm surface, and no damage is caused. still,
It goes without saying that FIGS. 6(a) to 6(e) can be used in combination.

又、本実施例ではレーデビームにより貫通孔4を形成し
たが第7図に示すようにシリコンの(110)面を用い
て第8図に示す方位に貫通孔パターンを形成して、K 
OH溶液等の異方性エツチングを行なえば(111)面
を側壁としてシリコン基板1に貫通孔4を形成できる。
In this embodiment, the through-holes 4 were formed using a Lede beam, but as shown in FIG. 7, the (110) plane of silicon was used to form the through-hole pattern in the direction shown in FIG.
By performing anisotropic etching using an OH solution or the like, a through hole 4 can be formed in the silicon substrate 1 with the (111) plane as a side wall.

また(110)面の方位を傾けることにより、斜め方向
に貫通孔を形成することも可能である。
Furthermore, by tilting the orientation of the (110) plane, it is also possible to form the through hole in an oblique direction.

発明の効果 以上述べたように本発明によると、感圧素子部はダイヤ
フラムの絶縁性を有する部分により高温にJ3いても基
板と電気的に完全に分離され、又、ダイヤフラムは基板
の凹部上及び凹部の周辺部にわたってほぼ重滑に形成さ
れているので、機械的強度が比較的強く、出力特性は安
定となる。又、感圧素子部側の基板より凹部を形成して
いるので、その凹部を小ざくすることができ、又、ダイ
ヤフラムの厚さを薄く形成できるので小型の半導体圧力
センサを提供できる優れた効果を発揮する。
Effects of the Invention As described above, according to the present invention, the pressure-sensitive element portion is completely electrically isolated from the substrate even at high temperatures due to the insulating portion of the diaphragm, and the diaphragm is completely separated from the substrate by the insulating portion of the diaphragm. Since the concave portion is formed to be substantially smooth over the periphery thereof, the mechanical strength is relatively strong and the output characteristics are stable. In addition, since the recess is formed from the substrate on the pressure-sensitive element side, the recess can be made smaller, and the diaphragm can be made thinner, which has the advantage of providing a compact semiconductor pressure sensor. demonstrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)はこの発明の実施例を示す図、第
2図は本発明の半導体圧力センサの全体図、第3図は本
発明の圧力センサの一部拡大図、第4図は別例を示す図
、第5図は他の別例を示す図、第6図(a)〜(e)は
他の別例を示す図、第7図及び第8図は別例を説明する
ための図、第9図は従来の半導体圧力センサの全体図、
第10図は従来の半導体圧力センサの要部拡大図である
。 図中、1は第1の単結晶シリコン基板、3は凹部、4は
貫通孔、5は第2の単結晶シリコン基板、7はピエゾ抵
抗層、8はシリコン窒化膜、9はBPSG膜である。 第1図 第4図 q 第5図 第7図 第8図
1(a) to (g) are diagrams showing embodiments of the present invention, FIG. 2 is an overall view of the semiconductor pressure sensor of the present invention, and FIG. 3 is a partially enlarged view of the pressure sensor of the present invention. Figure 4 is a diagram showing another example, Figure 5 is a diagram showing another example, Figures 6 (a) to (e) are diagrams showing other examples, and Figures 7 and 8 are other examples. Figure 9 is an overall diagram of a conventional semiconductor pressure sensor.
FIG. 10 is an enlarged view of the main parts of a conventional semiconductor pressure sensor. In the figure, 1 is a first single crystal silicon substrate, 3 is a recess, 4 is a through hole, 5 is a second single crystal silicon substrate, 7 is a piezoresistive layer, 8 is a silicon nitride film, and 9 is a BPSG film. . Figure 1 Figure 4 q Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、凹部及び該凹部に貫通孔をその一部に有する基板と
、 前記凹部上及び該凹部の周辺にほぼ平滑に形成され、そ
の少なくとも一部に絶縁性を有する部分を形成したダイ
ヤフラムと、 前記絶縁性を有する部分上の所定領域に形成される感圧
素子部と を備えることを特徴とする半導体圧力センサ。 2、前記感圧素子部はピエゾ抵抗効果を有するピエゾ抵
抗層である特許請求の範囲第1項記載の半導体圧力セン
サ。 3、前記ダイヤフラムは絶縁層である特許請求の範囲第
1項又は第2項に記載の半導体圧力センサ。 4、前記ダイヤフラムは絶縁層及び該絶縁層と前記基板
とを接合するための接合層との少なくとも2層から成る
ものである特許請求の範囲第1項乃至第3項のいずれか
1項に記載の半導体圧力センサ。
[Scope of Claims] 1. A substrate having a recess and a through hole in the recess as a part thereof, and a portion having an insulating property at least in part, which is formed substantially smoothly on and around the recess. A semiconductor pressure sensor comprising: a formed diaphragm; and a pressure sensitive element portion formed in a predetermined region on the insulating portion. 2. The semiconductor pressure sensor according to claim 1, wherein the pressure sensitive element portion is a piezoresistive layer having a piezoresistance effect. 3. The semiconductor pressure sensor according to claim 1 or 2, wherein the diaphragm is an insulating layer. 4. The diaphragm is composed of at least two layers: an insulating layer and a bonding layer for bonding the insulating layer and the substrate, according to any one of claims 1 to 3. semiconductor pressure sensor.
JP62072078A 1986-12-18 1987-03-25 Method for manufacturing semiconductor pressure sensor Expired - Lifetime JPH0831608B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62072078A JPH0831608B2 (en) 1987-03-25 1987-03-25 Method for manufacturing semiconductor pressure sensor
US07/132,573 US4975390A (en) 1986-12-18 1987-12-08 Method of fabricating a semiconductor pressure sensor
DE3743080A DE3743080C2 (en) 1986-12-18 1987-12-18 Method of manufacturing a semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072078A JPH0831608B2 (en) 1987-03-25 1987-03-25 Method for manufacturing semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPS63237482A true JPS63237482A (en) 1988-10-03
JPH0831608B2 JPH0831608B2 (en) 1996-03-27

