JPS63235450A - Ferrite stainless steel having excellent low temperature toughness - Google Patents

Ferrite stainless steel having excellent low temperature toughness

Info

Publication number
JPS63235450A
JPS63235450A JP6789187A JP6789187A JPS63235450A JP S63235450 A JPS63235450 A JP S63235450A JP 6789187 A JP6789187 A JP 6789187A JP 6789187 A JP6789187 A JP 6789187A JP S63235450 A JPS63235450 A JP S63235450A
Authority
JP
Japan
Prior art keywords
steel
stainless steel
toughness
low
temperature toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6789187A
Other languages
Japanese (ja)
Inventor
Fukukazu Nakazato
中里 福和
Michitaka Fujita
藤田 通孝
Eisuke Kawamura
河村 英輔
Shoji Nishimura
彰二 西村
Shuichi Fukushima
秀一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6789187A priority Critical patent/JPS63235450A/en
Publication of JPS63235450A publication Critical patent/JPS63235450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a ferrite stainless steel having good workability and excellent low temp. toughness by regulating the chemical components consisting of C, Si, Mn, Nb, Cr, N and Fe. CONSTITUTION:The titled steel contg., by weight, <=0.0100% C, <=0.40% Si, <=0.50% Mn, 0.01-0.30% Nb, 11.0-18.0% Cr and <=0.0120% N, furthermore contg. at need one or more kinds among 0.01-2.00% Ni, 0.01-0.10% Ti, 0.01-0.10% Al, 0.01-0.50% Mo and 0.01-0.50% Cu and consisting of the balance Fe with inevitable impurities is obtd. Said steel can be molded by subjecting it to usual hot working and cold working. The steel furthermore has the low toughness of about <=-80 deg.C level of energy transition temp. in the Charpy impact strength test of JIS 4.

Description

【発明の詳細な説明】 (利用分野) 本発明は鋼中の化学成分を規定することによって得られ
る低温靭性のすぐれたフェライトステンレス鋼に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application) The present invention relates to a ferritic stainless steel with excellent low-temperature toughness obtained by specifying the chemical components in the steel.

(発明の背景及び先行技術) 近年、経済性のすぐれたステンレス鋼としてCr11〜
28%を含むフェライトステンレス鋼の用途が拡大して
いる。これらのCr系フェライトステンレス鋼は安価で
あるだけでなく、強度も高く、また塩素イオンを含む環
境中での耐食性がすぐれているという利点を有している
(Background of the invention and prior art) In recent years, Cr11~
The applications of ferritic stainless steel containing 28% are expanding. These Cr-based ferritic stainless steels have the advantage of being not only inexpensive but also high in strength and excellent in corrosion resistance in environments containing chlorine ions.

しかし、これらのCr系フェライトステンレス9鋼は一
般に極めて脆く、加工性が劣るとともに低温環境(例え
ば−60℃以下)での使用中に脆性破壊を生ずるという
問題があった。例えばフェライトステンレス鋼のなかで
も加工性にすぐれたものとして8U8410L(JIS
 () 43031981、代表的成分:α02C−α
5Si−α6Mn−13Cr)があるが、この5US4
10Lにおいても、通常JI84号シャルピー試験片(
2日Vノツチ、 JIS Z 2202−1980 )
による衝撃試験でのエネルギー遷移温度は常温以上であ
り、部品の加工工程(特に強加工の場合)で割れを生じ
たり、低温使用環境中で脆性破壊を生ずるという間趙が
ある。
However, these Cr-based ferritic stainless steels are generally extremely brittle, have poor workability, and suffer from brittle fracture during use in low-temperature environments (for example, below -60°C). For example, 8U8410L (JIS
() 43031981, Representative component: α02C-α
5Si-α6Mn-13Cr), but this 5US4
Even in 10L, usually JI No. 84 Charpy test piece (
2nd Vnotchi, JIS Z 2202-1980)
The energy transition temperature in the impact test is above room temperature, and there are concerns that cracks may occur during the processing of parts (particularly in the case of heavy processing) or brittle fracture may occur in low-temperature usage environments.

