JPH09143632A - Precipitation hardening stainless steel - Google Patents

Precipitation hardening stainless steel

Info

Publication number
JPH09143632A
JPH09143632A JP30413695A JP30413695A JPH09143632A JP H09143632 A JPH09143632 A JP H09143632A JP 30413695 A JP30413695 A JP 30413695A JP 30413695 A JP30413695 A JP 30413695A JP H09143632 A JPH09143632 A JP H09143632A
Authority
JP
Japan
Prior art keywords
less
steel
precipitation hardening
stainless steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30413695A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimizu
哲也 清水
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30413695A priority Critical patent/JPH09143632A/en
Publication of JPH09143632A publication Critical patent/JPH09143632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a precipitation hardening stainless steel excellent in plastic workability and improved in strength in overaging state as well as in toughness and ductility in peak aging state. SOLUTION: This stainless steel has an alloy composition consisting of, by mass, <=0.015% C, 0.025-0.050% N, <=1.0% Si, <=1.5% Mn, <=0.040% P, <=0.030% S, 2.5-4.5% Cu, 3.0-5.5% Ni, 13.0-17.0% Cr, <=1.0% Mo, 0.15-0.45% Nb, and the balance Fe with inevitable impurity elements and satisfying the relation of [%Nb]×[%(C+N)-0.015]>=0.0035. Besides these elements, Ca, B, Mg, REM, Ti, and V can be incorporated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱間加工性および
冷間加工性に優れ、かつ強度の高い析出硬化型ステンレ
ス鋼に関する。
TECHNICAL FIELD The present invention relates to a precipitation hardening stainless steel which is excellent in hot workability and cold workability and has high strength.

【0002】[0002]

【従来の技術】JIS SUS630鋼は、耐食性に優
れた高強度鋼として舶用シャフト材、各種ファスナー材
等としてひろく用いられている。この鋼は通常、固溶化
熱処理後、析出硬化処理を行って使用される。すなわ
ち、高強度を要する用途には、固溶化熱処理後480℃
附近の温度で析出硬化処理(H900処理)を施してピ
ーク時効状態とし、HRC40以上の高硬度として使用
する。これに対して靭性を要する用途には、例えば、6
00℃附近の高い温度で析出硬化処理(H1150処
理)を施して過時効状態で用いる。
2. Description of the Related Art JIS SUS630 steel is widely used as a high-strength steel having excellent corrosion resistance as a marine shaft material, various fastener materials, and the like. This steel is usually used after a solution heat treatment followed by a precipitation hardening treatment. That is, for applications requiring high strength, 480 ° C after solution heat treatment
Precipitation hardening treatment (H900 treatment) is performed at a temperature close to the peak aging state, and a high hardness of HRC 40 or higher is used. On the other hand, for applications requiring toughness, for example, 6
Precipitation hardening treatment (H1150 treatment) is performed at a high temperature of around 00 ° C., and it is used in an overaged state.

