JPS63234575A - Formation of pattern of superconducting circuit - Google Patents

Formation of pattern of superconducting circuit

Info

Publication number
JPS63234575A
JPS63234575A JP62067789A JP6778987A JPS63234575A JP S63234575 A JPS63234575 A JP S63234575A JP 62067789 A JP62067789 A JP 62067789A JP 6778987 A JP6778987 A JP 6778987A JP S63234575 A JPS63234575 A JP S63234575A
Authority
JP
Japan
Prior art keywords
film
layer
pattern
wiring
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067789A
Other languages
Japanese (ja)
Inventor
Nobuo Miyamoto
信雄 宮本
Yoshinobu Taruya
良信 樽谷
Koji Yamada
宏治 山田
Ushio Kawabe
川辺 潮
Mikio Hirano
平野 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62067789A priority Critical patent/JPS63234575A/en
Publication of JPS63234575A publication Critical patent/JPS63234575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49888Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing superconducting material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0156Manufacture or treatment of devices comprising Nb or an alloy of Nb with one or more of the elements of group IVB, e.g. titanium, zirconium or hafnium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form flattened two layer wirings easily by forming a trench for a first layer pattern to the surface of a substrate, shaping a first layer film and a second layer film onto the substrate, flattening the surface of the second layer film, etching the second layer film and the first layer film up to the surface of the substrate and leaving the first layer film into the trench. CONSTITUTION:A first layer wiring film 4 and a second layer wiring film 5 are formed continuously onto a substrate 1 to which a trench pattern 3 for a first layer wiring is shaped previously, a photo-resist 6 is applied, and the photo-resist 6 and the protruding section of the wiring film 5 are etched through a dry type etching method to flatten the surface. A second layer wiring pattern is formed through a photo-etching method, and a second layer wiring 9 is shaped through the dry type etching of the wiring film 5 while the first layer wiring film 4 is left into the trench 3 to form a first layer wiring 8. Accordingly, the flattened two layer wirings can easily be formed, electrical adhesive properties between the layers are improved, and the lowering of junction currents can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導回路のパターン形成方法に係り、特に超
電導集積回路の特性向上に好適な超電導回路のパターン
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a pattern of a superconducting circuit, and particularly to a method of forming a pattern of a superconducting circuit suitable for improving the characteristics of a superconducting integrated circuit.

〔従来の技術〕[Conventional technology]

従来、超電導回路の多層配線パターンの平坦化方法は、
特公昭58−6306号に代表されるように、第1層膜
パターンとパターン間絶縁膜を形成したのち、スパッタ
エツチング等の乾式エツチング法により表面を平坦化し
、層間絶縁膜の形成、第1層、第2層膜合用開口部の形
成、第2層パターンの形成を順次行なう方法である。
Conventionally, the method for flattening multilayer wiring patterns of superconducting circuits is as follows:
As typified by Japanese Patent Publication No. 58-6306, after forming a first layer film pattern and an inter-pattern insulating film, the surface is flattened by a dry etching method such as sputter etching, and an interlayer insulating film is formed. , the formation of the opening for second layer film formation, and the formation of the second layer pattern are performed in this order.

また、超電導回路用抵抗素子製造方法は、最近、特願昭
60−108288号で提案されているように、基板」
二にW、WN等の抵抗膜を直流マグネトロンスパッタ法
あるいは電子線蒸着法で形成したのち、抵抗素子用フォ
トレジストパターンを形成し、プラズマエツチング法あ
るいはイオンミリング法により抵抗膜をエツチングし、
さらにSiO等の保護IN3縁膜、Nb等の電極配線膜
を形成して、抵抗素子を形成する方法であった。
In addition, as recently proposed in Japanese Patent Application No. 60-108288, a method for manufacturing a resistive element for a superconducting circuit has been developed using a substrate.
Second, a resistive film such as W or WN is formed by direct current magnetron sputtering or electron beam evaporation, a photoresist pattern for a resistive element is formed, and the resistive film is etched by plasma etching or ion milling.
Furthermore, a protective IN3 film made of SiO or the like and an electrode wiring film made of Nb or the like were formed to form a resistance element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の多層パターンの平坦化技術は、1M毎に配線
を平坦化していく方法であり、第1FrJ膜を形成した
のち膜表面を大気中などに晒すため、該表面が変質し、
第]−1第2層間の電気的接合特性が悪くなるという問
題があった。これは超電導集積回路において特に顕著な
問題となる。Pb。
The above-mentioned conventional multilayer pattern planarization technology is a method of planarizing the wiring every 1M, and after forming the first FrJ film, the film surface is exposed to the atmosphere, so the surface changes in quality.
]-1 There was a problem in that the electrical bonding characteristics between the second layer deteriorated. This is a particularly serious problem in superconducting integrated circuits. Pb.

