JPS63236791A - Production of diamond - Google Patents

Production of diamond

Info

Publication number
JPS63236791A
JPS63236791A JP6934287A JP6934287A JPS63236791A JP S63236791 A JPS63236791 A JP S63236791A JP 6934287 A JP6934287 A JP 6934287A JP 6934287 A JP6934287 A JP 6934287A JP S63236791 A JPS63236791 A JP S63236791A
Authority
JP
Japan
Prior art keywords
substrate
diamond
diamond according
microwave
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6934287A
Other languages
Japanese (ja)
Inventor
Tomiyo Fukuda
福田 富代
Hiroshi Ichikawa
洋 市川
Kumiko Hirochi
廣地 久美子
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6934287A priority Critical patent/JPS63236791A/en
Publication of JPS63236791A publication Critical patent/JPS63236791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form diamond having excellent crystallizability in good reproducibility and at high rate, by setting a substrate in a vacuum tank, forming plasma and diamond in an integrated way and making the vacuum tank having a cavity resonator structure. CONSTITUTION:A magnetron 13 is connected through a microwave waveguide 12 to a vacuum tank 11 having a cavity resonator structure. Then a substrate 15 is set in the vacuum tank 11, the vacuum tank 11 is evacuated, a raw material (e.g. methane) containing a carbon and a reaction gas (e.g. hydrogen) are introduced from a gas introduction part 14 and microwave is fed from a microwave waveguide 12 to generate plasma discharge. Diamond is formed on the substrate 15 while controlling temperature of the substrate 15. Consequently, since the substrate 15 is placed in the vacuum tank 11 of cavity resonator structure, microwave power efficiently contributes to plasma and a reaction formed gas in the vacuum tank 11 can be highly excited.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マイクロ波プラズマの利用によるダイヤモン
ド薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a diamond thin film using microwave plasma.

従来の技術 ダイヤモンドは、硬度及び耐摩耗性に優れていることか
ら従来切削部材や耐摩耗部材としての用途があった。近
年では、ダイヤモンドの優れた電気絶縁性、熱伝導性を
活かし、半導体の高集積化に伴って1.熱伝導性の良い
絶縁膜、表面保護膜またバンドギャップの大きい半導体
といった電子材料としても注目され低圧下でのダイヤモ
ンドの形成の試みが成されている。
BACKGROUND OF THE INVENTION Diamond has conventionally been used as cutting members and wear-resistant members because of its excellent hardness and wear resistance. In recent years, taking advantage of diamond's excellent electrical insulation and thermal conductivity, 1. Diamond is attracting attention as an electronic material such as an insulating film with good thermal conductivity, a surface protection film, and a semiconductor with a large band gap, and attempts have been made to form diamond under low pressure.

従来ダイヤモンドの製造方法としては、マイクロ波プラ
ズマ放電を用いる方法が主として研究されている。第3
図に従来の装置の代表例を示した。
Conventionally, as a method for manufacturing diamond, a method using microwave plasma discharge has been mainly studied. Third
The figure shows a typical example of a conventional device.

31は石英管、32は導波管、35は基体、36は基体
ホルダーである。石英管31内に基体4の上方にあるガ
ス導入部からメタンと水素の混合ガ五を、混合比1:1
00となるようにして導入し、排気を行うことで、石英
管31内を所要の圧力(数十〜数百Torr)に維持す
る。導入した混合ガスを基体、4の側方にある導波管3
2から導入したマイクロ波(245GHz )を用いて
プラズマ放電によシ、800 ”C〜1 ooo’co
基体36上ニタイヤモンドを形成する。(特開昭60−
64996号「ダイヤモンドの合成法」) 発明が解決しようとする問題点 このような従来の技術では、ダイヤモンドの形成速度が
非常に遅いという問題点を有していた。
31 is a quartz tube, 32 is a waveguide, 35 is a substrate, and 36 is a substrate holder. A mixture of methane and hydrogen is introduced into the quartz tube 31 from the gas introduction part above the base 4 at a mixing ratio of 1:1.
By introducing the quartz tube so that the pressure becomes 0.00 and exhausting the air, the inside of the quartz tube 31 is maintained at a required pressure (several tens to hundreds of Torr). The introduced mixed gas is passed through the waveguide 3 on the side of the base and 4.
Plasma discharge was generated using the microwave (245 GHz) introduced from 2, 800 ”C ~ 1 ooo'co
A diamond is formed on the substrate 36. (Unexamined Japanese Patent Publication 1986-
No. 64996 "Diamond Synthesis Method") Problems to be Solved by the Invention These conventional techniques had the problem that the rate of diamond formation was very slow.