【0003】ところで、この鋼は、固溶化熱処理後の硬
さがHRC35程度と高く、また、変形能も低いので切
削加工、冷間加工が困難であるという難点があった。こ
の問題を解決するため、C、Nの含有率を低減する方法
が提案されるに及び、固溶化熱処理後の硬さは低減され
加工性はかなり改善されるに至った。しかし、前記提案
の鋼のごとく、単にC、Nの含有率を低減するときは、
ピーク時効状態として高強度とすると著しく靭延性を低
下するうえ、H1150処理のように過時効状態とする
と強度が著しく低下してしまうという問題がある。
By the way, this steel has a problem that the hardness after solution heat treatment is as high as HRC35 and the deformability is low, so that cutting and cold working are difficult. In order to solve this problem, a method of reducing the C and N contents was proposed, and the hardness after solution heat treatment was reduced, and the workability was considerably improved. However, when simply reducing the C and N contents as in the above-mentioned steel,
When the peak aging state is set to high strength, the toughness and ductility is significantly reduced, and when the peak aging state is overaged as in the H1150 treatment, the strength is significantly reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑みてなされたもので、その目的とするところは、塑
性加工性に優れ、かつ、ピーク時効状態における靭延性
と過時効状態における強度を改善した析出硬化型ステン
レス鋼を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object thereof is to provide excellent plastic workability, and toughness and ductility in a peak aging state and in an overaging state. It is to provide a precipitation hardening stainless steel having improved strength.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の析出硬化型ステンレス鋼は、 (1)合金元素の含有率が質量%で、C :0.015
%以下、N :0.025〜0.050%、Si:1.
0%以下、Mn:1.5%以下、P :0.040%以
下、S :0.030%以下、Cu:2.5〜4.5
%、Ni:3.0〜5.5%、Cr:13.0〜17.
0%、Mo:1.0%以下、Nb:0.15〜0.45
%であり、残余Feおよび不可避的不純物元素からな
り、かつ、 [%Nb]×[%(C+N)−0.015]≧0.00
35 なる関係を満足することを特徴とする。 (2)前記(1)に加えて、質量%でCa:0.000
5〜0.0100%、B:0.0005〜0.0100
%、Mg:0.0005〜0.0100%およびRE
M:0.0005〜0.0100%のうち、いずれか一
種または二種以上を含有することを特徴とする。 (3)前記(1)に加えて、質量%でTi:0.01〜
0.30%およびV:0.01〜0.30%のうち、い
ずれか一種以上を含有することを特徴とする。 (4)前記(2)に加えて、質量%でTi0.01〜
0.30%およびV0.01〜0.30%のうち、いず
れか一種以上を含有することを特徴とする。
In order to achieve the above object, the precipitation hardening stainless steel of the present invention comprises: (1) The content of alloying elements is% by mass, and C: 0.015.
% Or less, N: 0.025 to 0.050%, Si: 1.
0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.030% or less, Cu: 2.5 to 4.5.
%, Ni: 3.0 to 5.5%, Cr: 13.0 to 17.
0%, Mo: 1.0% or less, Nb: 0.15 to 0.45
%, Consisting of residual Fe and unavoidable impurity elements, and [% Nb] × [% (C + N) −0.015] ≧ 0.00
35 is satisfied. (2) In addition to the above (1), in mass% Ca: 0.000
5 to 0.0100%, B: 0.0005 to 0.0100
%, Mg: 0.0005 to 0.0100% and RE
M: 0.0005 to 0.0100%, and is characterized by containing any one kind or two or more kinds. (3) In addition to the above (1), in mass% Ti: 0.01-
It is characterized by containing at least one of 0.30% and V: 0.01 to 0.30%. (4) In addition to the above (2), Ti 0.01-
It is characterized by containing at least one of 0.30% and V0.01 to 0.30%.

【0006】[0006]

【発明の実施の形態】以下、本発明の析出硬化型ステン
レス鋼における合金組成の限定理由について説明する。 C:0.015%以下 Cは、固溶化熱処理時の硬さ、変形能に大きく影響する
元素で、その含有率が低いほど硬さは低く、変形能は増
加する。本発明の鋼においては、C含有率は低いほど好
ましいが、製造コストを考慮して上限を0.015%と
する。好ましくは、C含有率は0.008%以下とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the alloy composition in the precipitation hardening stainless steel of the present invention will be described below. C: 0.015% or less C is an element that greatly affects the hardness and deformability during solution heat treatment, and the lower the content, the lower the hardness and the greater the deformability. In the steel of the present invention, the lower the C content, the more preferable, but the upper limit is set to 0.015% in consideration of the manufacturing cost. Preferably, the C content is 0.008% or less.

【0007】N:0.025〜0.050% Nは、鋼の固溶化熱処理時の硬さ、変形能に及ぼす影響
はCと同様の傾向を示すが、その影響の程度はCに比べ
て遥かに少ないので、ピーク時効時の靭延性および過時
効時の強度保持のために0.025%以上含有させる。
好ましくは0.030%以上とする。しかし、過剰にN
を含有すると固溶化熱処理状態の鋼の硬さを高め、ま
た、必要以上にγ相を安定として固溶化熱処理時に多量
の不安定γ相が残留するほか、過時効時に多量の逆変態
γ相を生じて強度の低下をきたすので、N含有率の上限
を0.050%とする。
N: 0.025 to 0.050% N shows the same tendency as that of C on hardness and deformability during solution heat treatment of steel, but the degree of the influence is higher than that of C. Since it is much less, 0.025% or more is contained for the toughness and ductility during peak aging and the strength retention during overaging.
Preferably it is 0.030% or more. However, N
In addition, it increases the hardness of the steel in the solution heat treatment state, and stabilizes the γ phase more than necessary to leave a large amount of unstable γ phase during solution heat treatment. Therefore, the upper limit of the N content is set to 0.050%.

