JPH0212144B2 - - Google Patents

Info

Publication number
JPH0212144B2
JPH0212144B2 JP58242774A JP24277483A JPH0212144B2 JP H0212144 B2 JPH0212144 B2 JP H0212144B2 JP 58242774 A JP58242774 A JP 58242774A JP 24277483 A JP24277483 A JP 24277483A JP H0212144 B2 JPH0212144 B2 JP H0212144B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
calorie
parts
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58242774A
Other languages
Japanese (ja)
Other versions
JPS60132649A (en
Inventor
Satoyuki Inui
Yoshinobu Takegami
Seiji Nishida
Yoshiaki Ishigaki
Masanobu Uba
Junichi Yasumaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP58242774A priority Critical patent/JPS60132649A/en
Publication of JPS60132649A publication Critical patent/JPS60132649A/en
Publication of JPH0212144B2 publication Critical patent/JPH0212144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Industrial Gases (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素と一酸化炭素を含むガスあるいは
さらに二酸化炭素を含むガスから炭素数1〜4の
炭化水素を含む高カロリー燃料用ガスを製造する
ための還元触媒およびその製造方法に関するもの
である。 都市ガスとしては、従来コークス炉ガスが主流
を占めてきたが、近年生活環境の保護、供給方式
の合理化、無毒安全性等の観点から見直しが行な
われ、高カロリー天然ガスへの転換が急ピツチで
進められている。その為コークス炉ガスは都市ガ
スとしての用途をせばめられつつあるが、製鉄用
コークスの生産に伴つて膨大な量が副生するの
で、この有効な用途を開発することが重要な課題
になつている。ところでこのコークス炉ガスを今
後とも燃料用として活用していくためには現在の
低カロリー性を改善し、天然ガスに匹敵し得る様
な高カロリーガスに変換することができればこの
問題の1つの解決法になる。 コークス炉ガスや石炭又は重質油などのガス化
ガスの低カロリー性は、水素、一酸化炭素および
二酸化炭素などを多量に含有することによるの
で、それらを高カロリー化するためには、上記の
物質を、メタン、エタン、エチレン、プロパン、
プロピレン、ブタンなどの炭化水素に変換する必
要がある。本発明者等は上述の事情に鑑み、より
高いカロリー量を有する燃料用ガスを得るべく
種々研究の結果本発明を完成した。 即ち本発明の目的は、水素と一酸化炭素を含む
ガス、あるいはさらに二酸化炭素を含むガス(以
下、単に低カロリーガスと称す)例えばコークス
炉ガスを、メタンのほか、炭素数2〜4の炭化水
素を含む高カロリーのガスに変換することのでき
る4元組成系触媒、およびその触媒を製造する方
法を提供しようとするにある。なお、低カロリー
ガスを炭化水素含有高カロリーガスに変換する場
合、一般に二酸化炭素が副生するのでこれを
PSA法等により分離除去するか後記の3元組成
系の2系統の触媒を組み合わせることにより、さ
らに高カロリーガスにすることもできる。 本発明をさらに詳細に説明する。まず本発明の
触媒における担体はシリカおよび/またはアルミ
ナであるが、一般に市販されているもの、例えば
比表面積が200m2/g以下の範囲のものを使用す
ることができる。このような担体に担持させる触
媒の基質としては鉄および/またはコバルトが用
いられる。この基質金属に、酸化マンガンおよび
白金族金属ならびに銅を組み合わせ前記担体に担
持させた4元組成系触媒である。ここで白金族金
属としてはルテニウム、ロジウム、パラジウム、
白金およびイリジウムが挙げられる。 本発明の触媒は、上記のような触媒成分を組み
合わせたことにより、これに低カロリーガスを接
触させたときC1〜C4特にC2〜C4の炭化水素を多
く含む高カロリーガスを得ることができる。しか
してそのような効果が奏せられる理由は、詳細は
不明であるが、銅を組み合わせることにより、触
媒基質である鉄および/またはコバルトと白金族
金属とに対する複合効果が促進され、CO吸着性
が増大して適度に炭素重合活性が増加し、且つ水
素吸着性が減少してC2〜C4の炭化水素生成が向
上することによるものではないかと推定される。
上記組み合わせにおいて、触媒基質となる鉄およ
び/またはコバルトの担持量は全触媒に対し、3
〜15%特に好ましくは5〜12%である。また酸化
マンガンの担持量は鉄および/またはコバルト元
素対マンガン元素の原子比が(5:1)〜(5:
4)の範囲を満足するように設定され、白金族金
属の担持量は鉄および/またはコバルト元素対白
金族金属の原子比が(30:1)〜(5:2)の範
囲を満足するように設定される。さらに銅の担持
量は全触媒に対して0.1〜3.0%の範囲を満足する
ように設定される。 本発明の触媒を調製するに当つてはシリカおよ
び/またはアルミナよりなる担体に、白金族金属
を担持させ、ついで鉄および/またはコバルト、
酸化マンガンおよび銅化合物を同時に担持させる
かまたは白金族金属および銅を同時にあるいは
個々に担持させ、ついで鉄および/またはコバル
トと酸化マンガンとを同時にあるいは個々に担持
させる。 すなわち上記手順にしたがつて各触媒成分を担
持させて得られる触媒は、低カロリーガスをC1
〜C4の炭化水素を含有する高カロリーガスに変
換する場合、特にC2〜C4成分の生成の選択能力
が有効に発揮される。例えば鉄および/またはコ
バルトと酸化マンガンと銅を同時にあるいは個々
に担持させ、そのあとで白金族金属を担持させる
とか、銅を担持させそのあとで酸化マンガン鉄お
よび/またはコバルトを同時についで白金族金属
を担持させたものでは4元組成系触媒としての複
合効果が充分発揮されず、C2〜C4の炭化水素を
含む高カロリーガスを得るには不利であることが
本発明者等によつて確認された。 本発明の触媒は、前記の基本的構成によつて製
造されるが、それをさらに具体的に述べると、シ
リカおよび/またはアルミナよりなる担体に、白
金族金属、鉄および/またはコバルト、酸化マン
ガンおよび銅を、硝酸塩水溶液または塩化物水溶
液の形で噴霧、散布、浸漬等の手段により含浸さ
せたあと、乾燥、アンモニア処理、熱分解、水素
還元等の工程を順次施して、4元組成系触媒を調
製する。なおこの際白金族金属、鉄、コバルトお
よび銅は完全に還元しきれずに酸化物を含有する
場合もあるが還元能を有するは担持状態にある金
属である。またこの調製にあたりアンモニア処理
工程は省略できる場合もある。本発明触媒の製造
例をさらに具体的に説明する。 まずシリカおよび/またはアルミナよりなる担
体、またはこれを500〜1100℃で熱処理した担体
に、その細孔容積と等量の白金族金属の硝酸塩ま
たは同塩化物の水溶液を含浸させ、常温でゆるや
かに転動させながら風乾する。なお乾燥を速める
ために、150℃の温度に調節された市販の乾燥器
を使用してもよい。つぎに上記処理物を、10〜20
%アンモニアと1〜10%水蒸気を含む雰囲気中に
2〜3分間曝露する。その後、空気中で約350℃
までに加熱し、含浸されている白金族金属硝酸塩
または同塩化物を熱分解して酸化物とする。これ
を不活性ガスで希釈した水素濃度10〜20%の気流
中で常温から400℃まで昇温し、同温度に30分間
保持して還元し、ついで同気流中で常温まで冷却
する。このようにして得られた白金族金属担持体
に、前記と同じ含浸法により鉄および/またはコ
バルトの例えば硝酸塩水溶液と、マンガンの例え
ば硝酸塩水溶液と銅の例えば硝酸塩水溶液との混
合液を同時に含浸させる。ついで前記白金族金属
を担持させる場合と同様に風乾または加熱乾燥、
アンモニア処理、熱分解、水素還元等の処理を施
すことにより、4元組成系触媒を得る。 本発明の触媒の調製において、以上のようにし
て触媒成分を担持させたあと、還元性雰囲気下熱
処理を施してもよい。 本発明の触媒によつて、コークス炉ガス、ナフ
サや重質油の水蒸気改質ガス、さらには水性ガス
や石炭ガスのような低カロリーガスを炭素数1〜
4の炭化水素を含む高カロリーガスに変換するに
は、例えばつぎのようにして行なうことができ
る。すなわち、以上のようにして得られた触媒を
反応塔に充填し、触媒層の温度を150〜400℃、好
ましくは260〜350℃に制御しながら5〜30Kg/cm2
G、好ましくは10〜20Kg/cm2Gの加圧下に触媒容
量1当り、1〜10m3/hr、好ましくは2〜5
m3/hrの低カロリーガスを導入することにより触
媒層内では、炭素数1〜4の炭化水素を含有する
高カロリーガスが生成するがその際、副生した水
が次の式で示すように、原料低カロリー中の一
酸化炭素とシフト反応を起こして二酸化炭素を副
生する。また、場合によつては、式により原料
低カロリーガス中の一酸化炭素それ自体が不均化
反応を起こし、二酸化炭素を副生することもあ
る。 CO+H2O=CO2+H2 2CO=CO2+C そこで、さらに上記炭化水素化反応による副生
二酸化炭素ガスが混入しているC1〜C4の炭化水
素含有ガスを、PSA装置等に導入してCO2を除去
するか、あるいは参考例に示すようにシリカおよ
び/またはアルミナよりなる担体にニツケル、希
土類元素酸化物及び白金族金属を担持させた3元
組成系触媒に引続き接触させることにより、該副
生二酸化炭素をもメタンに変換させることもで
き、さらに高カロリーの還元ガスを得ることがで
きる。 次に本発明を実施例によつて説明するが、本発