(発明の概要) 本発明はこのような問題を解決するために見い出場れた
もので、鋼中の化学成分を精密にコントロールすること
によフ、従来の知見では到底達成できなかったような低
温靭性のすぐれたフェライトステンレス鋼の提供を可能
にしたものであり、また本発明によるフェライトステン
レス鋼は熱間加工(鍛造、圧延など)、さらに熱間加工
の後に必要に応じて施される冷間加工(鍛造、伸線、据
込み、押出しなど)においても、特にそのプロセスを制
御することなく、通常の熱間加工、冷間加工を施すこと
による成形のできるものである。その上、このようにし
て得られた本発明鋼はJIS 4号シャルピー試験片の
衝撃試験でのエネルギー遷移温度が一80℃以下であり
、従来鋼では達成することが困難でめったレベルの低温
靭性を具備するものである。
(Summary of the invention) The present invention was discovered in order to solve these problems, and by precisely controlling the chemical components in steel, it is possible to solve problems that would have been impossible to achieve with conventional knowledge. This makes it possible to provide a ferritic stainless steel with excellent low-temperature toughness, and the ferritic stainless steel according to the present invention can be subjected to hot working (forging, rolling, etc.) and further processing as necessary after hot working. Even in cold working (forging, wire drawing, upsetting, extrusion, etc.), it is possible to form by performing normal hot working and cold working without particularly controlling the process. Furthermore, the steel of the present invention obtained in this way has an energy transition temperature of 180°C or less in the impact test of a JIS No. 4 Charpy test piece, and has a low-temperature toughness that is difficult to achieve with conventional steels and is rare. It is equipped with the following.

(詳細な説明) 本発明鋼は重量で、Cα0100%以下、5i(140
%以下、Mn150%以下、Nb  α01〜130%
、Cr  11.0〜1 ao%、Nα0120チ以下
を含み、さらに必要に応じN1  α01〜2.00%
、 ’I’i  0.Ol 〜α10%、At  α0
1〜0.30%、 MOα01〜050%、Cuα01
−150%の1種又は2F1以上を含み、残部Fθ及び
不可避的不純物よシ成るものであるが、その成分の限定
理由は下記の通シである。
(Detailed Description) The steel of the present invention has a Cα0 of 100% or less, 5i (140
% or less, Mn 150% or less, Nb α01-130%
, Cr 11.0-1 ao%, Nα0120 or less, and further N1 α01-2.00% as necessary
, 'I'i 0. Ol ~ α10%, At α0
1-0.30%, MOα01-050%, Cuα01
-150% of one type or 2F1 or more, and the remainder consists of Fθ and unavoidable impurities, and the reasons for limiting the components are as follows.

C:Cは鋼に所定の強度を付与するのに必要な元素であ
るが、反面耐食性、靭性を劣化させる元素である。本発
明の目的である低温靭性の向上、具体的には一80℃以
下のシャルピー試験エネルギー遷移温度を確保するため
には0.O100%以下に制御することが不可欠の要件
でるる。
C: C is an element necessary to impart a certain strength to steel, but on the other hand, it is an element that deteriorates corrosion resistance and toughness. In order to improve low-temperature toughness, which is the objective of the present invention, specifically, to ensure a Charpy test energy transition temperature of -80°C or less, 0. It is an essential requirement to control O to 100% or less.

Si : 81  はCと同様に鋼に所定の強度を付与
するのに必要な元素でらるが、耐食性、靭性を劣化させ
る。またSlは溶接性も著しく劣化させるので0.41
1116以下にする必要がある。
Like C, Si: 81 is an element necessary to impart a certain strength to steel, but it deteriorates corrosion resistance and toughness. In addition, Sl significantly deteriorates weldability, so 0.41
It needs to be 1116 or less.

Mn : Mn は鋼の脱酸に必要な元素であるが、0
.50%を超えると耐食性と低温靭性を劣化させるので
、その上限’1)l150%とする。
Mn: Mn is an element necessary for deoxidizing steel, but 0
.. If it exceeds 50%, the corrosion resistance and low-temperature toughness will deteriorate, so the upper limit is set to 1)150%.