【0008】Si:1.0%以下 Siは鋼の脱酸剤として添加する。しかし、含有量が過
大となると固溶化熱処理後の硬さが高くなるほか、δ−
フェライトの形成量が過大となり、鋼の熱間加工性を損
うので含有率の上限を1.0%とする。0.3%以下と
するのが好ましい。
Si: 1.0% or less Si is added as a deoxidizing agent for steel. However, when the content is excessive, the hardness after solution heat treatment increases, and δ-
Since the amount of ferrite formed becomes too large and the hot workability of steel is impaired, the upper limit of the content is set to 1.0%. It is preferably 0.3% or less.

【0009】Mn:1.5%以下 Mnは、鋼の脱酸剤として作用するほか、高価なNiの
代替元素としても有効なので添加する。しかし、Mn含
有率が過大となると鋼のMs 点を低下し、また、過時効
時の強度を低下するので含有率の上限を1.5%とす
る。 P:0.040%以下 Pは鋼の結晶粒界に偏析しやすく、熱間加工性を害す
る。また、冷間加工性をも害するので含有率の上限を
0.040%とする。
Mn: 1.5% or less Mn acts as a deoxidizing agent for steel and is effective as a substitute element for expensive Ni. However, if the Mn content is too high, the Ms point of the steel is lowered and the strength during overaging is lowered, so the upper limit of the content is made 1.5%. P: 0.040% or less P tends to segregate at the crystal grain boundaries of steel and impairs hot workability. Further, since the cold workability is also impaired, the upper limit of the content rate is 0.040%.

【0010】S:0.030%以下 Sは、耐食性を著しく損い、また冷間加工性をも害する
ので含有率を低くすることが必要である。許容限を0.
030%とするが、好ましくは含有率を0.010%以
下とする。 Cu:2.5〜4.5% Cuは、時効加熱時にε相を形成して鋼を硬化するため
に添加する。前記効果を発揮するために2.5%の含有
を必要とするが、過大に含有すれば、鋼の熱間加工性を
損うので、含有率の上限を4.5%とする。
S: 0.030% or less Since S remarkably impairs corrosion resistance and also impairs cold workability, it is necessary to reduce the content rate. The allowable limit is 0.
Although it is 030%, the content is preferably 0.010% or less. Cu: 2.5 to 4.5% Cu is added to form the ε phase during aging heating and harden the steel. 2.5% is required to exert the above effect, but if contained excessively, the hot workability of steel is impaired, so the upper limit of the content is set to 4.5%.

【0011】Ni:3.0〜5.5% Niは、強力なオーステナイト形成元素で、δ−フェラ
イトの生成を抑制し、鋼の耐食性を向上するので3.0
%以上を含有させる。しかし、過大に含有すれば、過時
効状態でのγ相生成量を高め、鋼のMs 点を低下して強
度を損うので含有率の上限を5.5%とする。
Ni: 3.0 to 5.5% Ni is a strong austenite-forming element and suppresses the formation of δ-ferrite and improves the corrosion resistance of steel.
% Or more. However, if it is contained excessively, the amount of γ phase produced in the overaged state is increased, the Ms point of the steel is lowered, and the strength is impaired. Therefore, the upper limit of the content is set to 5.5%.

【0012】Cr:13.0〜17.0% Crは耐食性を確保するために13.0%以上添加す
る。しかし過大に含有すれば、δ−フェライトを多量に
生成し、熱間加工性を害するとともに、鋼の強度を著し
く低下するので含有率の上限を17.0%とする。 Mo:1.0%以下 Moは耐食性を向上するために添加してもよい。しか
し、フェライト安定化元素なので多量に含有すると鋼の
熱間加工性を損う。そのため、Moを添加する場合は、
含有率の上限を1.0%とする。
Cr: 13.0 to 17.0% Cr is added in an amount of 13.0% or more in order to ensure corrosion resistance. However, if it is contained excessively, a large amount of δ-ferrite is generated, which impairs the hot workability and significantly reduces the strength of the steel, so the upper limit of the content is set to 17.0%. Mo: 1.0% or less Mo may be added to improve the corrosion resistance. However, since it is a ferrite stabilizing element, if it is contained in a large amount, the hot workability of steel is impaired. Therefore, when adding Mo,
The upper limit of the content rate is 1.0%.