Nb等の超電導配線膜を大気中に晒すと、表面に自然酸
化膜が形成され、これがトンネル障壁層となって第1−
1第2層間に流す超電導接合電流の低下を引き起こすと
いう問題があった。
When a superconducting wiring film such as Nb is exposed to the atmosphere, a natural oxide film is formed on the surface, and this becomes a tunnel barrier layer.
There is a problem in that the superconducting junction current flowing between the first and second layers decreases.

また、」二記従来の抵抗素子の製造方法では、抵抗膜形
成後に抵抗素子パターンを加工するため、抵抗膜を大気
中に放置し、またフカl−レジスト膜等を表面に触れさ
ざるを得なかった。このため抵抗膜表面に酸化膜が形成
され、抵抗値が変化するという問題があった。またこの
酸化膜のため、フォトレジストと抵抗膜との接着力が低
下してフォトレジスト膜が剥離し、抵抗素子パターンの
形成が困難になるという問題点があった。これらの問題
は、表面に酸化膜が形成されやすいMo、Ta。
In addition, in the conventional manufacturing method for resistive elements described in Section 2, the resistive element pattern is processed after the resistive film is formed, so the resistive film is left in the atmosphere, and the surface must be touched with a scaly resist film, etc. There wasn't. Therefore, there was a problem in that an oxide film was formed on the surface of the resistive film, resulting in a change in resistance value. Further, due to this oxide film, the adhesion between the photoresist and the resistive film decreases, causing the photoresist film to peel off, making it difficult to form a resistive element pattern. These problems are caused by Mo and Ta, which tend to form oxide films on their surfaces.

MoN抵抗膜において顕著に発生した。This occurred significantly in the MoN resistive film.

第1の発明の目的は、配線間の電気接合特性を良好にし
得るかつ多層線を平坦化できる超電導集積回路のパター
ンの形成方法を供することにある。
A first object of the invention is to provide a method for forming a pattern for a superconducting integrated circuit that can improve the electrical connection characteristics between wirings and flatten multilayer wiring.

第2の発明の目的は、抵抗膜表面の酸化を防止して抵抗
素子パターンの形成を容易にし、かつ抵抗値が変化しな
い超電導回路用抵抗素子を有した超電導回路のパターン
形成方法を提供することにある。
A second object of the invention is to provide a method for forming a pattern of a superconducting circuit having a resistive element for a superconducting circuit that prevents oxidation of the surface of a resistive film, facilitates the formation of a resistive element pattern, and does not change the resistance value. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、第1の発明では予め第1層配
線用の溝パターンを形成した基板上に、第1層配線膜と
第2層配線膜を連続して形成し、フォトレジストを塗布
したのち乾式エツチング法により、フォトレジストおよ
び該配線膜の凸部をエツチングして表面を平坦化する。
In order to achieve the above object, in the first invention, a first layer wiring film and a second layer wiring film are successively formed on a substrate on which a groove pattern for the first layer wiring is formed in advance, and a photoresist is applied. Thereafter, the protrusions of the photoresist and the wiring film are etched by dry etching to flatten the surface.

次いでフォトエツチング法により第2層配線パターンを
形成して、該配線膜を乾式エツチングすることにより、
第2層配線を形成すると共に、第1層配線膜を該溝内に
残して第1層配線を形成する。
Next, a second layer wiring pattern is formed by a photoetching method, and the wiring film is dry etched.
At the same time as forming a second layer wiring, a first layer wiring is formed by leaving the first layer wiring film in the trench.

また、上記目的を達成するため、第2の発明ではまず基
板」二にM o N等の抵抗膜を形成し、さらにSiと
Tj、OxあるいはSjOとTidx等の2層膜からな
る保護絶縁膜を連続して形成する。
In addition, in order to achieve the above object, in the second invention, a resistive film such as M o N is first formed on the substrate, and then a protective insulating film consisting of a two-layer film such as Si and Tj, Ox or SjO and Tidx is formed. are formed continuously.