Nl):Nt)信奉発明において極めて重要な役割を果
たす元素である。一般に、Nl)はフェライトステンレ
ス鋼において、CやNが本発明における成分規定よりも
多量に含有する場合(例えば、5US410Lのように
CAMでCL030%程度の場合)には、鋼中に添加さ
れてCAMをNtlの炭窒化物として固定して耐食性の
向上を図るものである。しかしながら、本発明における
Nbの添加は上記のC,Nの固定とは技術的思想におい
て全く異なるものであり、本発明のような低0.低Nの
フェライトステンレス鋼においてはNl)が南中で炭窒
化物を形成することによる耐食性の向上を図るものでな
く、Nb  iフェライト中で析出物としてでなく、フ
ェライトマトリックス中に固溶させ、その固溶したNl
)により7エライトステンレス鋼の靭性を著しく向上さ
せる効果を有するものである。このようにfi!iI浴
したNl)がフェライトステンレス鋼の塑性変形過程内
で交差すべ夛を起りやすくシ、局部的な塑性変形の集中
を防止させる効果を有することは本発8A@らが見い出
したものであり、この交差すべりの発生にもとすく塑性
変形領域の拡大は低温靭性の向上に大きな効果を発揮す
るものである。こ\においてNl)が101%未満では
上記効果が充分に発揮されないのでその下限t″0.0
1%とし、またNt) t−α30%を看えて添加する
と、鋼中のミクロ偏析が顕著になって低温靭性が劣化す
るので、120%を上限とするものである。
Nl):Nt) It is an element that plays an extremely important role in belief invention. Generally, Nl) is added to ferritic stainless steel when C or N is contained in a larger amount than the composition specified in the present invention (for example, when CL030% in CAM such as 5US410L). This is intended to improve corrosion resistance by fixing CAM as Ntl carbonitride. However, the addition of Nb in the present invention is completely different in technical concept from the fixation of C and N described above, and the addition of Nb in the present invention is completely different from the above-mentioned fixation of C and N. In low-N ferritic stainless steel, Nl) does not form carbonitrides in the center to improve corrosion resistance, but Nb is not formed as a precipitate in ferrite, but is dissolved as a solid solution in the ferrite matrix. The solid solution Nl
) has the effect of significantly improving the toughness of 7-elite stainless steel. Like this fi! It was discovered by 8A@ et al. that Nl) subjected to iI bathing tends to cross over during the plastic deformation process of ferritic stainless steel, and has the effect of preventing local concentration of plastic deformation. Expansion of the plastic deformation region to prevent the occurrence of this cross-slip has a great effect on improving low-temperature toughness. In this case, if Nl) is less than 101%, the above effect will not be fully exhibited, so the lower limit t″0.0
If 1% and 30% of Nt) t-α is added, micro-segregation in the steel becomes noticeable and low-temperature toughness deteriorates, so the upper limit is set at 120%.

Cr:Cr1lフエライト相を安定化させるとともに、
所定の耐食性を付与させるのに必要な元素であるが、1
1.0%未満では上記の効果が十分に発揮されず、フェ
ライト単相とはならず、一部にオーステナイト相が混入
し低@靭性が劣化するので11.0チを下限とする。一
方1aO%を超えると強度の上昇が著しくなり、かつ低
温靭性が劣化するので10.30%を上限とする。
Cr: Stabilizes the Cr1l ferrite phase, and
It is an element necessary to impart a certain corrosion resistance, but 1
If it is less than 1.0%, the above effect will not be fully exhibited, and a single phase of ferrite will not be obtained, and the austenite phase will be mixed in a part, resulting in poor toughness, so the lower limit is set at 11.0. On the other hand, if it exceeds 1aO%, the strength will increase significantly and the low temperature toughness will deteriorate, so the upper limit is set at 10.30%.

N:N宮有童に関する限定は本発明においてNt)に次
いで重要な意味t−[L%N框Cと同様に鋼に所定の強
度を付与するのに必要な元素であるが、反面耐食性、靭
性を劣化させる元素であり、またNは溶接性をも劣化さ
せる0従来、フェライトステンレス鋼についてNの効果
は明確にされていなかったが、本発明においてljN含
有賃をα0120%以下に規制するものである。本来、
NBオーステナイト相を安定化させる元素であるが、α
0120%を超えて添加すると7エライト単相とはなら
ず、オーステナイト相が混入するので低温靭性が劣化す
る。さらにNが(10120%を超えると低温域での塑
性変形過程で局部的な塑性変形の集中が発生しやすくな
る。つま9Nがα0120チを超えると交差すべりが生
じ難くなるため低温靭性が著しく劣化するので本発明に
おいてはNtを10120%以下と規定する0 さらに以下の元素については、必要に応じて1mまたは
2種以上含有させることができる。
N: The limitation regarding N Miya Yudo has the second most important meaning after Nt) in the present invention. N is an element that deteriorates toughness, and N also deteriorates weldability. Conventionally, the effect of N on ferritic stainless steel has not been clarified, but in the present invention, the ljN content is regulated to 120% or less. It is. Originally,
NB is an element that stabilizes the austenite phase, but α
If more than 0.0120% is added, a single phase of 7-elite will not be formed, and the austenite phase will be mixed in, resulting in deterioration of low-temperature toughness. Furthermore, when N exceeds 10120%, local concentration of plastic deformation tends to occur during the plastic deformation process at low temperatures.When N exceeds α0120%, cross-slip becomes difficult to occur, resulting in a significant deterioration of low-temperature toughness. Therefore, in the present invention, Nt is defined as 10120% or less. Furthermore, the following elements can be contained in the amount of 1 m or two or more as necessary.