【0013】Nb:0.15〜0.45% Nbは炭窒化物を形成して鋼の結晶粒を微細化し、固溶
化熱処理後の鋼の硬さを低め、析出硬化処理後の靭延
性、特にピーク時効処理後の靭延性を高めるために添加
する。前記効果を得るためには、0.15%以上のNb
含有率が必要である。しかしNbを多量に含有するとδ
−フェライト量を増し鋼の熱間加工性を損うので含有率
の上限を0.45%とする。
Nb: 0.15 to 0.45% Nb forms carbonitrides to refine the crystal grains of the steel, lowers the hardness of the steel after solution heat treatment, and reduces the toughness and ductility after precipitation hardening treatment. In particular, it is added to improve the toughness and ductility after the peak aging treatment. In order to obtain the above effect, 0.15% or more of Nb
Content rate is required. However, if a large amount of Nb is included, δ
-The upper limit of the content rate is 0.45% because the ferrite content is increased and the hot workability of steel is impaired.

【0014】[%Nb]×[%(C+N)−0.01
5]≧0.0035 C、N、Nbの含有量を百分率で表示したときの数値を
それぞれ%C、%N、%Nbとして、これらの数値の間
に上記の関係を満足する必要がある。これによって鋼の
結晶粒が微細化され、靭延性が向上する。 Ca、B、MgおよびREM これらの元素はいずれも鋼の熱間加工性を向上するため
に添加する。その効果を現すためには、それぞれ質量%
で0.0005%以上の含有率が必要である。しかし、
過大に含有すると非金属介在物となって鋼を汚染し、耐
食性を損う等の不都合を生じるので含有率の上限をそれ
ぞれ0.0100%とする。なお、本明細書中において
「REM」は希土類金属を示す。
[% Nb] × [% (C + N) -0.01
5] ≧ 0.0035 It is necessary to set the numerical values when the contents of C, N, and Nb are expressed as percentages to% C,% N, and% Nb, respectively, and to satisfy the above relationship between these numerical values. This refines the crystal grains of the steel and improves the toughness and ductility. Ca, B, Mg and REM All of these elements are added to improve the hot workability of steel. In order to show the effect, mass% respectively
Therefore, a content of 0.0005% or more is required. But,
If it is contained excessively, it becomes a non-metallic inclusion to contaminate the steel, resulting in inconvenience such as deterioration of corrosion resistance. Therefore, the upper limit of the content is 0.0100%. In addition, in this specification, "REM" shows a rare earth metal.

【0015】Ti:0.01〜0.30%、V :0.
01〜0.30% これらの元素はいずれも鋼の結晶粒を微細化し、靭性の
向上、固溶化熱処理後の鋼の硬さ低下に効果があるので
添加する。Ti、Vそれぞれ含有率0.015以上で前
記の効果を現す。しかし、いずれも強力なフェライト生
成元素であって、過大に含有率すると鋼の熱間加工性を
害するので含有率の上限をそれぞれ0.30%とする。
Ti: 0.01 to 0.30%, V: 0.
01 to 0.30% All of these elements are effective in refining the crystal grains of the steel, improving the toughness, and reducing the hardness of the steel after solution heat treatment. The above effects are exhibited when the content of each of Ti and V is 0.015 or more. However, all of them are strong ferrite-forming elements, and if their contents are excessive, they impair the hot workability of steel, so the upper limits of the contents are made 0.30%.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。真
空誘導炉によって表1に示す化学成分を含む鋼を溶製
し、それぞれ50kgの鋼塊とした。この鋼塊を熱間鍛
造によって直径20mmの丸棒に加工した。前記丸棒に
1010〜1060℃×0.5h加熱急冷の固溶化熱処
理(ST)を行った。次いで、一部のものには480℃
×4hr空冷の析出硬化処理(H900)を、残部は6
20℃×4hr空冷の析出硬化処理(H1150)を行
った。
Embodiments of the present invention will be described below. Steel containing the chemical components shown in Table 1 was melted in a vacuum induction furnace to obtain steel ingots of 50 kg each. This steel ingot was processed into a round bar having a diameter of 20 mm by hot forging. The solution heat treatment (ST) of 1010 to 1060 ° C. × 0.5 h heating and quenching was performed on the round bar. Then, for some, 480 ° C
X4 hr air-cooled precipitation hardening treatment (H900), balance 6
A precipitation hardening treatment (H1150) of 20 ° C. × 4 hr air cooling was performed.