これに対して本発明者らが実験を行った結果、ダイヤモ
ンドの形成速度はメタン律速となっていることを発見し
た。しかし、従来の技術では、良質のダイヤモンドが形
成されるのは、メタンと水素の混合比が、メタン/水素
が1%以下という極めてメタンの少ない領域だけに限定
されており、1チを越えると、グラファイト等のダイヤ
モンド構造をとらない部分と多く含む膜が形成されてし
まう。従って1%の混合比のまま、メタンを増やすには
、真空槽内のガス圧を上げなければならないが、実験の
結果ガス圧を高くすると放電は不安定となシ、さらに数
百Torrを超えると放電しないことがわかった。加え
て、従来の形成条件は基板温度等に大きく影響されやす
いものであシ、再現性に乏しいものであった。
As a result of experiments conducted by the present inventors, it was discovered that the rate of diamond formation is determined by methane. However, with conventional technology, high-quality diamonds are formed only in areas where the mixing ratio of methane and hydrogen is extremely low, with a methane/hydrogen ratio of 1% or less; , a film is formed that contains many parts that do not have a diamond structure, such as graphite. Therefore, in order to increase the amount of methane while keeping the mixing ratio at 1%, it is necessary to increase the gas pressure in the vacuum chamber, but as a result of experiments, the discharge becomes unstable when the gas pressure is increased, and the discharge exceeds several hundred Torr. It was found that there was no discharge. In addition, conventional forming conditions are easily influenced by substrate temperature and the like, and have poor reproducibility.

問題点を解決するための手段 前記問題点を解決するために本発明は、真空槽内に基体
を設けてプラズマ生成とダイヤモンド形成とを一体化し
て行うとともに、真空槽を空洞共振器状構造にしたもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a substrate in a vacuum chamber to integrate plasma generation and diamond formation, and also constructs the vacuum chamber into a cavity resonator-like structure. This is what I did.

作  用 本発明は上記した構成によシ、マイクロ波のパワーが効
率的にプラズマに寄与し、真空槽内の反応生成ガスが高
励起されて、そのまま真空槽内の基体に到達するので、
結晶性の良いダイヤモンドを再現性良く形成することが
出来た。
Operation The present invention has the above-described configuration, and the power of the microwave efficiently contributes to the plasma, and the reaction product gas in the vacuum chamber is highly excited and reaches the substrate in the vacuum chamber as it is.
Diamonds with good crystallinity could be formed with good reproducibility.

さらにメタンと水素の混合比が10%以上でも良質のダ
イヤモンドを形成することが出来た。この値は従来に比
べ1桁大きい値であり、混合比を変えてメタンを増やす
ことが出来、メタン律速であったダイヤモンドの形成速
度を高く保つことが出来た。
Furthermore, high quality diamonds could be formed even when the mixing ratio of methane and hydrogen was 10% or more. This value is an order of magnitude larger than the conventional value, and it was possible to increase methane by changing the mixing ratio, and it was possible to maintain a high diamond formation rate, which was rate-limiting with methane.

本発明によシ上記問題が完全に解決できることを発見し
た。
It has been discovered that the above problems can be completely solved by the present invention.

実施例 以下本発明について実施例とともに説明する。Example The present invention will be explained below along with examples.