Ni:NiHフェライト相の靭性を向上させるので、よ
り低温域での靭性″Ik確保し8きに添加するものであ
る。α01チ未満では、その効果が充分にあられれない
ので0.O1囁を下限とし、一方2.00%を超えると
経済的に不利となるので、2.00%を上限とする。
Ni: NiH improves the toughness of the ferrite phase, so it is added to ensure the toughness "Ik" in a lower temperature range.If the amount is less than α01, the effect cannot be fully obtained, so add 0.01. On the other hand, if it exceeds 2.00%, it becomes economically disadvantageous, so 2.00% is set as the upper limit.

’I’i : Ti  は鋼中で微細な炭窒化物を析出
せしめ、実質的にはCやN言有量を低下させる働きをす
るとともに、フェライト粒を微細化する働きも有するの
で、特に低温靭性を向上させたい場合には有効である。
'I'i: Ti precipitates fine carbonitrides in steel, which essentially works to lower the C and N content, and also works to refine ferrite grains, so it is particularly effective at low temperatures. This is effective when it is desired to improve toughness.

101%未満ではその効果が充分発揮されないが、また
0.l 0%を超えると、Tiの炭窒化物が粒大化し、
その粒大析出物が起点となって割れが生じやすくなり、
低温靭性が劣化するので101〜α10%とする。
If it is less than 101%, the effect will not be fully exhibited, but if it is less than 0. l If it exceeds 0%, the grain size of Ti carbonitride increases,
These grain-sized precipitates become starting points and cracks are likely to occur.
Since low temperature toughness deteriorates, it is set to 101 to α10%.

AtCAtIr1鋼の脱酸効果を通じて低温靭性を向上
させるのに有効である。その効果を充分に発揮させるた
めにはα01チ以上の添加が必要であるが、一方10.
30チを超えると、鋼中に粗大なAtの酸化物が形成さ
れ、低温靭性が劣化するので、α10%を上限とする。
It is effective in improving the low-temperature toughness of AtCAtIr1 steel through its deoxidizing effect. In order to fully exhibit its effect, it is necessary to add α01 or more, but on the other hand, 10.
If it exceeds 30 degrees, coarse At oxides will be formed in the steel and the low-temperature toughness will deteriorate, so the upper limit is set at α10%.

Mo:MoUフェライトステンレス鋼の耐食性を著しく
向上させるので、要求される耐食性のレベルに応じて添
加することができる。
Mo: MoU significantly improves the corrosion resistance of ferritic stainless steel, so it can be added depending on the required level of corrosion resistance.

しかし、耐食性向上効果を発揮させるためにはα01%
以上の添加が必要であり、一方α50%を超えると経済
性が損われるので、(α50%を上限とする。
However, in order to exhibit the effect of improving corrosion resistance, α01%
On the other hand, if α exceeds 50%, economical efficiency will be impaired, so (α50% is the upper limit).

Cu : CuはMOと同様、フェライトステンレス鋼
の耐食性を向上させるのに有効であるので、要求される
耐食性のレベルに応じて添加することができる。上記の
効果を発揮させるためには(101チ以上の添加が必要
であり、一方(α50%を超えると、熱間圧延時に割れ
が生じやすぐなるので、α50%を上限とする。
Cu: Like MO, Cu is effective in improving the corrosion resistance of ferritic stainless steel, so it can be added depending on the required level of corrosion resistance. In order to exhibit the above effect, it is necessary to add 101 or more. On the other hand, if α exceeds 50%, cracks easily occur during hot rolling, so α50% is the upper limit.