【0017】[0017]

【表1】 [Table 1]

【0018】熱間鍛造における疵の発生状況を観察して
熱間加工性を調べた。熱間加工性は○:疵発生なし、
△:疵発生するが直径20mm丸棒に加工可能、×:疵
発生大で直径20mm丸棒に加工不可に分けて評価し
た。固溶化熱処理材について硬さ、圧縮変形抵抗および
限界圧縮率を測定した。硬さは丸棒横断面についてロッ
クウエル硬度計を用いて行った。また、圧縮変形抵抗
は、圧縮歪ε=1のときの応力とした。限界圧縮率は、
前記丸棒から切出した直径15mm×長さ22.5mm
の試験片について行い、割れが発生する限界圧縮歪率を
もって評価した。H900およびH1150析出硬化処
理材について引張試験を行って引張強さおよび伸びを測
定した。これらの結果を表2に示す。
The hot workability was investigated by observing the occurrence of defects in hot forging. Hot workability is ◯: No flaw is generated,
Δ: A flaw is generated but can be processed into a round bar with a diameter of 20 mm. ×: A flaw is large and a round bar with a diameter of 20 mm is not processed. Hardness, compressive deformation resistance and critical compressibility of the solution heat treated material were measured. The hardness was measured using a Rockwell hardness tester on the cross section of the round bar. The compressive deformation resistance was the stress when the compressive strain ε = 1. The limit compression rate is
Diameter 15 mm x length 22.5 mm cut out from the round bar
The test piece of No. 1 was evaluated, and the critical compressive strain rate at which cracking occurred was evaluated. Tensile strength and elongation were measured by performing a tensile test on the H900 and H1150 precipitation hardening treated materials. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表2によれば、実施例は、SUS630相
当鋼(比較例1)に比べて熱間加工性がよく、固溶化熱
処理後の硬さおよび圧縮強度は低く、限界圧縮率は大き
いことから冷間加工性にも優れていることが判る。H9
00析出硬化処理材では、比較例2〜5および8におい
ては伸びがSUS630相当鋼より著しく低いか、また
は伸びが大きいもの(比較例4)では引張強さが低い結
果となっているのに対して、実施例においてはいずれも
SUS630相当鋼と同等の引張強さと伸びとを示して
いる。
According to Table 2, the examples have better hot workability than the SUS630 equivalent steel (Comparative Example 1), the hardness and the compressive strength after solution heat treatment are low, and the critical compressibility is large. From this, it can be seen that the cold workability is also excellent. H9
In the case of the 00 precipitation hardening treated material, in Comparative Examples 2 to 5 and 8, the elongation is remarkably lower than that of SUS630 equivalent steel, or in the case of a large elongation (Comparative Example 4), the tensile strength is low. In each of the examples, the same tensile strength and elongation as the SUS630 equivalent steel are shown.