こののち抵抗素子用フォトレジストパターンを形成し、
抵抗膜の加工、電極配線膜、保M膜の形成を行って抵抗
素子を形成する。
After this, a photoresist pattern for the resistor element is formed,
A resistive element is formed by processing a resistive film, forming an electrode wiring film, and an M retaining film.

〔作用〕[Effect]

上記のごとく第1の発明では、予め基板上に第1層配線
用の溝パターンを形成し、かつ第1層配線膜と第2層配
線膜を一括して形成加工するため、平坦化された2層配
線が容易に形成できる。また第1層膜と第2層膜を連続
して形成するため、層間の電気的接合性の改善、特に従
来第1層膜表面に形成された酸化物等を極めて低減でき
、接合電流の低下を防止できる。
As described above, in the first invention, the groove pattern for the first layer wiring is formed on the substrate in advance, and the first layer wiring film and the second layer wiring film are formed and processed at once, so that the flattened Two-layer wiring can be easily formed. In addition, since the first layer film and the second layer film are formed continuously, it is possible to improve the electrical connectivity between the layers, and in particular to significantly reduce the oxides etc. that are conventionally formed on the surface of the first layer film, reducing the junction current. can be prevented.

また、第2の発明では、抵抗膜とその保護絶縁膜を連続
して形成するため、大気中放置あるいは以後のフォトエ
ツチング等の工程における抵抗膜表面の酸化、すなわち
抵抗値の変化を防止できる。
Furthermore, in the second invention, since the resistive film and its protective insulating film are formed continuously, oxidation of the resistive film surface, that is, change in resistance value, can be prevented during exposure to the atmosphere or subsequent steps such as photo etching.

また抵抗膜上ではなく保護絶縁膜上にフォトレジストパ
ターンを形成するため、抵抗膜表面の酸化によって生じ
ていたフォトレジストパターンの形成が困難という問題
も解消できる。
Furthermore, since the photoresist pattern is formed on the protective insulating film rather than on the resistive film, the problem of difficulty in forming the photoresist pattern caused by oxidation of the resistive film surface can be solved.

以上のように、多層に積層される配線膜又は抵抗膜表面
の変質を防止できるので、超電導回路の電気特性を良好
に保つことができる。
As described above, since deterioration of the surface of the wiring film or the resistive film stacked in multiple layers can be prevented, the electrical characteristics of the superconducting circuit can be maintained in good condition.

〔実施例〕〔Example〕

まず、第1の発明の一実施例を説明する。 First, an embodiment of the first invention will be described.

〔実施例1〕 本実施例は超電導集積回路の2層配線に適用した例で、
第1図に示す製作工程に従って説明する。
[Example 1] This example is an example applied to two-layer wiring of a superconducting integrated circuit.
The explanation will be made according to the manufacturing process shown in FIG.

(1)Si基板1上に熱酸化法により厚さ約600nm
の5i02膜2を形成し、該表面にフォトエツチング法
および乾式エツチング法により、幅5μm、深さ110
0nの第1層パターン溝3を形成した(第1図(a))
(1) Approximately 600 nm thick on Si substrate 1 by thermal oxidation method.
A 5i02 film 2 of
A first layer pattern groove 3 of 0n was formed (Fig. 1(a)).
.

(2)該基板上に第1層配線用Nb膜4を1105nの
厚さに、続いて第2層配線用Nb膜5を200nmの厚
さに、それぞれ直流マグネトロンスパッタ法により連続
して形成した。そしてこの上にフォトレジスト(5hi
pley社製、商品名AZ1470)6を400nmの
厚さにスピンナーにより塗布した(第1図(b))。
(2) On the substrate, a first-layer wiring Nb film 4 with a thickness of 1105 nm and a second-layer wiring Nb film 5 with a thickness of 200 nm were successively formed by DC magnetron sputtering. . And on top of this, photoresist (5hi
AZ1470 (trade name) 6 manufactured by Play Inc. was applied to a thickness of 400 nm using a spinner (FIG. 1(b)).