次に実施例を示して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to Examples.

実施例 下記第1表に示す化学成分を有する鋼を真空溶解する。Example Steel having the chemical composition shown in Table 1 below is vacuum melted.

鋼塊重量は1トンで、鋼塊t−0.300CK7101
%&分塊EEaL1.a o J’ o’1i4)’r
h L次。しかる後鋼片t′1050℃に加熱し、25
■φ の棒鋼に熱間圧a後常温まで窒冷した。
The weight of the steel ingot is 1 ton, steel ingot t-0.300CK7101
% & bloom EEaL1. a o J'o'1i4)'r
h L order. After that, the steel billet t' was heated to 1050℃ and heated to 25
■ A φ steel bar was subjected to hot pressure a and then cooled with nitrogen to room temperature.

熱間圧延時の仕上温度は850℃であり、このようにし
て得られた25■φ棒鋼を用いて引張試験を行ない、1
2%耐力、引張強さ及び絞り値を測定した0さらに本発
明の主目的である低温靭性については、251111φ
棒鋼の中心部から、JI84号シャルピー試験片(10
X10X55■、2smVノツチ)を採取し、−140
℃から+100℃の範囲内で衝撃試験を行ない、吸収エ
ネルギーを測定した。エネルギー遷移温度(vTr E
 )は吸収エネルギー15にgf−mに対応する試験温
度として定義し、vTrEの値で低温靭性を評価した。
The finishing temperature during hot rolling was 850°C, and a tensile test was conducted using the 25 φ steel bar obtained in this way.
The 2% proof stress, tensile strength and area of area were measured.
A JI No. 84 Charpy test piece (10
X10X55■, 2smV notch) was collected and -140
An impact test was conducted in the range from ℃ to +100 ℃ to measure the absorbed energy. Energy transition temperature (vTr E
) was defined as the test temperature corresponding to absorbed energy 15 gf-m, and the low temperature toughness was evaluated by the value of vTrE.

下記第1表にこれらの結果を本発明鋼と比較鋼とを比較
して纒めて示す。本発明鋼1〜20はそのいずれもが一
80℃以下のエネルギー遷移温度を示しており、低温靭
性が極めて良好であるが一方、本発明の要件を満してい
ない比較鋼21S−57においては、そのエネルギー遷
移温度がいずれも一80℃よシも高温側となり、本発明
の目的を達していない。
Table 1 below summarizes these results by comparing the steels of the present invention and comparative steels. Inventive steels 1 to 20 all exhibit an energy transition temperature of 180°C or lower and have extremely good low-temperature toughness, whereas comparative steel 21S-57, which does not meet the requirements of the present invention, , the energy transition temperatures are all on the high side of -80°C, and the object of the present invention is not achieved.

添付図面に本発明鋼+11と従来鋼JIS −8U84
10L(37)のシャルピー曲線を示す。上記5U84
10Lのエネルギー遷移温度は+32℃であり常温以上
でおるのに対し、本発明銅剣は一120℃であり低温靭
性が極めて向上している。このような性能はフェライト
ステンレス鋼においては従来決して得られていなかった
ものである。
The attached drawing shows the invention steel +11 and conventional steel JIS-8U84.
The Charpy curve of 10L (37) is shown. Above 5U84
The energy transition temperature of 10L is +32°C, which is above room temperature, whereas the copper sword of the present invention has a temperature of -120°C, and has extremely improved low-temperature toughness. Such performance has never been achieved in ferritic stainless steel.

以上説明したように、本発明はフェライトステンレス鋼
の化学成分を規制することKより、従来には得られなか
ったような低温靭性を発揮するフェライトステンレス鋼
を実現させたものである。
As explained above, the present invention realizes a ferritic stainless steel that exhibits low-temperature toughness that has not been previously available by regulating the chemical components of the ferritic stainless steel.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明鋼と従来鋼とのシャルピー曲線の比較
例である。
The attached drawing is a comparative example of Charpy curves between the steel of the present invention and the conventional steel.