明はその要旨を逸脱しない限り、以下の実施例を
斟酌して種々変更実施することができる。尚説明
中「部」となるのは重量部を表わす。 実施例 1 比表面積が200〜220m/gの市販のアルミナ担
体を電気炉にて常温から1060℃まで4〜6時間で
昇温し、同温度に30分間保持して熱処理した。常
温まで冷却した上記熱処理担体20部に、RuCl3
3H2O1.1部を水5部に溶解させた水溶液を噴霧法
により含浸させ、ついでゆるやかに転動させなが
ら一夜風乾し含浸物を得た。この含浸物をあらか
じめ10〜11容量%のアンモニアガスと6容量%の
水蒸気を含むように調整した雰囲気に2分間曝露
してアンモニア処理し、ついで空気中で約350℃
まで加熱して、含浸させたRu金属塩を熱分解し
て酸化物とした。これを電気炉に入れ、水素を20
容量%の濃度で含む窒素気流を導通しながら常温
から400℃まで1時間で昇温し、その温度を30分
間保持して還元した後、同気流中で常温まで冷却
してRu担持体20.5部を得た。次にRu担持体21.0
部に、Co(NO32・6H2O12.6部、Mn(NO32
6H2O5.5部およびCu(NO32・3H2O1.9部を水5
部に溶解した溶液の1/2量を前記と同様の噴霧法
により含浸させたあと、乾燥、アンモニア処理、
熱分解を行ない、冷却後、さらに残りの上記溶液
を上記と同じ操作法で含浸させ、乾燥、アンモニ
ア処理、熱分解を行ない、前記と同様の方法で還
元処理して、10%Co−6%Mn2O3−2%Ru−2
%Cuの4元組成系触媒25部を得た。 実施例 2 実施例1の方法によつて得られた触媒上へ第1
表に示す組成よりなる低カロリーの供試ガスを圧
力10Kg/cm2G、SV5500hr-1、温度320℃で1回通
過させたところ、CO転化率100%で第2表に示す
組成よりなるガスを得た。なお、比較のために実
施例1と同様の方法によりまずルテニウムを担持
させ、次にコバルトおよび酸化マンガンを担持さ
せた3元組成系担持体である10%Co−6%
Mn2O3−2%Ruを得、そのあとで更に2%Cu化
合物を担持させた4元組成系触媒について本実施
例と同一条件で、同一の低カロリー供試ガスを通
過させた場合の結果を第2表に併記する。
The present invention relates to a reduction catalyst for producing a high-calorie fuel gas containing a hydrocarbon having 1 to 4 carbon atoms from a gas containing hydrogen and carbon monoxide or a gas containing carbon dioxide, and a method for producing the same. Traditionally, coke oven gas has been the mainstream source of city gas, but in recent years it has been reviewed from the viewpoints of protecting the living environment, streamlining supply methods, non-toxic safety, etc., and there is an urgent need to switch to high-calorie natural gas. It is being advanced. For this reason, the use of coke oven gas as city gas is being limited, but since a huge amount is produced as a by-product in the production of coke for steelmaking, developing effective uses for this has become an important issue. There is. By the way, in order to continue to utilize this coke oven gas as a fuel, one solution to this problem would be to improve its current low calorie properties and convert it into a high calorie gas comparable to natural gas. become law. The low calorie nature of gasification gases such as coke oven gas, coal, and heavy oil is due to the large amounts of hydrogen, carbon monoxide, and carbon dioxide that they contain. Substances such as methane, ethane, ethylene, propane,
It needs to be converted to hydrocarbons such as propylene and butane. In view of the above-mentioned circumstances, the present inventors completed the present invention as a result of various studies to obtain a fuel gas having a higher calorie content. That is, the object of the present invention is to convert a gas containing hydrogen and carbon monoxide, or a gas further containing carbon dioxide (hereinafter simply referred to as low-calorie gas), such as coke oven gas, into carbonized carbon having 2 to 4 carbon atoms in addition to methane. An object of the present invention is to provide a four-component composition catalyst capable of converting hydrogen into a high-calorie gas, and a method for producing the catalyst. Note that when converting low-calorie gas to high-calorie gas containing hydrocarbons, carbon dioxide is generally produced as a by-product.
It is also possible to obtain a gas with an even higher calorie content by separating and removing it using the PSA method or by combining two types of catalysts in the ternary composition system described below. The present invention will be explained in further detail. First, the carrier in the catalyst of the present invention is silica and/or alumina, and generally commercially available carriers, for example those with a specific surface area of 200 m 2 /g or less, can be used. Iron and/or cobalt is used as a substrate for the catalyst supported on such a carrier. This is a four-component composition catalyst in which this substrate metal is combined with manganese oxide, a platinum group metal, and copper and supported on the carrier. Here, platinum group metals include ruthenium, rhodium, palladium,
Mention may be made of platinum and iridium. By combining the above catalyst components, the catalyst of the present invention obtains a high calorie gas containing a large amount of C 1 to C 4 hydrocarbons, especially C 2 to C 4 when brought into contact with a low calorie gas. be able to. Although the details of why such an effect is produced are unknown, the combination of copper promotes a combined effect on the catalyst substrate iron and/or cobalt and the platinum group metal, which improves CO adsorption. It is presumed that this is due to an increase in carbon polymerization activity, a moderate increase in carbon polymerization activity, a decrease in hydrogen adsorption, and an improvement in the production of C 2 to C 4 hydrocarbons.
