JPS6323553Y2 - - Google Patents

Info

Publication number
JPS6323553Y2
JPS6323553Y2 JP1981164800U JP16480081U JPS6323553Y2 JP S6323553 Y2 JPS6323553 Y2 JP S6323553Y2 JP 1981164800 U JP1981164800 U JP 1981164800U JP 16480081 U JP16480081 U JP 16480081U JP S6323553 Y2 JPS6323553 Y2 JP S6323553Y2
Authority
JP
Japan
Prior art keywords
chilled
chill
cylinder liner
cavitation
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981164800U
Other languages
Japanese (ja)
Other versions
JPS5870437U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16480081U priority Critical patent/JPS5870437U/en
Publication of JPS5870437U publication Critical patent/JPS5870437U/en
Application granted granted Critical
Publication of JPS6323553Y2 publication Critical patent/JPS6323553Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 デイーゼルエンジンのシリンダライナに於い
て、エンジンの圧縮ガスの爆発によつてシリンダ
ライナに振動を生じ、その振動によつて生ずるキ
ヤビテーシヨンのために、冷却水と接するジヤケ
ツト部に孔蝕が発生し、シリンダライナ壁を貫通
し、遂には水洩れ事故につながるエンジントラブ
ルの発生することは公知の事実である。近時、エ
ンジンの高出力化、高速化に伴い、シリンダライ
ナの振動は苛酷になる傾向にあるので、キヤビテ
ーシヨンによるシリンダライナの損傷孔蝕は増大
され、エンジン寿命を左右する大なる問題になつ
ており、この対策が課題になつているのが現状で
ある。
[Detailed description of the invention] In the cylinder liner of a diesel engine, the explosion of the engine's compressed gas causes vibration in the cylinder liner, and due to the cavitation caused by the vibration, the jacket part that comes in contact with the cooling water It is a well-known fact that pitting occurs, penetrates the cylinder liner wall, and eventually causes engine troubles that lead to water leakage accidents. In recent years, as engines have become more powerful and faster, cylinder liner vibrations have become more severe, causing damage and pitting of the cylinder liner due to cavitation, which has become a major problem that affects engine life. Currently, countermeasures against this problem are becoming an issue.

従来、デイーゼルエンジン用シリンダライナの
外周面のキヤビテーシヨン防止対策としては、例
えばCrめつき被膜で保護する手法、あるいは
Al2O3の如きセラミツク系の溶射被膜で保護する
手法が採用されているが、Crめつきの場合には、
公害防止等の点から設備的制約もあり、コスト高
であり、溶射被膜の場合は耐久性に難点があるた
め、これらにかわる防止対策が望まれている。
Conventionally, measures to prevent cavitation on the outer peripheral surface of diesel engine cylinder liners include, for example, protecting the outer peripheral surface with a Cr plating film;
A method of protecting with a sprayed ceramic coating such as Al 2 O 3 has been adopted, but in the case of Cr plating,
There are equipment restrictions from the viewpoint of pollution prevention, etc., the cost is high, and thermal spray coatings have shortcomings in durability, so alternative preventive measures are desired.

本考案は、鋳鉄製シリンダライナの外周面をレ
ーザビームで溶融しチル化せしめ、キヤビテーシ
ヨン孔蝕を防止しようとするものである。
The present invention aims to prevent cavitation corrosion by melting and chilling the outer peripheral surface of a cast iron cylinder liner using a laser beam.

キヤビテーシヨン孔蝕に対して、片状黒鉛を析
出させた鋳鉄よりもチル化した鋳鉄がその抵抗性
に優れていることは公知の事実であるが、例えば
冷し金等を使用してシリンダライナの外周面にチ
ルを形成させた場合には、冷し金の影響がピスト
ンリングが摺動するシリンダライナの内周面にま
で及び、耐摩耗性、及び耐焼付性に重要な影響を
持つ黒鉛形状を悪化させ、好ましくない。又、シ
リンダライナはシリンダブロツクに挿入使用され
るため、寸法精度が重要で、そのためには高精度
の機械加工が必要であるが、冷し金等でチル化し
た場合には、加工性が劣化する問題が生ずる。そ
して冷し金等でチル化した組織はそれ程緻密でな
くキヤビテーシヨンに対する抵抗性も弱い。
It is a well-known fact that chilled cast iron has better resistance to cavitation pitting than cast iron on which flaky graphite has been precipitated. When a chill is formed on the outer circumferential surface, the influence of the chill extends to the inner circumferential surface of the cylinder liner on which the piston ring slides, resulting in a graphite shape that has an important effect on wear resistance and seizure resistance. This is not desirable because it worsens the situation. In addition, since the cylinder liner is inserted into the cylinder block, dimensional accuracy is important, and high-precision machining is required for this purpose, but if it is chilled with a chiller, etc., the workability will deteriorate. A problem arises. Furthermore, the structure chilled with a chilled metal is not so dense and has low resistance to cavitation.