Claims (2)

【特許請求の範囲】[Claims] (1)重量で、C0.0100%以下、Si0.40%
以下、Mn0.50%以下、Nb0.01〜0.30%
、Cr11.0〜18.0%、N0.01205以下を
含み、残部Feおよび不可避的不純物から成ることを特
徴とする低温靭性にすぐれたフェライトステンレス鋼。
(1) By weight, C0.0100% or less, Si0.40%
Below, Mn 0.50% or less, Nb 0.01-0.30%
, 11.0 to 18.0% of Cr, and 0.01205% or less of N, with the balance consisting of Fe and unavoidable impurities.
(2)重量で、C0.0100%以下、Si0.40%
以下、Mn0.50%以下、Nb0.01〜0.30%
、Cr11.0〜18.0%、N0.0120%以下及
びNi0.01〜2.00%、Ti0.01〜0.10
%、Al0.01〜0.10%、Mo0.01〜0.5
0%、Cu0.01〜0.50%の1種あるいは2種以
上を含み、残部Feおよび不可避的不純物から成ること
を特徴とする低温靭性にすぐれたフェライトステンレス
鋼。
(2) By weight, C 0.0100% or less, Si 0.40%
Below, Mn 0.50% or less, Nb 0.01-0.30%
, Cr11.0-18.0%, N0.0120% or less, Ni0.01-2.00%, Ti0.01-0.10
%, Al0.01-0.10%, Mo0.01-0.5
A ferritic stainless steel having excellent low-temperature toughness, characterized in that it contains one or more of 0% Cu and 0.01 to 0.50% Cu, with the balance consisting of Fe and unavoidable impurities.
JP6789187A 1987-03-24 1987-03-24 Ferrite stainless steel having excellent low temperature toughness Pending JPS63235450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6789187A JPS63235450A (en) 1987-03-24 1987-03-24 Ferrite stainless steel having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6789187A JPS63235450A (en) 1987-03-24 1987-03-24 Ferrite stainless steel having excellent low temperature toughness

Publications (1)

Publication Number Publication Date
JPS63235450A true JPS63235450A (en) 1988-09-30

Family

ID=13357967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6789187A Pending JPS63235450A (en) 1987-03-24 1987-03-24 Ferrite stainless steel having excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPS63235450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115346A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
WO2013080518A1 (en) * 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
WO2019039774A1 (en) * 2017-08-25 2019-02-28 주식회사 포스코 Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115346A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JPH0534419B2 (en) * 1988-10-21 1993-05-24 Kawasaki Seitetsu Kk
WO2013080518A1 (en) * 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
JPWO2013080518A1 (en) * 2011-11-30 2015-04-27 Jfeスチール株式会社 Ferritic stainless steel
EP2787096A4 (en) * 2011-11-30 2015-07-15 Jfe Steel Corp Ferritic stainless steel
WO2019039774A1 (en) * 2017-08-25 2019-02-28 주식회사 포스코 Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same

Similar Documents

Publication Publication Date Title
US4812182A (en) Air-cooling low-carbon bainitic steel
US4331474A (en) Ferritic stainless steel having toughness and weldability
JPS61238941A (en) Untempered steel for hot forging
US4824492A (en) Method for producing a precipitation hardenable martensitic low alloy steel forging
US5032195A (en) FE-base shape memory alloy
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS61279656A (en) Non-heattreated steel for hot forging
JPS63235450A (en) Ferrite stainless steel having excellent low temperature toughness
JPH0140901B1 (en)
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPS6130653A (en) High strength spring steel
JPH09111396A (en) High tensile strength hot rolled steel plate and high tensile strength cold rolled steel sheet for automobile use, excellent in impact resistance, and their production
JPS61124524A (en) Manufacture of bar steel for steel reinforced concrete
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
JPS6357745A (en) High-strength stainless steel excellent in workability
JPS61166916A (en) Manufacture of cr-mo steel excelling in toughness and creep strength
JPH028322A (en) Manufacture of high-tensile steel plate excellent in ssc resistance
JP2944806B2 (en) Low yield ratio refractory H-section steel excellent in base metal toughness and method for producing the same
JPH02185951A (en) High strength stainless steel for subzero treatment excellent in workability
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JPH09143632A (en) Precipitation hardening stainless steel
JP3172354B2 (en) Thin steel plate with excellent impact resistance
JPS63219551A (en) Ferrite stainless steel having excellent low temperature toughness
CN115595507A (en) High-strength twisted steel and manufacturing method thereof