In the above combination, the supported amount of iron and/or cobalt as the catalyst substrate is 3% relative to the total catalyst.
~15%, particularly preferably 5-12%. The amount of manganese oxide supported is such that the atomic ratio of iron and/or cobalt elements to manganese elements is between (5:1) and (5:1).
4), and the amount of platinum group metal supported is set so that the atomic ratio of iron and/or cobalt elements to platinum group metal satisfies the range of (30:1) to (5:2). is set to Further, the amount of copper supported is set to satisfy the range of 0.1 to 3.0% based on the total catalyst. In preparing the catalyst of the present invention, a platinum group metal is supported on a carrier made of silica and/or alumina, and then iron and/or cobalt,
Manganese oxide and a copper compound are simultaneously supported, or a platinum group metal and copper are supported simultaneously or individually, and then iron and/or cobalt and manganese oxide are supported simultaneously or individually. In other words, the catalyst obtained by supporting each catalyst component according to the above procedure converts low calorie gas into C 1
When converting to a high-calorie gas containing ~ C4 hydrocarbons, the ability to selectively produce C2 to C4 components is particularly effective. For example, iron and/or cobalt, manganese oxide, and copper may be supported simultaneously or individually, and then a platinum group metal may be supported, or copper may be supported, and then manganese iron oxide and/or cobalt may be simultaneously supported, and then a platinum group metal may be supported. The present inventors have found that a catalyst supported on C2-C4 does not exhibit a sufficient composite effect as a four-component composition catalyst, and is disadvantageous for obtaining a high-calorie gas containing C2 to C4 hydrocarbons. confirmed. The catalyst of the present invention is produced according to the above-mentioned basic structure, but to describe it more specifically, platinum group metal, iron and/or cobalt, manganese oxide, etc. are added to a support made of silica and/or alumina. After impregnating copper and copper in the form of a nitrate aqueous solution or a chloride aqueous solution by spraying, scattering, dipping, etc., steps such as drying, ammonia treatment, thermal decomposition, and hydrogen reduction are sequentially performed to form a quaternary composition catalyst. Prepare. In this case, the platinum group metals, iron, cobalt, and copper may not be completely reduced and may contain oxides, but the metals that have reducing ability are in a supported state. Further, in this preparation, the ammonia treatment step may be omitted in some cases. A manufacturing example of the catalyst of the present invention will be explained in more detail. First, a carrier made of silica and/or alumina, or a carrier heat-treated at 500 to 1100°C, is impregnated with an aqueous solution of platinum group metal nitrate or chloride in an amount equal to the pore volume of the carrier, and then slowly heated at room temperature. Air dry by rolling. Note that in order to speed up drying, a commercially available dryer adjusted to a temperature of 150°C may be used. Next, add the above treated product to 10 to 20
Exposure to an atmosphere containing % ammonia and 1-10% water vapor for 2-3 minutes. Then about 350℃ in air
The impregnated platinum group metal nitrate or chloride is thermally decomposed into an oxide. This is heated from room temperature to 400°C in an air stream with a hydrogen concentration of 10 to 20% diluted with an inert gas, maintained at the same temperature for 30 minutes for reduction, and then cooled to room temperature in the same air stream. The platinum group metal support obtained in this manner is simultaneously impregnated with a mixed solution of an aqueous solution of iron and/or cobalt, for example, a nitrate, an aqueous solution of manganese, for example, a nitrate, and an aqueous solution of, for example, a nitrate of copper, by the same impregnation method as described above. . Then, air drying or heat drying as in the case of supporting the platinum group metal,