かかる問題点を解決するには、レーザビームに
よつて鋳鉄表面を溶融チル化することは極めて効
果的である。得られるチル組織も冷却が早いため
極めて緻密で硬さはHv800〜900に達する。又、
チル深さ及び巾等のコントロールが容易であり、
シリンダライナ内周面の黒鉛組織に影響を及ぼさ
ない利点がある。なお、レーザビームによる処理
は電子ビーム処理に較べ大気中での処理が可能で
あり、加工物の大きさによる制約を受けない点で
より工業的、経済的である。
To solve these problems, it is extremely effective to melt and chill the surface of cast iron using a laser beam. The resulting chilled structure also cools quickly, so it is extremely dense and has a hardness of 800 to 900 Hv. or,
It is easy to control chill depth and width, etc.
This has the advantage of not affecting the graphite structure on the inner peripheral surface of the cylinder liner. Note that laser beam processing is more industrial and economical than electron beam processing because it can be performed in the atmosphere and is not limited by the size of the workpiece.

冷し金を使用した場合には、チル組織に黒鉛の
残留が認められることがあり、耐キヤビテーシヨ
ン性では、この黒鉛は、好ましくない。
When a chilled metal is used, residual graphite may be observed in the chilled structure, and this graphite is not preferred in terms of cavitation resistance.

第1図にレーザビームによつて鋳鉄製シリンダ
ライナの外周面を溶融チル化させた時の顕微鏡組
織を示す。A部分が溶融チル化されたチル組織
で、B部分は焼入された組織を示す。
Figure 1 shows the microscopic structure of the outer peripheral surface of a cast iron cylinder liner when it is melted and chilled using a laser beam. Part A is a chilled structure that has been melted and chilled, and part B is a quenched structure.

以下、実施例に基づいて本考案の効果を説明す
る。
Hereinafter, the effects of the present invention will be explained based on Examples.

〔実施例〕〔Example〕

T.C3.10%、Si1.97%、Mn0.71%、P0.26%、
Cr0.30%、残Feのシリンダライナ用の鋳鉄溶湯
にてキヤビテーシヨンテスト用の試験片を作成し
た。試験片1の形状は第2〜3図に示す。かかる
試験片をCO2ガスレーザにて出力1.0KW、照射速
度1000mm/min、照射巾(W)2.5mm、照射間隔
(P)1.6mm及び2.0mmにて帯状に未処理部がない
ようにビームを重ねて表面を溶融チル化せしめた
(第4〜5図参照)。
T.C3.10%, Si1.97%, Mn0.71%, P0.26%,
A test piece for cavitation test was prepared using molten cast iron for cylinder liners with 0.30% Cr and residual Fe. The shape of the test piece 1 is shown in FIGS. 2 and 3. The test piece was irradiated with a CO 2 gas laser beam at an output of 1.0 KW , an irradiation speed of 1000 mm/min, an irradiation width (W) of 2.5 mm, and an irradiation interval (P) of 1.6 mm and 2.0 mm so that there were no untreated areas. The surfaces were stacked and melted and chilled (see Figures 4 and 5).

得られた試験片の中の照射間隔1.6mmのものの
チル部の硬さは、Hv871であり、チル深さは0.20
〜0.35mmで、照射間隔2.0mmのもののチル部硬さ
はHv850であり、チル深さは0.10〜0.25mmであつ
た。他方、冷し金により試験片表面をチル化せし
めた。得られた試験片のチル部の硬さはHv760で
あり、チル深さは3〜4mmであつた。かかる試験
片を第6図に示した磁歪振動式のキヤビテーシヨ
ン試験機を使用して、キヤビテーシヨン損傷量を
調べた。1がキヤビテーシヨン試験片、2は媒体
液、3は超音波振動振巾拡大ホーン、4は磁歪振
動子、5は超音波発振器で、試験条件は以下のと
おりである。
The hardness of the chilled part of the test piece obtained with an irradiation interval of 1.6 mm was Hv871, and the chill depth was 0.20.
~0.35mm, the chill part hardness of the irradiation interval of 2.0mm was Hv850, and the chill depth was 0.10~0.25mm. On the other hand, the surface of the test piece was chilled using a chilled metal. The hardness of the chilled portion of the obtained test piece was Hv760, and the chill depth was 3 to 4 mm. The amount of cavitation damage on this test piece was examined using a magnetostrictive vibration type cavitation testing machine shown in FIG. 1 is a cavitation test piece, 2 is a medium liquid, 3 is an ultrasonic vibration amplitude expansion horn, 4 is a magnetostrictive vibrator, and 5 is an ultrasonic oscillator, and the test conditions are as follows.