【0021】H1150析出硬化処理材では、比較例2
〜5および8の引張強さがSUS630相当鋼より著し
く低下しているのに対して、実施例においてはいずれも
SUS630相当鋼と同等の引張強さと伸びとを示して
いる。以上のように、本発明によれば、熱間加工性に優
れ、固溶化熱処理後の冷間加工性もよく、かつ、ピーク
時効状態における靭延性と過時効状態における強度を改
善した析出硬化型ステンレス鋼を提供することができ
る。
Comparative Example 2 for the H1150 precipitation hardening treated material
While the tensile strengths of ~ 5 and 8 are significantly lower than those of the SUS630 equivalent steel, the examples all show the same tensile strength and elongation as the SUS630 equivalent steel. As described above, according to the present invention, it is excellent in hot workability, also has good cold workability after solution heat treatment, and is precipitation hardened with improved toughness and ductility in the peak aging state and strength in the overaging state. Stainless steel can be provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合金元素の含有率が質量%で、 C :0.015%以下、 N :0.025〜0.050%、 Si:1.0%以下、 Mn:1.5%以下、 P :0.040%以下、 S :0.030%以下、 Cu:2.5〜4.5%、 Ni:3.0〜5.5%、 Cr:13.0〜17.0%、 Mo:1.0%以下、 Nb:0.15〜0.45% であり、残余Feおよび不可避的不純物元素からなり、
かつ、 [%Nb]×[%(C+N)−0.015]≧0.00
35 なる関係を満足することを特徴とする析出硬化型ステン
レス鋼。
1. The content of alloying elements is% by mass, C: 0.015% or less, N: 0.025 to 0.050%, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.030% or less, Cu: 2.5 to 4.5%, Ni: 3.0 to 5.5%, Cr: 13.0 to 17.0%, Mo : 1.0% or less, Nb: 0.15 to 0.45%, consisting of residual Fe and unavoidable impurity elements,
And, [% Nb] × [% (C + N) −0.015] ≧ 0.00
35. A precipitation hardening stainless steel characterized by satisfying the following relationship.
【請求項2】 合金元素の含有率が質量%で、 C :0.015%以下、 N :0.025〜0.050%、 Si:1.0%以下、 Mn:1.5%以下、 P :0.040%以下、 S :0.030%以下、 Cu:2.5〜4.5%、 Ni:3.0〜5.5%、 Cr:13.0〜17.0%、 Mo:1.0%以下、 Nb:0.15〜0.45% であり、さらに、 Ca:0.0005〜0.0100%、 B :0.0005〜0.0100%、 Mg:0.0005〜0.0100%、 REM:0.0005〜0.0100% のうちいずれか一種または二種以上を含有し、残余Fe
および不可避的不純物元素からなり、かつ、 [%Nb]×[%(C+N)−0.015]≧0.00
35 なる関係を満足することを特徴とする析出硬化型ステン
レス鋼。
2. The content of alloying elements is% by mass, C: 0.015% or less, N: 0.025 to 0.050%, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.030% or less, Cu: 2.5 to 4.5%, Ni: 3.0 to 5.5%, Cr: 13.0 to 17.0%, Mo : 1.0% or less, Nb: 0.15 to 0.45%, further Ca: 0.0005 to 0.0100%, B: 0.0005 to 0.0100%, Mg: 0.00055 0.0100%, REM: 0.0005 to 0.0100%, and contains any one kind or two or more kinds.
And an inevitable impurity element, and [% Nb] × [% (C + N) −0.015] ≧ 0.00
35. A precipitation hardening stainless steel characterized by satisfying the following relationship.
【請求項3】 合金元素の含有率が質量%で、 C :0.015%以下、 N :0.025〜0.050%、 Si:1.0%以下、 Mn:1.5%以下、 P :0.040%以下、 S :0.030%以下、 Cu:2.5〜4.5%、 Ni:3.0〜5.5%、 Cr:13.0〜17.0%、 Mo:1.0%以下、 Nb:0.15〜0.45% であり、さらに、 Ti:0.01〜0.30%、 V :0.01〜0.30% のうちいずれか一種以上を含有し、残余Feおよび不可
避的不純物元素からなり、かつ、 [%Nb]×[%(C+N)−0.015]≧0.00
35 なる関係を満足することを特徴とする析出硬化型ステン
レス鋼。
3. The content of alloying elements is% by mass, C: 0.015% or less, N: 0.025 to 0.050%, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.030% or less, Cu: 2.5 to 4.5%, Ni: 3.0 to 5.5%, Cr: 13.0 to 17.0%, Mo : 1.0% or less, Nb: 0.15 to 0.45%, and Ti: 0.01 to 0.30%, V: 0.01 to 0.30%. Contained, consisting of residual Fe and unavoidable impurity elements, and [% Nb] × [% (C + N) −0.015] ≧ 0.00
35. A precipitation hardening stainless steel characterized by satisfying the following relationship.
【請求項4】 合金元素の含有率が質量%で、 C :0.015%以下、 N :0.025〜0.050%、 Si:1.0%以下、 Mn:1.5%以下、 P :0.040%以下、 S :0.030%以下、 Cu:2.5〜4.5%、 Ni:3.0〜5.5%、 Cr:13.0〜17.0%、 Mo:1.0%以下、 Nb:0.15〜0.45% であり、さらに、 Ca:0.0005〜0.0100%、 B :0.0005〜0.0100%、 Mg:0.0005〜0.0100%、 REM:0.0005〜0.0100% のうちいずれか一種または二種以上、および、 Ti:0.01〜0.30%、 V :0.01〜0.30% のうちいずれか一種以上を含有し、残余Feおよび不可
避的不純物元素からなり、かつ、 [%Nb]×[%(C+N)−0.015]≧0.00
35 なる関係を満足することを特徴とする析出硬化型ステン
レス鋼。
4. The alloying element content is% by mass, C: 0.015% or less, N: 0.025 to 0.050%, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.030% or less, Cu: 2.5 to 4.5%, Ni: 3.0 to 5.5%, Cr: 13.0 to 17.0%, Mo : 1.0% or less, Nb: 0.15 to 0.45%, further Ca: 0.0005 to 0.0100%, B: 0.0005 to 0.0100%, Mg: 0.00055 0.0100%, REM: 0.0005 to 0.0100%, any one or more of them, and Ti: 0.01 to 0.30%, V: 0.01 to 0.30% It contains at least one of these, consists of residual Fe and unavoidable impurity elements, and [% Nb] × [% ( + N) -0.015] ≧ 0.00
35. A precipitation hardening stainless steel characterized by satisfying the following relationship.
JP30413695A 1995-11-22 1995-11-22 Precipitation hardening stainless steel Pending JPH09143632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30413695A JPH09143632A (en) 1995-11-22 1995-11-22 Precipitation hardening stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30413695A JPH09143632A (en) 1995-11-22 1995-11-22 Precipitation hardening stainless steel