A four-component composition catalyst is obtained by performing treatments such as ammonia treatment, thermal decomposition, and hydrogen reduction. In preparing the catalyst of the present invention, after supporting the catalyst components as described above, heat treatment may be performed in a reducing atmosphere. By using the catalyst of the present invention, low-calorie gases such as coke oven gas, naphtha, steam reformed gas of heavy oil, water gas, and coal gas can be converted into
The conversion into high-calorie gas containing hydrocarbons No. 4 can be carried out, for example, as follows. That is, the catalyst obtained as described above is packed into a reaction tower, and the temperature of the catalyst layer is controlled at 150 to 400°C, preferably 260 to 350°C, and 5 to 30 kg/cm 2
G, preferably 10 to 20 Kg/cm 2 per catalyst volume under pressure of 1 to 10 m 3 /hr, preferably 2 to 5
By introducing low-calorie gas at m 3 /hr, high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms is generated in the catalyst layer, but at that time, by-produced water is generated as shown in the following equation. Then, a shift reaction occurs with carbon monoxide in the low-calorie raw material to produce carbon dioxide as a by-product. Further, in some cases, carbon monoxide itself in the raw material low-calorie gas may cause a disproportionation reaction according to the formula, and carbon dioxide may be produced as a by-product. CO + H 2 O = CO 2 + H 2 2CO = CO 2 +C Therefore, C 1 to C 4 hydrocarbon-containing gas mixed with by-product carbon dioxide gas from the above hydrocarbonization reaction is further introduced into a PSA device, etc. or by subsequent contact with a ternary composition catalyst in which nickel , a rare earth element oxide, and a platinum group metal are supported on a support made of silica and/or alumina, as shown in the reference example. The by-product carbon dioxide can also be converted into methane, and a further high-calorie reducing gas can be obtained. Next, the present invention will be explained with reference to examples, but the present invention can be modified in various ways without departing from the gist of the present invention, taking into account the following examples. In the description, "parts" represent parts by weight. Example 1 A commercially available alumina carrier having a specific surface area of 200 to 220 m/g was heated in an electric furnace from room temperature to 1060°C over 4 to 6 hours, and was heat-treated by maintaining the temperature at the same temperature for 30 minutes. RuCl 3 .
The sample was impregnated with an aqueous solution prepared by dissolving 1.1 part of 3H 2 O in 5 parts of water by a spraying method, and then air-dried overnight with gentle rolling to obtain an impregnated product. This impregnated material was subjected to ammonia treatment by being exposed for 2 minutes to an atmosphere previously adjusted to contain 10 to 11% by volume of ammonia gas and 6% by volume of water vapor, and then heated in air at approximately 350°C.
The impregnated Ru metal salt was thermally decomposed into an oxide. Put this in an electric furnace and add 20% hydrogen.
The temperature was raised from room temperature to 400°C in 1 hour while passing through a nitrogen stream containing a concentration of 1% by volume, and the temperature was maintained for 30 minutes for reduction, and then cooled to room temperature in the same airflow to form 20.5 parts of the Ru support. I got it. Next, Ru support 21.0
12.6 parts of Co(NO 3 ) 2・6H 2 O, Mn(NO 3 ) 2
Add 5.5 parts of 6H 2 O and 1.9 parts of Cu(NO 3 ) 2.3H 2 O to 5 parts of water.
After impregnating 1/2 amount of the solution dissolved in the liquid by the same spraying method as above, drying, ammonia treatment,
After thermal decomposition and cooling, the remaining solution was impregnated with the same procedure as above, dried, treated with ammonia, thermally decomposed, and reduced in the same manner as above to obtain 10%Co-6%. Mn 2 O 3 -2%Ru-2
% Cu quaternary composition catalyst was obtained. Example 2 The first layer was applied onto the catalyst obtained by the method of Example 1.
When a low-calorie test gas having the composition shown in the table was passed once at a pressure of 10 Kg/cm 2 G, an SV of 5500 hr -1 , and a temperature of 320°C, the gas having the composition shown in Table 2 had a CO conversion rate of 100%. I got it. For comparison, 10%Co-6%, which is a ternary composition support, was prepared by first supporting ruthenium and then supporting cobalt and manganese oxide by the same method as in Example 1.
Mn 2 O 3 -2% Ru was obtained, and then a 2% Cu compound was further supported on a quaternary composition catalyst. The results are also listed in Table 2.