Family

ID=13479013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072078A Expired - Lifetime JPH0831608B2 (en) 1986-12-18 1987-03-25 Method for manufacturing semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH0831608B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022510A (en) * 1996-03-28 1998-01-23 Commiss Energ Atom Strain gage sensor using piezoelectric resistance action and its manufacture
JP2007184546A (en) * 2005-12-30 2007-07-19 Samsung Electronics Co Ltd Silicon direct bonding method
JP2010181372A (en) * 2009-02-09 2010-08-19 Fujikura Ltd Method of manufacturing pressure sensor and pressure sensor
JP2015168143A (en) * 2014-03-06 2015-09-28 セイコーエプソン株式会社 Formation method of through-hole, member, inkjet head, inkjet head unit and inkjet type recording apparatus
CN111504540A (en) * 2019-01-30 2020-08-07 美蓓亚三美株式会社 Sensor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162272A (en) * 1979-06-05 1980-12-17 Mitsubishi Electric Corp Semiconductor pressure converter
JPS607044U (en) * 1983-06-28 1985-01-18 株式会社フジクラ semiconductor pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162272A (en) * 1979-06-05 1980-12-17 Mitsubishi Electric Corp Semiconductor pressure converter
JPS607044U (en) * 1983-06-28 1985-01-18 株式会社フジクラ semiconductor pressure sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022510A (en) * 1996-03-28 1998-01-23 Commiss Energ Atom Strain gage sensor using piezoelectric resistance action and its manufacture
JP2007184546A (en) * 2005-12-30 2007-07-19 Samsung Electronics Co Ltd Silicon direct bonding method
JP2010181372A (en) * 2009-02-09 2010-08-19 Fujikura Ltd Method of manufacturing pressure sensor and pressure sensor
JP2015168143A (en) * 2014-03-06 2015-09-28 セイコーエプソン株式会社 Formation method of through-hole, member, inkjet head, inkjet head unit and inkjet type recording apparatus
CN111504540A (en) * 2019-01-30 2020-08-07 美蓓亚三美株式会社 Sensor device
CN111504540B (en) * 2019-01-30 2023-10-03 美蓓亚三美株式会社 sensor device

Also Published As

Publication number Publication date
JPH0831608B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US6629465B1 (en) Miniature gauge pressure sensor using silicon fusion bonding and back etching
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
EP0672898B1 (en) Semiconductor pressure sensor with polysilicon diaphragm and single-crystal gage elements and fabrication method therefor
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
JPH09320996A (en) Manufacturing method for semiconductor device
US5172205A (en) Piezoresistive semiconductor device suitable for use in a pressure sensor
US5946549A (en) Method for manufacturing sensor using semiconductor
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
JPS63237482A (en) Semiconductor pressure sensor
JP2000155030A (en) Manufacture of angular velocity sensor
JP2001352078A (en) Method for manufacturing semiconductor pressure sensor
JP3290047B2 (en) Acceleration sensor and method of manufacturing the same
JP3744217B2 (en) Manufacturing method of semiconductor pressure sensor
JP2696894B2 (en) Semiconductor pressure sensor
JPH10300605A (en) Method for manufacturing semiconductor pressure sensor and sensor chip
JP3744218B2 (en) Manufacturing method of semiconductor pressure sensor
JPH10239345A (en) Semiconductor sensor
JPH0337534A (en) Semiconductor strain detecting apparatus
JPH06331471A (en) Semiconductor pressure sensor
JPH03110478A (en) Manufacture of semiconductor acceleration sensor
JP2833257B2 (en) Semiconductor acceleration sensor
JPS63156365A (en) Manufacture of semiconductor pressure sensor
JP2570712B2 (en) Semiconductor pressure sensor
JPH05251715A (en) Semiconductor pressure sensor and its manufacture
JP2600422B2 (en) Manufacturing method of semiconductor acceleration sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term