振動数 :6700Hz 振 幅 :90μm 媒体液 :脱気蒸留水 液 温 :(80±2)℃ 加振時間 :2時間 試験結果は第7図に示したとおりであり、レー
ザービームによつて表面を溶融チル化せしめた本
考案はキヤビテーシヨン孔蝕に対し極めて有効で
あることが判明する。
Vibration frequency: 6700Hz Amplitude: 90μm Medium liquid: Degassed distilled water Liquid temperature: (80±2)℃ Excitation time: 2 hours The test results are as shown in Figure 7. It has been found that the present invention, which is melt-chilled, is extremely effective against cavitation pitting.

尚、かかる手法をシリンダライナに適用する場
合、前述の如くキヤビテーシヨン孔蝕の原因は、
エンジンの圧縮ガスの爆発によつて生起されるシ
リンダライナの振動に基因するため、通常はクラ
ンク軸に直角なシリンダライナのスライス及びア
ンチスラスト側のジヤケツト部に孔蝕は発生す
る。経済的な見地より、シリンダライナのジヤケ
ツト部全周にわたつてレーザビームにより溶融チ
ル化する必要はなく、孔蝕の発生するスラスト及
びアンチスラスト部のみに限定して、部分処理す
ることも可能である。
In addition, when applying this method to cylinder liners, the causes of cavitation pitting are as described above.
Due to vibrations in the cylinder liner caused by the explosion of compressed gas in the engine, pitting usually occurs in the cylinder liner slice perpendicular to the crankshaft and in the anti-thrust side jacket. From an economical point of view, it is not necessary to melt and chill the entire circumference of the jacket part of the cylinder liner using a laser beam, and it is also possible to perform partial treatment only on the thrust and anti-thrust parts where pitting occurs. be.

又、レーザビームは、第4〜5図に示すように
帯状に重ねて照射し、その照射巾は1〜4mmが望
ましい。1mm未満ではチル部分が空孔等を含んで
均一なチル組織が得られず、4mm超えるとエネル
ギ密度が低下してチルが入りにくくなり、チリ深
さを確保するには照射時間が長くなり非能率であ
る。照射間隔は未処理部が発生しない範囲で0.5
〜4mmが望ましい。チル深さは0.05〜0.40mmが望
ましく、0.05mm未満ではチル組織に黒鉛が残留す
る可能性があり、キヤビテーシヨンに対する抵抗
性が弱く、0.40mm超えると処理時間が長くなり非
能率であり、又熱量が大きいためクラツクが発生
するおそれがある。
Further, the laser beam is irradiated in a band-like manner as shown in FIGS. 4 and 5, and the irradiation width is preferably 1 to 4 mm. If it is less than 1mm, the chilled part will contain pores and a uniform chilled structure cannot be obtained, and if it exceeds 4mm, the energy density will decrease and it will be difficult to get chills, and the irradiation time will be longer to ensure the depth of the chill, making it difficult to obtain a uniform chilled structure. It's efficiency. The irradiation interval is 0.5 as long as no untreated areas occur.
~4 mm is desirable. The desired chill depth is 0.05 to 0.40 mm; if it is less than 0.05 mm, graphite may remain in the chilled structure and the resistance to cavitation will be weak; if it exceeds 0.40 mm, the processing time will be longer, resulting in inefficiency, and the amount of heat will be reduced. There is a risk of cracks occurring because of the large amount of noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザビームによつて鋳鉄製シリンダ
ライナの外周面を溶融チル化させた時の顕微鏡組
織写真であり、第2図と第3図は試験片の平面図
と正面図、第4図と第5図は表面をチル化した試
験片の一部分を示す平面図と断面図、第6図は磁
歪振動式のキヤビテーシヨン試験機の概要図、第
7図はキヤビテーシヨン試験結果を示す。
Figure 1 is a photograph of the microscopic structure when the outer circumferential surface of a cast iron cylinder liner is melted and chilled by a laser beam, Figures 2 and 3 are a plan view and front view of the test piece, and Figure 4 5 is a plan view and a sectional view showing a portion of a test piece with a chilled surface, FIG. 6 is a schematic diagram of a magnetostrictive vibration type cavitation testing machine, and FIG. 7 shows the cavitation test results.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] デイーゼルエンジン用の鋳鉄製シリンダライナ
外周面の冷却水と接するジヤケツト部がレーザビ
ームにより高緻密化したチル組織に形成されると
ともに、該チル組織の層を形成するレーザビーム
の照射間隔が未処理部の発生しない範囲で0.5〜
4mm、照射幅1.0〜4.0mm、チル深さ0.05〜0.40mm
とし、且つチル硬さをHv800〜900とした帯状チ
ル組織層を有するシリンダライナ。
The jacket part of the outer peripheral surface of a cast iron cylinder liner for diesel engines that comes in contact with the cooling water is formed into a highly dense chilled structure by the laser beam, and the irradiation interval of the laser beam that forms the layer of the chilled structure is set to the untreated part. 0.5~ within the range that does not occur
4mm, irradiation width 1.0~4.0mm, chill depth 0.05~0.40mm
A cylinder liner having a band-shaped chill structure layer with a chill hardness of Hv800 to 900.
JP16480081U 1981-11-06 1981-11-06 Cylinder liner with cavitation-resistant chill structure formed Granted JPS5870437U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16480081U JPS5870437U (en) 1981-11-06 1981-11-06 Cylinder liner with cavitation-resistant chill structure formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16480081U JPS5870437U (en) 1981-11-06 1981-11-06 Cylinder liner with cavitation-resistant chill structure formed