第1図に本発明のダイヤモンドを形成するためのプラズ
マ装置の一実施例の概略図である。11は真空槽、12
はマイクロ波導波管、13はマグネトロン、14はガス
導入部、15は基体、16は基体ホルダー、17は窓で
ある。真空槽11は内径85jff、長さ約136Nで
、円筒空洞型共振器のTE111モードが立つような寸
法とした。マイクロ波導入部は、γマイクロ波導波管1
2を介してマグネトロン13につながっている。マイク
ロ波導波管12と真空槽11は、石英ガラスの窓17で
仕切っである。ガス導入部14は、反応ガスq0と炭素
を含む原料q、とを混合あるいは個別に導入出来るよう
にしである。基体ホルダー16は、Ta、W等の補助ヒ
ーターを用いて、基体15を加熱出来る構造にし、基体
温度については、クロメルマルメル等の熱電対の出力に
応じて、ヒーター電流の制御を行うことで、±1°C以
内に温度制御を行った。
FIG. 1 is a schematic diagram of an embodiment of a plasma apparatus for forming diamond according to the present invention. 11 is a vacuum chamber, 12
13 is a microwave waveguide, 13 is a magnetron, 14 is a gas introduction section, 15 is a substrate, 16 is a substrate holder, and 17 is a window. The vacuum chamber 11 had an inner diameter of 85jff and a length of about 136N, and was dimensioned to allow the TE111 mode of the cylindrical cavity resonator to stand. The microwave introduction section includes a γ microwave waveguide 1
It is connected to the magnetron 13 via 2. The microwave waveguide 12 and the vacuum chamber 11 are separated by a quartz glass window 17. The gas introduction section 14 is configured to allow the reaction gas q0 and the carbon-containing raw material q to be mixed or introduced individually. The substrate holder 16 has a structure that can heat the substrate 15 using an auxiliary heater such as Ta or W, and the substrate temperature is controlled by controlling the heater current according to the output of a thermocouple such as Chromel Marmel. , temperature was controlled within ±1°C.

まず真空槽11内を油回転ポンプと拡散ポンプを用いて
10= 〜10−8Toxr i テ排気しり後、ガス
導入部14から炭素を含む原料q、を所要の圧力まで導
入した後同じく反応ガスq0を導入して、真空槽内を所
要のガス圧に維持した。ガス圧は水銀マノメーターによ
って測定した。ヒーターに電流を流して基体温度の設定
を行い、マイクロ波溝制御を行いながら、真空槽11内
に設置した基体16上にダイヤモンドを形成した。
First, the inside of the vacuum chamber 11 is evacuated to 10 = ~10-8Toxr i using an oil rotary pump and a diffusion pump, and after that, carbon-containing raw material q is introduced from the gas introduction part 14 to the required pressure, and then the reaction gas q0 is also introduced. was introduced to maintain the required gas pressure inside the vacuum chamber. Gas pressure was measured by a mercury manometer. A current was applied to the heater to set the temperature of the substrate, and diamond was formed on the substrate 16 placed in the vacuum chamber 11 while controlling the microwave groove.

実際には、反応ガスq0として水素、炭素を含む原料q
1 としてメタンを用い、メタンの分圧比を1%〜60
%;ガス圧0.1〜50 Torr 、 ?イクロ波電
力soW 〜eoow;基体温度6基体温度6塊0 基体には、シリコンウェハーを用い、予め0.1〜1μ
mのダイヤモンドペーストで表面の研摩処理を施した後
トリクロロエタンとア七トンで洗浄シたものを使用した
In reality, raw material q containing hydrogen and carbon as reaction gas q0
Using methane as 1, the partial pressure ratio of methane is 1% to 60.
%; Gas pressure 0.1-50 Torr, ? Microwave power soW ~ eoow; Substrate temperature 6 Substrate temperature 6 lumps 0 A silicon wafer is used as the substrate, and 0.1 to 1μ
The surface was polished with a diamond paste of No. 1, and then washed with trichloroethane and amethane.

このようにして得られたダイヤモンドの走査型電子顕微
鏡写真を第2図に示した。1ooはダイヤモンド結晶を
示す。これらダイヤモンドについてラマン分光分析を行
うと、いずれも13333に半値巾10011  以下
のダイヤモンドとはっきシ同定出来るピークが得られた
。電子線回折でも同様な結果が得られた。またビッカー
ス硬度及び電気抵抗を測定したところ、ビッカース硬度
1000011P/−及び抵抗109Ω1以上を確認し
た。成長速度は従来の信販上となった。
A scanning electron micrograph of the diamond thus obtained is shown in FIG. 1oo indicates a diamond crystal. When these diamonds were subjected to Raman spectroscopy, a peak at 13333 with a half width of 10011 or less was clearly identified as diamond. Similar results were obtained using electron diffraction. Further, when the Vickers hardness and electrical resistance were measured, it was confirmed that the Vickers hardness was 1000011P/- and the resistance was 109Ω1 or more. The growth rate was higher than that of conventional credit sales.