【表】【table】

【表】 以上の結果から明らかなように、本発明の触媒
を用いた場合は、生成ガス中のC2〜C4の炭化水
素含有率が高く高カロリーのガスが得られること
が分かる。 実施例 3 比表面積が200〜220m2/gの市販のアルミナ担
体を電気炉にて常温から1060℃まで4〜6時間で
昇温し、同温度に30分間保持して熱処理した。常
温まで冷却した上記熱処理担体20部に、Cu
(NO32・3H2O1.9部を水5部に溶解させた水溶
液を噴霧法により含浸させ、ついでゆるやかに転
動させながら一夜風乾し含浸物を得た。この含浸
物をあらかじめ10〜11容量%のアンモニアガスと
6容量%の水蒸気を含むように調整した雰囲気に
2分間曝露してアンモニア処理し、ついで空気中
で約350℃まで加熱して、含浸させたCu金属塩を
熱分解して酸化物とした。次にCu担持体21.1部に
RuCl3・3H2O1.1部を水に溶解させた水溶液を前
記同様の噴霧法により含浸させたあと、乾燥・ア
ンモニア処理後熱分解して酸化物とした。これを
電気炉に入れ、水素を20容量%の濃度で含む窒素
気流を導通しながら常温から400℃まで1時間で
昇温し、その温度を30分間保持して還元した後、
同気流中で常温まで冷却してCu−Ru担持体22.1
部を得た。次にCu−Ru担持体20.0部にCo
(NO32・6H2O12.6部、Mn(NO32・6H2O5.5部
を水5部に溶解した溶液の1/2量を前記と同様の
噴霧法により含浸させたあと、乾燥、アンモニア
処理、熱分解を行ない、冷却後、さらに残りの上
記溶液を上記と同じ操作法で含浸させ、乾燥、ア
ンモニア処理、熱分解を行ない、前記と同様の方
法で還元処理して、10%Co−6%Mn2O3−2%
Ru−2%Cuの4元組成系触媒23部を得た。 実施例 4 実施例3の方法によつて得られた触媒上へ第1
表に示す組成よりなる低カロリーの供試ガスを圧
力10Kg/cm2G、SV5500hr-1、温度320℃で1回通
過させたところ、CO転化率100%で第2表に示す
組成よりなるガスを得た。なお比較のために10%
Co−6%Mn2O3−2%Cuからなる3元組成系担
持体を得、そのあとで更に2%Ru化合物を担持
させた4元組成系触媒について本実施例と同一条
件で、同一の低カロリー供試ガスを通過させた場
合の結果を第3表に併記する。尚、比較例の場合
のCo転化率は、わずかに20%であり、本発明に
比べてかなり活性が劣る。
[Table] As is clear from the above results, when the catalyst of the present invention is used, a high-calorie gas with a high content of C 2 to C 4 hydrocarbons in the generated gas can be obtained. Example 3 A commercially available alumina carrier having a specific surface area of 200 to 220 m 2 /g was heated in an electric furnace from room temperature to 1060° C. over a period of 4 to 6 hours, and was heat-treated by maintaining the temperature at the same temperature for 30 minutes. Cu is added to 20 parts of the heat-treated carrier cooled to room temperature.
The sample was impregnated with an aqueous solution prepared by dissolving 1.9 parts of (NO 3 ) 2 ·3H 2 O in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. This impregnated material was exposed to an atmosphere previously adjusted to contain 10 to 11% by volume of ammonia gas and 6% by volume of water vapor for ammonia treatment, and then heated in air to about 350°C to impregnate it. The Cu metal salt was thermally decomposed to form an oxide. Next, add 21.1 parts of Cu support.
The sample was impregnated with an aqueous solution in which 1.1 part of RuCl 3.3H 2 O was dissolved in water by the same spraying method as described above, and then dried and treated with ammonia, followed by thermal decomposition to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and the temperature was maintained for 30 minutes to reduce the temperature.
Cool the Cu-Ru support 22.1 to room temperature in the same air flow.
I got the department. Next, 20.0 parts of Co was added to the Cu-Ru support.
(NO 3 ) 2.6H 2 O 12.6 parts and Mn ( NO 3 ) 2.6H 2 O 5.5 parts dissolved in 5 parts of water were impregnated with 1/2 amount of the solution by the same spraying method as above . After that, drying, ammonia treatment, and thermal decomposition were performed, and after cooling, the remaining solution was further impregnated with the same procedure as above, and drying, ammonia treatment, and thermal decomposition were performed, and reduction treatment was performed in the same manner as above. , 10%Co-6% Mn2O3-2 %
23 parts of a Ru-2% Cu quaternary composition catalyst were obtained. Example 4 The first layer was applied onto the catalyst obtained by the method of Example 3.
When a low-calorie test gas having the composition shown in the table was passed once at a pressure of 10 Kg/cm 2 G, an SV of 5500 hr -1 , and a temperature of 320°C, the gas having the composition shown in Table 2 had a CO conversion rate of 100%. I got it. For comparison, 10%
A ternary composition support consisting of Co-6%Mn 2 O 3 -2%Cu was obtained, and then a quaternary composition catalyst on which 2% Ru compound was further supported was prepared under the same conditions as in this example. Table 3 also shows the results when a low calorie test gas of Incidentally, the Co conversion rate in the case of the comparative example was only 20%, and the activity was considerably inferior to that of the present invention.