Publications (2)

Publication Number Publication Date
JPS5870437U JPS5870437U (en) 1983-05-13
JPS6323553Y2 true JPS6323553Y2 (en) 1988-06-28

Family

ID=29957024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16480081U Granted JPS5870437U (en) 1981-11-06 1981-11-06 Cylinder liner with cavitation-resistant chill structure formed

Country Status (1)

Country Link
JP (1) JPS5870437U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453628A (en) * 1977-10-06 1979-04-27 Toshiba Corp Engine member
JPS55164745A (en) * 1979-05-22 1980-12-22 Nippon Piston Ring Co Ltd Cylinder and cylinder liner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453628A (en) * 1977-10-06 1979-04-27 Toshiba Corp Engine member
JPS55164745A (en) * 1979-05-22 1980-12-22 Nippon Piston Ring Co Ltd Cylinder and cylinder liner

Also Published As

Publication number Publication date
JPS5870437U (en) 1983-05-13

Similar Documents

Publication Publication Date Title
US6286583B1 (en) Two part light metal coating and method of making same
US4447275A (en) Cylinder liner
US9316173B2 (en) Cylinder liner with bonding layer
US6284067B1 (en) Method for producing alloyed bands or strips on pistons for internal combustion engines
KR101195055B1 (en) Anti-cavitation diesel cylinder liner
CN109404154A (en) Cylinder jacket, the preparation process of cylinder jacket and the engine using the cylinder jacket
US3844334A (en) Method of casting cylinders
JPS6323553Y2 (en)
US6299707B1 (en) Method for increasing the wear resistance in an aluminum cylinder bore
French Problems arising from the water cooling of engine components
CN101057070A (en) Anti-cavitation diesel cylinder liner
JPS5839226B2 (en) Surface treatment method for light alloy cylinders
JPS6325183B2 (en)
CN110894813B (en) Cylinder liner, method for manufacturing the same, and method for manufacturing cylinder block using the same
JPS61255246A (en) Cylinder liner for internal-combustion engine
JPS62279255A (en) Cast iron cylinder block and its manufacture
EP0035127A1 (en) Method of cryogenically hardening an insert in an article, and article made thereby
KR100217623B1 (en) Manufacturing method for cam shaft
JP2002180104A (en) Cylinder sleeve, and cylinder block for internal- combustion engine
JPH0559994B2 (en)
JPS6046176B2 (en) Cast iron sliding member with coexistence of non-chill structure part and chill structure part
JPS5893947A (en) Cylinder for internal-combustion engine
CN117067111A (en) Surface texture method of alloy workpiece
ES8601742A1 (en) Making a connecting rod of cast metal for an internal combustion engine
JPS59215261A (en) Casting method of cylinder liner for internal-combustion engine