なお、炭素を含む原料q1 としてはメタンを用いたが
、これに限らず、飽和系または不飽和系炭化水素,芳香
族炭化水素,脂環式炭化水素,多核炭化水素の少くとも
一つを用いることで、高速化が図られる。
Although methane was used as the raw material q1 containing carbon, it is not limited to this, and at least one of saturated or unsaturated hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and polynuclear hydrocarbons may be used. By doing so, the speed can be increased.

真空槽内のガス圧は0,I Torr以上50Torr
以下で良質のダイヤモンドが得られる。0,I Tor
rよシ低いガス圧では、ダイヤモンドはほとんど得られ
ず、50Torrを超えると放電が不安定となる。
The gas pressure in the vacuum chamber is 0.1 Torr or more and 50 Torr
You can get good quality diamonds below. 0, I Tor
At a gas pressure lower than r, hardly any diamond is obtained, and at a gas pressure exceeding 50 Torr, the discharge becomes unstable.

最適ガス圧は5 Torr〜20Torrが望ましい。The optimum gas pressure is preferably 5 Torr to 20 Torr.

基体温度は600°Cから1000°Cの範囲で良好な
ダイヤモンドを得た。e o o ”C未満でも100
0°Cを超えてもダイヤモンドは得られなかった。特に
望ましいのは800℃±50″Cであることがわかった
Good diamonds were obtained when the substrate temperature ranged from 600°C to 1000°C. e o o “100 even if it is less than C
Diamonds were not obtained even at temperatures exceeding 0°C. A temperature of 800°C ± 50″C has been found to be particularly desirable.

マイクロ波の出力は400W以下が適切で400Wを超
えると基体の損傷が大きくダイヤモンド形成が出来ない
。特に300W前後が好ましい。
The appropriate microwave output is 400 W or less; if it exceeds 400 W, the substrate will be severely damaged and diamond formation will not be possible. In particular, around 300W is preferable.

炭素を含む原料の混合比は1%〜50%の範囲で良質の
ダイヤモンドが得られる。1チ未満ではダイヤモンドの
形成はほとんど出来ず、60%を超えるとグラファイト
等の混入が見られる。
Good quality diamonds can be obtained when the mixing ratio of raw materials containing carbon is in the range of 1% to 50%. If it is less than 1%, hardly any diamond can be formed, and if it exceeds 60%, graphite etc. will be mixed in.

マイクロ波導波管と真空槽とは石英ガラスで仕切ったが
、テフロンまたはセラミック等で仕切っても同様にマイ
クロ波を良く透過するとともに真空槽内の排気速度を速
めることが出来る。
Although the microwave waveguide and the vacuum chamber were partitioned with quartz glass, partitioning with Teflon, ceramic, or the like would also allow microwaves to pass through the tube well and increase the pumping speed in the vacuum chamber.

反応ガスを基体表面に噴射すると、反応ガスのグラファ
イト等の除去効果が高まりよ多結晶性の良いダイヤモン
ドが得られる。
When the reactive gas is injected onto the surface of the substrate, the effectiveness of the reactive gas in removing graphite, etc. increases, and diamond with good polycrystallinity can be obtained.

炭素を含む原料を基体表面に噴射すると、7リツトがな
いので、欠陥の少ないダイヤモンドが得られる。
When a raw material containing carbon is injected onto the surface of a substrate, diamonds with fewer defects can be obtained since there are no diamonds.

基体D、マイクロ波の電界に対して垂直に設置したが反
応生成ガスがマイクロ波の電界で加速されて基体表面に
到達するので緻密なダイヤモンドが得られる。
Although the substrate D was placed perpendicular to the microwave electric field, a dense diamond was obtained because the reaction product gas was accelerated by the microwave electric field and reached the substrate surface.

なお、基体をマイクロ波の電界に対し平行に設置しても
良質のダイヤモンドが得られた。これは基体に電界がか
かって発熱し結晶化が促進されるためではないかと考え
られる。
Note that even when the substrate was placed parallel to the microwave electric field, high-quality diamonds were obtained. This is thought to be because an electric field is applied to the substrate, which generates heat and promotes crystallization.

また基体を下側を表面に設値すると、真空槽内で発生す
るフリットなどの堆積が少ないダイヤモンドが得られた
Furthermore, when the lower side of the substrate was placed on the surface, diamonds with less frit and other deposits generated in the vacuum chamber were obtained.