【表】 実施例 5 比較面積が200〜220m2/gの市販のアルミナ担
体を電気炉にて常温から1060℃まで4〜6時間で
昇温し、同温度に30分間保持して熱処理した。常
温まで冷却した上記熱処理担体20部に、Cu
(NO32・3H2O1.9部とRuCl3・3H2O1.1部を水5
部に溶解させた水溶液を噴霧法により含浸させ、
ついでゆるやかに転動させながら一夜風乾し含浸
物を得た。この含浸物をあらかじめ10〜11容量%
のアンモニアガスと6容量%の水蒸気を含むよう
に調整した雰囲気に2分間曝露してアンモニア処
理し、ついで空気中で約350℃まで加熱して、含
浸させたCu及びRu金属塩を熱分解して酸化物と
した。これを電気炉に入れ、水素を20容量%の濃
度で含む窒素気流を導通しながら常温から400℃
まで1時間で昇温し、その温度を30分間保持して
還元した後、同気流中で常温まで冷却してCu−
Ru担持体22.2部を得た。次にCu−Ru担持体21.0
部にCo(NO32・6H2O12.6部、Mn(NO32×
6H2O5.5部を水5部に溶解した溶液の量を前記と
同様の噴霧法により含浸させたあと、乾燥・アン
モニア処理、熱分解を行ない、冷却後、さらに残
りの上記溶液を上記と同じ操作法で含浸させ、乾
燥、アンモニア処理、熱分解を行ない、前記と同
様の方法で還元処理して、10%Co−6%Mn2O3
−2%Ru−2%Cuの4元組成系触媒24部を得
た。 実施例 6 実施例5の方法によつて得られた触媒上へ第1
表に示す組成よりなる低カロリーの供試ガスを圧
力10Kg/cm2G、SV5500hr-1、温度320℃で1回通
過させたところ、CO転化率100%で第2表に示す
組成よりなるガスを得た。なお比較のためにまず
銅化合物を2%ついで10%Coと6%Mn2O3とを
同時に担持させ、そのあとで更に2%Ru化合物
を担持させた4元組成系触媒について本実施例と
同一条件で、同一の低カロリー供試ガスを通過さ
せた場合の結果を第4表に併記する。尚比較例に
おける一酸化炭素の転化率はわずかに22%であ
り、本発明例に比し、かなり活性が劣る。
[Table] Example 5 A commercially available alumina carrier having a comparative area of 200 to 220 m 2 /g was heated in an electric furnace from room temperature to 1060° C. over 4 to 6 hours, and was heat-treated by holding the same temperature for 30 minutes. Cu is added to 20 parts of the heat-treated carrier cooled to room temperature.
(NO 3 ) 1.9 parts of 2・3H 2 O and 1.1 parts of RuCl 3・3H 2 O in 5 parts of water
impregnated with an aqueous solution dissolved in
The impregnated product was then air-dried overnight while gently rolling. Add this impregnation to 10-11% by volume in advance.
The impregnated Cu and Ru metal salts were thermally decomposed by being exposed for 2 minutes to an atmosphere adjusted to contain ammonia gas and 6% water vapor by volume, and then heated to about 350°C in air to thermally decompose the impregnated Cu and Ru metal salts. It was made into an oxide. This was placed in an electric furnace and heated from room temperature to 400°C while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume.
Cu-
22.2 parts of Ru support was obtained. Next, Cu−Ru support 21.0
12.6 parts of Co(NO 3 ) 2・6H 2 O, Mn(NO 3 ) 2 ×
After impregnating with a solution of 5.5 parts of 6H 2 O dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment and thermal decomposition are performed, and after cooling, the remaining solution is added as above. It was impregnated using the same procedure, dried, treated with ammonia, and thermally decomposed, and then treated with reduction using the same method as above to obtain 10%Co-6% Mn2O3 .
-24 parts of a quaternary composition catalyst of -2%Ru-2%Cu were obtained. Example 6 The first layer was applied onto the catalyst obtained by the method of Example 5.
When a low-calorie test gas having the composition shown in the table was passed once at a pressure of 10 Kg/cm 2 G, an SV of 5500 hr -1 , and a temperature of 320°C, the gas having the composition shown in Table 2 had a CO conversion rate of 100%. I got it. For comparison, a four-component composition catalyst was first supported with 2% copper compound, then 10% Co and 6% Mn 2 O 3 at the same time, and then further supported with 2% Ru compound. Table 4 also shows the results when the same low calorie test gas was passed under the same conditions. The conversion rate of carbon monoxide in the comparative example was only 22%, and the activity was considerably inferior to that of the inventive example.