Publications (1)

Publication Number Publication Date
JPH09143632A true JPH09143632A (en) 1997-06-03

Family

ID=17929482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30413695A Pending JPH09143632A (en) 1995-11-22 1995-11-22 Precipitation hardening stainless steel

Country Status (1)

Country Link
JP (1) JPH09143632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363645A (en) * 2001-06-12 2002-12-18 Nippon Koshuha Steel Co Ltd Method for producing martensitic precipitation hardening stainless steel
JP2012002383A (en) * 2010-06-14 2012-01-05 Hoshizaki Electric Co Ltd Auger for ice maker
CN109957707A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 A kind of 1000MPa grades of fastener weather-proof the cold heading steel and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363645A (en) * 2001-06-12 2002-12-18 Nippon Koshuha Steel Co Ltd Method for producing martensitic precipitation hardening stainless steel
JP2012002383A (en) * 2010-06-14 2012-01-05 Hoshizaki Electric Co Ltd Auger for ice maker
CN109957707A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 A kind of 1000MPa grades of fastener weather-proof the cold heading steel and its production method

Similar Documents

Publication Publication Date Title
JP2007146284A (en) High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP3587348B2 (en) Machine structural steel with excellent turning workability
JPH08269632A (en) High strength and high corrosion resistant nitrogen-containing austenitic stainless steel
JP2000328198A (en) Austenitic stainless steel excellent in hot workability
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH09143632A (en) Precipitation hardening stainless steel
JPH07278672A (en) Manufacture of high strength bolt excellent in delayed crack resistance
JPH05171356A (en) High strength bolt steel
JPH0468374B2 (en)
JP3446394B2 (en) Precipitation hardening stainless steel
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JP2001073080A (en) High tensile strength steel excellent in delayed fracture characteristic and its production
JPH09291344A (en) Low hardness martensitic stainless steel
JP2000026937A (en) High strength pc steel bar and its production
JP3221309B2 (en) Steel for machine structure and method of manufacturing the same
JP3387235B2 (en) Precipitation hardening stainless steel
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JP2953303B2 (en) Martensite stainless steel
JP2670937B2 (en) Manufacturing method of high strength bolt
JPH09202918A (en) Method for working nitrogen-containing austenitic stainless steel
JP2954216B2 (en) Steel for high strength parts
JP3088626B2 (en) Non-heat treated steel for nitriding
JPH07103446B2 (en) Tension material for oil ring and manufacturing method thereof
JP3738534B2 (en) Age-hardening steel bar with excellent cold forgeability

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A02