反応ガスまたは炭素を含む原料の導入については、基体
に対し前方から導入したが、これによシ基板表面に集中
的に反応ガスまたは炭素を含む原料を供給することが出
来、反応効率が良い。
Regarding the introduction of the raw material containing the reactive gas or carbon, it was introduced from the front of the substrate, but this allows the reactive gas or the raw material containing carbon to be supplied intensively to the surface of the substrate, resulting in good reaction efficiency.

また基体に対し、後方から導入すると、真空槽内に均一
なプラズマを発生させることが出来、良質のダイヤモン
ドが得られる。
Furthermore, when introduced from the rear of the substrate, uniform plasma can be generated in the vacuum chamber, and high quality diamond can be obtained.

また基体に対し、側方から導入してもよいが、その際反
応ガスまたは炭素を含む原料の流出方向を基体表面に対
しある角度を持たしてやると、基体表面で粘性流が出来
、基体表面上に均一な分布の少ないダイヤモンドが得ら
れる。角度は5°〜30’が最も望ましい。
The substrate may also be introduced from the side, but if the outflow direction of the reactant gas or carbon-containing raw material is at a certain angle to the substrate surface, a viscous flow will be created on the substrate surface. A less uniform distribution of diamonds is obtained. The most desirable angle is 5° to 30'.

基体16にはシリコンウエノ・−を用いたが、この場合
界面にSiCが出来て一基体上にダイヤモンドを形成し
やすくなると考えられる。
Although silicon urethane was used for the substrate 16, it is thought that in this case, SiC is formed at the interface, making it easier to form diamond on one substrate.

また、反応前に基体表面の研摩処理を行ったが、研摩し
ない基体よシ倍以上の速度でダイヤモンドが形成された
。これは基体表面の傷がダイヤモンドの結晶の核となっ
て結晶成長を高めていると考えられる。
Furthermore, although the surface of the substrate was polished before the reaction, diamonds were formed at a rate more than twice that of the substrate that was not polished. This is thought to be because scratches on the substrate surface act as nuclei for diamond crystals, increasing crystal growth.

さらに真空槽に磁界を印加すると、特に低ガス圧領域で
よシ安定した放電が得られた。
Furthermore, when a magnetic field was applied to the vacuum chamber, a more stable discharge was obtained, especially in the low gas pressure region.

発明の効果 本発明は、真空槽内に基体を設置してプラズマ生成とダ
イヤモンド形成を一体化して行うとともに、真空槽を空
洞共振器状構造にすることによシ、マイクロ波が効率良
くプラズマに寄与し、よシ膜質の良いダイヤモンドを再
現性良く、高速で形成することが出来、これら産業上の
利用分野に与える効果は極めて大きい。
Effects of the Invention The present invention integrates plasma generation and diamond formation by installing a substrate in a vacuum chamber, and also uses a cavity resonator-like structure in the vacuum chamber to efficiently generate plasma using microwaves. This makes it possible to form diamonds with good film quality and good reproducibility at high speed, which has an extremely large effect on these industrial fields of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のダイヤモンドの形成に用いた真(2万
倍)、第3図は従来の装置図である。 11・・・・・・真空槽、12・・・・・・マイクロ波
導波管、13・・・・・・マグネトロン、14・・・・
・・ガス導入部、16・・・・・・基体、16・・・・
・・基体ホルダー、17・・・・・・窓。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 H2十C)(4 ↓ ンプ
FIG. 1 is a diagram (20,000 times magnified) used to form the diamond of the present invention, and FIG. 3 is a diagram of a conventional apparatus. 11... Vacuum chamber, 12... Microwave waveguide, 13... Magnetron, 14...
...Gas introduction part, 16...Base, 16...
...Base holder, 17...Window. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 H20C) (4 ↓

Claims (20)