【表】 実施例 7 比表面積が50〜80m2/gの市販のシリカ担体20
部に、Cu(NO32・3H2O1.9部とRuCl3・3H2O1.1
部を水5部に溶解させた水溶液を噴霧法により含
浸させ、ついでゆるやかに転動させながら一夜風
乾し含浸物を得た。この含浸物をあらかじめ10−
11容量%のアンモニアガスと6容量%の水蒸気を
含むように調整した雰囲気に2分間曝露してアン
モニア処理し、ついで空気中で約350℃まで加熱
して、含浸させたCu及びRu金属塩を熱分解して
酸化物とした。これを電気炉に入れ、水素を20容
量%の濃度で含む窒素気流を導通しながら常温か
ら400℃まで1時間で昇温し、その温度を30分間
保持して還元した後、同気流中で常温まで冷却し
てCu−Ru担持体22.2部を得た。次にCu−Ru担持
体20.0部にCo(NO32・6H2O12.6部、Mn
(NO32・6H2O5.5部を水5部に溶解した溶液の
1/2量を前記と同様の噴霧法により含浸させたあ
と、乾燥、アンモニア処理、熱分解を行ない、冷
却後、さらに残りの上記溶液を上記と同じ操作法
で含浸させ、乾燥、アンモニア処理、熱分解を行
ない、前記と同様の方法で還元処理して、10%
Cr−6%Mn2O3−2%Ru−2%Cuの4元組成系
触媒23部を得た。 実施例 9 実施例7のの方法によつて得られた触媒上へ第
1表に示す組成よりなる低カロリーの供試ガスを
圧力10Kg/cm2G、SV5500hr-1、温度320℃で1回
通過させたところ、CO転化率100%で第5表に示
す組成よりなるガスを得た。この様にシリカ担体
触媒でも、アルミナ担体触媒と同様に高カロリー
ガスを得ることが出来た。
[Table] Example 7 Commercially available silica carrier 20 with a specific surface area of 50 to 80 m 2 /g
1.9 parts of Cu(NO 3 ) 2.3H 2 O and 1.1 parts of RuCl 3.3H 2 O.
The sample was impregnated with an aqueous solution prepared by dissolving 5 parts of water in 5 parts of water, and then air-dried overnight with gentle rolling to obtain an impregnated product. This impregnated material is preliminarily
The impregnated Cu and Ru metal salts were ammonia-treated by exposure to an atmosphere adjusted to contain 11% by volume ammonia gas and 6% by volume water vapor for 2 minutes, and then heated to approximately 350°C in air to remove the impregnated Cu and Ru metal salts. It was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and after being reduced by holding that temperature for 30 minutes, it was heated in the same air stream. It was cooled to room temperature to obtain 22.2 parts of Cu-Ru support. Next, 12.6 parts of Co(NO 3 ) 2・6H 2 O and Mn were added to 20.0 parts of the Cu-Ru support.
(NO 3 ) 2.6H 2 After impregnating 1/2 of a solution of 5.5 parts of O dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and cooling. Then, the remaining solution was impregnated with the same method as above, dried, treated with ammonia, thermally decomposed, and reduced with the same method as above to obtain 10%
23 parts of a quaternary composition catalyst of Cr-6% Mn2O3-2 %Ru-2%Cu was obtained. Example 9 A low-calorie test gas having the composition shown in Table 1 was applied once on the catalyst obtained by the method of Example 7 at a pressure of 10 Kg/cm 2 G, SV 5500 hr -1 and a temperature of 320°C. When the gas was passed through, a gas having a composition shown in Table 5 was obtained with a CO conversion rate of 100%. In this way, high calorie gas could be obtained with the silica supported catalyst as well as with the alumina supported catalyst.

【表】 参考例 1 実施例1の方法によつてアルミナ担体(直径
0.5〜2mm)に、10%Co−6%Mn2O3−2%Ru−
2%Cuを担持させた本発明の触媒(第1の触媒)
と、同じアルミナ担体に7.5%Ni−3.6%La2O3
0.5%Ruを担持させた第2の触媒とを組み合わ
せ、実施例1の場合と同一組成の水素および一酸
化炭素を含む供試ガスを第1の触媒上に、ついで
第2の触媒上に1回通過させた。なお、この時の
条件は、第1の触媒上を通過させるときは
SV5500hr-1、温度310℃、圧力10Kg/cm2Gで、第
2の触媒上を通過させるときは、SV1000hr-1
温度290℃であり、その他の条件は第1の触媒上
を通過させる場合と同様に行つた。この結果CO
転化率は100%で第6表に示す組成よりなる高カ
ロリーガスを得た。
[Table] Reference Example 1 Alumina carrier (diameter
0.5 ~ 2mm), 10%Co-6% Mn2O3-2 %Ru-
Catalyst of the present invention supporting 2% Cu (first catalyst)
and 7.5%Ni−3.6% La2O3− on the same alumina support .
A test gas containing hydrogen and carbon monoxide having the same composition as in Example 1 was placed on the first catalyst, and then on the second catalyst. I passed it once. Note that the conditions at this time are that when passing over the first catalyst,
When passing over the second catalyst at SV5500hr -1 , temperature 310℃ and pressure 10Kg/ cm2G , SV1000hr -1 ,
The temperature was 290°C, and the other conditions were the same as in the case of passing over the first catalyst. This results in CO
The conversion rate was 100%, and a high-calorie gas having the composition shown in Table 6 was obtained.

【表】 以上の結果から明らかなように、本発明の第1
の触媒と、第2の触媒とを組み合わせ、これに第
1表に示すような組成分の供試ガスを接触させる
と、11700kcal/Nm3の高カロリーガスを得るこ
とができ、この原理を低カロリーガス燃料の高カ
ロリー化に応用すれば、相当高カロリーなガス燃
料を得ることができた。 実施例 9〜12 実施例1と同様の方法で第7表に示す薬品を用
いて同表に示す触媒を製造し、これらの触媒に対
し第1表に示す組成の原料ガスを第8表に示す条
件で供給して第8表に示す組成の炭化水素含有ガ
スを得た。
[Table] As is clear from the above results, the first
By combining this catalyst with a second catalyst and bringing it into contact with a test gas having the composition shown in Table 1, a high-calorie gas of 11,700 kcal/Nm 3 can be obtained. If applied to increase the calorie content of gas fuel, it was possible to obtain gas fuel with a considerably high calorie content. Examples 9 to 12 Catalysts shown in Table 7 were produced using the chemicals shown in Table 7 in the same manner as in Example 1, and raw gases with the compositions shown in Table 1 were added to these catalysts as shown in Table 8. A hydrocarbon-containing gas having a composition shown in Table 8 was obtained by supplying the gas under the conditions shown.