【特許請求の範囲】[Claims] (1)真空槽内に少なくとも一種類の反応ガスと、少な
くとも炭素を含む原料と、マイクロ波とを導入し、マイ
クロ波プラズマを発生させ、得られた反応生成ガスを基
体に到達させてダイヤモンドを形成する方法において、
前記真空槽内に基体を設置するとともに前記真空槽を空
洞共振器状構造にしたことを特徴とするダイヤモンドの
製造方法。
(1) At least one type of reaction gas, a raw material containing at least carbon, and microwave are introduced into a vacuum chamber to generate microwave plasma, and the resulting reaction product gas is allowed to reach the substrate to form a diamond. In the method of forming,
A method for producing diamond, characterized in that a substrate is placed in the vacuum chamber, and the vacuum chamber has a cavity resonator-like structure.
(2)真空槽内をマイクロ波基本共振モードTE_1_
1_1が立つ空洞共振器構造にしたことを特徴とする特
許請求の範囲第1項記載のダイヤモンドの製造方法。
(2) Microwave fundamental resonance mode TE_1_ inside the vacuum chamber
1. The method of manufacturing diamond according to claim 1, wherein the diamond has a cavity structure in which 1_1 stands.
(3)反応ガスが水素ガスであることを特徴とする特許
請求の範囲第1項記載のダイヤモンドの製造方法。
(3) The method for producing diamond according to claim 1, wherein the reactive gas is hydrogen gas.
(4)炭素を含む原料が炭化水素であることを特徴とす
る特許請求の範囲第1項記載のダイヤモンドの製造方法
(4) The method for producing diamond according to claim 1, wherein the carbon-containing raw material is a hydrocarbon.
(5)真空槽内のガス圧を0.1Torr以上50To
rr以下にしたことを特徴とする特許請求の範囲第1項
記載のダイヤモンドの製造方法。
(5) Increase the gas pressure in the vacuum chamber to 0.1 Torr or more and 50 To
2. The method for manufacturing diamond according to claim 1, wherein the diamond manufacturing method is made to be less than or equal to rr.
(6)基体温度を600℃〜1000℃に温度に保ちダ
イヤモンドを形成することを特徴とする特許請求の範囲
第1項記載のダイヤモンドの製造方法。
(6) A method for manufacturing diamond according to claim 1, characterized in that the diamond is formed by keeping the substrate temperature at 600°C to 1000°C.
(7)マイクロ波2.46GHzの出力を400W以下
にしたことを特徴とする特許請求の範囲第1項記載のダ
イヤモンドの製造方法。
(7) The diamond manufacturing method according to claim 1, characterized in that the output of the microwave at 2.46 GHz is 400 W or less.
(8)マイクロ波導波管と真空槽を石英ガラスまたはテ
フロンまたはセラミックで仕切ったことを特徴とする特
許請求の範囲第1項記載のダイヤモンドの製造方法。
(8) The method for producing diamond according to claim 1, characterized in that the microwave waveguide and the vacuum chamber are partitioned by quartz glass, Teflon, or ceramic.
(9)炭素を含む原料の分圧比を1%以上50%以下に
することを特徴とする特許請求の範囲第1項記載のダイ
ヤモンドの製造方法。
(9) The method for producing diamond according to claim 1, characterized in that the partial pressure ratio of the carbon-containing raw material is set to 1% or more and 50% or less.
(10)基体表面に炭素を含む原料を噴射して供給する
ことを特徴とする特許請求の範囲第1項記載のダイヤモ
ンドの製造方法。
(10) A method for producing diamond according to claim 1, characterized in that a raw material containing carbon is supplied by injection onto the surface of the substrate.
(11)基体表面に反応ガスを噴射して供給することを
特徴とする特許請求の範囲第1項記載のダイヤモンドの
製造方法。
(11) The method for producing diamond according to claim 1, characterized in that the reaction gas is supplied by injection onto the surface of the substrate.
(12)基体をマイクロ波の電界に対し垂直に設置した
ことを特徴とする特許請求の範囲第1項記載のダイヤモ
ンドの製造方法。
(12) The method for producing diamond according to claim 1, wherein the substrate is placed perpendicular to the electric field of the microwave.
(13)基体をマイクロ波の電界に対し平行に設置した
ことを特徴とする特許請求の範囲第1項記載のダイヤモ
ンドの製造方法。
(13) A method for manufacturing diamond according to claim 1, characterized in that the substrate is placed parallel to the electric field of the microwave.
(14)基体表面を下側に向けて設置することを特徴と
する特許請求の範囲第1項記載のダイヤモンドの製造方
法。
(14) The method for manufacturing diamond according to claim 1, characterized in that the substrate is placed with its surface facing downward.
(15)反応ガス又は炭素を含む原料を、基体に対し前
方から導入することを特徴とする特許請求の範囲第1項
記載のダイヤモンドの製造方法。
(15) The method for producing diamond according to claim 1, characterized in that the reactant gas or the raw material containing carbon is introduced into the substrate from the front.
(16)反応ガスまたは炭素を含む原料を、基体に対し
後方から導入することを特徴とする特許請求の範囲第1
項記載のダイヤモンドの製造方法。
(16) Claim 1, characterized in that the reactant gas or the raw material containing carbon is introduced from the rear into the substrate.
Method for producing diamonds as described in Section 1.
(17)反応ガス又は炭素を含む原料を、基体に対し側
方から導入し、基体に対して角度を持たせることを特徴
とする特許請求の範囲第1項記載のダイヤモンドの製造
方法。
(17) A method for producing diamond according to claim 1, characterized in that the reactant gas or the raw material containing carbon is introduced from the side to the substrate so as to form an angle with the substrate.
(18)基体がシリコンであることを特徴とする特許請
求の範囲第1項記載のダイヤモンドの製造方法。
(18) The method for producing diamond according to claim 1, wherein the substrate is silicon.
(19)反応前に基体表面に研摩処理を行うことを特徴
とする特許請求の範囲第1項記載のダイヤモンドの製造
方法。
(19) The method for producing diamond according to claim 1, characterized in that the surface of the substrate is subjected to a polishing treatment before the reaction.
(20)真空槽に磁場を印加したことを特徴とする特許
請求の範囲第1項記載のダイヤモンドの製造方法。
(20) The method for producing diamond according to claim 1, characterized in that a magnetic field is applied to the vacuum chamber.
JP6934287A 1987-03-24 1987-03-24 Production of diamond Pending JPS63236791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6934287A JPS63236791A (en) 1987-03-24 1987-03-24 Production of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6934287A JPS63236791A (en) 1987-03-24 1987-03-24 Production of diamond