【表】【table】

【表】【table】

【表】 以上述べたように、本発明の還元触媒を用いる
と水素と一酸化炭素を含むガスあるいは更に二酸
化炭素を含む低カロリーガスを炭素数1〜4特に
2〜4の炭化水素を含む高カロリーガスに変換す
ることができる。
[Table] As described above, when the reduction catalyst of the present invention is used, a gas containing hydrogen and carbon monoxide or a low-calorie gas containing carbon dioxide can be converted into a high-calorie gas containing a hydrocarbon having 1 to 4 carbon atoms, especially a hydrocarbon having 2 to 4 carbon atoms. Can be converted into calorie gas.

Claims (1)

【特許請求の範囲】 1 水素と一酸化炭素を含むガスあるいは更に二
酸化炭素を含むガスから炭素数1〜4の炭化水素
を含む高カロリーガスを得るための還元触媒であ
つて、触媒基質としての鉄および/またはコバル
に、 酸化マンガン、 白金族金属、 銅 を組み合わせ、シリカおよび/またはアルミナよ
りなる担体に担持させてなることを特徴とする還
元触媒。 2 水素と一酸化炭素を含むガスあるいは更に二
酸化炭素を含むガスから炭素数1〜4の炭化水素
を含む高カロリーガスを得るための触媒を製造す
るに当たり、シリカおよび/またはアルミナより
なる担体に、まず白金族金属を担持させ、ついで
鉄および/またはコバルト、酸化マンガンならび
に銅を同時に担持させるか、または白金族金属、
銅を同時にあるいは個々に担持させ、ついで鉄お
よび/またはコバルトと酸化マンガンとを同時に
あるいは個々に担持させることを特徴とする還元
触媒の製造方法。
[Scope of Claims] 1. A reduction catalyst for obtaining a high-calorie gas containing a hydrocarbon having 1 to 4 carbon atoms from a gas containing hydrogen and carbon monoxide or a gas further containing carbon dioxide, which uses a catalyst as a substrate. A reduction catalyst comprising a combination of iron and/or cobal, manganese oxide, platinum group metal, and copper, supported on a carrier made of silica and/or alumina. 2. In producing a catalyst for obtaining a high-calorie gas containing a hydrocarbon having 1 to 4 carbon atoms from a gas containing hydrogen and carbon monoxide or a gas containing carbon dioxide, a carrier made of silica and/or alumina is First, a platinum group metal is supported, and then iron and/or cobalt, manganese oxide and copper are simultaneously supported, or a platinum group metal,
A method for producing a reduction catalyst, which comprises supporting copper simultaneously or individually, and then supporting iron and/or cobalt and manganese oxide simultaneously or individually.
JP58242774A 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas Granted JPS60132649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242774A JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242774A JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Publications (2)

Publication Number Publication Date
JPS60132649A JPS60132649A (en) 1985-07-15
JPH0212144B2 true JPH0212144B2 (en) 1990-03-19

Family

ID=17094076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242774A Granted JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Country Status (1)

Country Link
JP (1) JPS60132649A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414951B2 (en) * 2005-09-08 2010-02-17 日揮株式会社 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
US9975099B2 (en) 2016-03-16 2018-05-22 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system

Also Published As

Publication number Publication date
JPS60132649A (en) 1985-07-15

Similar Documents

Publication Publication Date Title
Rossetti et al. Graphitised carbon as support for Ru/C ammonia synthesis catalyst
Xiong et al. Bridging Mo 2 C–C and highly dispersed copper by incorporating N-functional groups to greatly enhance the catalytic activity and durability for carbon dioxide hydrogenation
KR940004160B1 (en) Separations using highly dispered cuprous compositions
Koyano et al. States of Pd in Pd/H–ZSM-5 and Pd/Na–ZSM-5 catalysts and catalytic activity for the reduction of NO by CH4 in the presence of O2
CN109908906B (en) Catalyst for preparing synthetic gas and preparation method thereof
JPH0212144B2 (en)
KR102044877B1 (en) Absorbent for highly selective separation of carbon monoxide and preparation method thereof
CN110227533B (en) Preparation method of graphite-phase carbon nitride photocatalyst
PT92407B (en) PROCESS FOR THE PREPARATION OF A THERMAL METAL TREATMENT ATMOSPHERE ESSENTIALLY FORMED BY NITROGEN
Aguinaga et al. Regeneration of a nickel/silica catalyst poisoned by thiophene
Ichimura et al. Hydrogenation and hydrogenolysis of hydrocarbons on perovskite oxides
JPS6129778B2 (en)
JPS58120501A (en) Manufacture of synthetic gas
JPH0535018B2 (en)
JPH0212143B2 (en)
JPH0211306B2 (en)
Imamura et al. Methanation activity of catalysts formed by treating intermetallic compounds nickel-silicon (Ni5Si2), nickel-silicon (Ni2Si), and cobalt-silicon (Co2Si) with oxygen
JPH10212104A (en) Method for purifying hydrogen for fuel cell
JP3986586B2 (en) Hydrogen purification method for fuel cells
JPH0558776B2 (en)
CA1209804A (en) Methanol conversion process
JPH0211304B2 (en)
Pant et al. Investigation of the stability of Pt/LaCoO3 during high temperature reforming reactions
JPH0211305B2 (en)
JPH0463140A (en) Zeolite catalyst