Publications (1)

Publication Number Publication Date
JPS63236791A true JPS63236791A (en) 1988-10-03

Family

ID=13399777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6934287A Pending JPS63236791A (en) 1987-03-24 1987-03-24 Production of diamond

Country Status (1)

Country Link
JP (1) JPS63236791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521556A (en) * 2014-06-16 2017-08-03 エレメント シックス テクノロジーズ リミテッド Microwave plasma reactor for producing synthetic diamond materials
CN111511090A (en) * 2020-04-13 2020-08-07 北京工业大学 Microwave plasma reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521556A (en) * 2014-06-16 2017-08-03 エレメント シックス テクノロジーズ リミテッド Microwave plasma reactor for producing synthetic diamond materials
JP2019077951A (en) * 2014-06-16 2019-05-23 エレメント シックス テクノロジーズ リミテッド Microwave plasma reactor for manufacturing synthetic diamond material
US10734198B2 (en) 2014-06-16 2020-08-04 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
CN111511090A (en) * 2020-04-13 2020-08-07 北京工业大学 Microwave plasma reactor

Similar Documents

Publication Publication Date Title
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
JPH06279185A (en) Forming method of diamond crystal and diamond crystal film
US4152182A (en) Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
US5436036A (en) Method of synthesizing hard material
Ando et al. Growth of diamond films by a 5-kW microwave plasma CVD reactor
JPS63236791A (en) Production of diamond
US5993919A (en) Method of synthesizing diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
Chattopadhyay et al. Diamond synthesis by capacitively coupled radio frequency plasma with the addition of direct current power
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JP4480192B2 (en) Method for synthesizing high purity diamond
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JP3190100B2 (en) Carbon material production equipment
JPS63215597A (en) Production of diamond film or diamond like film
JPS63215596A (en) Production of diamond film or diamond like film
Pai et al. Low-pressure chemical vapour deposition of diamond films in a radio-frequency-plasma-assisted hot-filament reactor
JPS62256796A (en) Production of diamond
JPS63176399A (en) Production of diamond film
JPS6330397A (en) Method for synthesizing diamond
JPS60127292A (en) Production of diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPS63129099A (en) Production of diamond thin film or diamondlike thin film
JPH02133398A (en) Method and device for synthesizing diamond thin film
JP2004284882A (en) Diamond and its manufacturing method
JPH0416593A (en) Method and device for vapor synthesis of diamond