(3)次いで該フォトレジスト膜および該Nb膜5をフ
ォトレジスト膜表面から505〜510nmの深さまで
、乾式エツチング法によりエツチングした(第1図(C
))。このときエツチング装置として高周波プラズマエ
ツチング装置(日型アネルバ社製、DEM−451型)
(3) Next, the photoresist film and the Nb film 5 were etched by a dry etching method to a depth of 505 to 510 nm from the surface of the photoresist film (Fig. 1(C)
)). At this time, as an etching device, a high frequency plasma etching device (manufactured by Nikki Anelva Co., Ltd., model DEM-451) was used.
.

を用いた。was used.

代表的なエツチング条件は、導入ガスとしてCF4を用
い、導入量は100cm3/min、ガス分圧は13 
、3 m P a、印加電力は100Wである。この条
件はフォトレジスト膜とNb膜のエツチング速度が約3
2nm/minと、はぼ等しくなるため条件で、第1図
(c)に示すように、エツチング後のNb膜表面は平坦
になった。
Typical etching conditions are: CF4 is used as the introduced gas, the amount introduced is 100 cm3/min, and the gas partial pressure is 13
, 3 mPa, and the applied power was 100W. Under these conditions, the etching rate of the photoresist film and Nb film is approximately 3
Under the condition that the etching rate was approximately equal to 2 nm/min, the surface of the Nb film after etching became flat as shown in FIG. 1(c).

(4)続いて、該基板上にフォトエツチング法に=7− より、フォトレジスト(Az1470)で線幅5μmの
第2層配線用フォトレジストパターン7(マスクパター
ン)を形成した。そして該Nb膜4.5をマスクパター
ンをマスクとして基板表面までエツチングして、第1層
パターン溝3内に厚さ1100nのNb第1層配線8を
残すと同時に該Nb膜4,5よりなる第2層配線9を形
成した(第1図(d))。エツチング装置は前述のもの
を用い、26.6mPaの CF4ガス雰囲気中で、1
00Wの高周波電力を印加した。
(4) Subsequently, a second layer wiring photoresist pattern 7 (mask pattern) having a line width of 5 μm was formed using photoresist (Az1470) on the substrate by photoetching. Then, the Nb film 4.5 is etched to the substrate surface using the mask pattern to leave the Nb first layer wiring 8 with a thickness of 1100 nm in the first layer pattern groove 3, and at the same time, the Nb film 4.5 is made of the Nb films 4 and 5. A second layer wiring 9 was formed (FIG. 1(d)). The etching equipment described above was used, and 1
A high frequency power of 00 W was applied.

(5)最後に残ったフォトレジスト膜7をアセトンで溶
解除去して、2層配線パターンを完成した(第1図(e
))。
(5) The last remaining photoresist film 7 was dissolved and removed with acetone to complete a two-layer wiring pattern (Fig. 1(e)
)).

次に本発明により作製した配線間の超電導接合電流を4
.2°にの液体ヘリウム中で調べた結果、5μm口当り
30mA以上の接合電流が得られた。
Next, the superconducting junction current between the interconnects fabricated according to the present invention is 4
.. As a result of investigation in liquid helium at 2°, a junction current of 30 mA or more per 5 μm mouth was obtained.

一方1層毎に作製した従来の方法では、5μm口当り1
〜100μAであった。この結果から、接合電流低下の
原因となっていた第1層配線表面の酸化膜を極めて低減
できたことがわかる。
On the other hand, in the conventional method of manufacturing each layer, 1
It was ~100 μA. This result shows that the oxide film on the surface of the first layer wiring, which was a cause of a decrease in junction current, was significantly reduced.

上記実施例では第1.第2層配線ともNb膜で構成した
が、第1層配線膜をNbN、第2層配線膜をNbNとN
b膜の2層膜とするように、種々の配線材を組み合わせ
ることも可能である。また半導体集積回路等においても
本発明を適用できる。
In the above embodiment, the first. Although both the second layer wiring was made of Nb film, the first layer wiring film was made of NbN, and the second layer wiring film was made of NbN and Nb.
It is also possible to combine various wiring materials so as to form a two-layer film of b film. The present invention can also be applied to semiconductor integrated circuits and the like.

例えばAfl配線膜を用いた場合、大気中に試料を晒す
従来法ではAQ膜表面に2〜3nmの酸化膜が形成され
、これが1−ンネル障壁層となって配線間の接合電流を
低下させていたが、本発明によれば第1.第2層AQ配
線膜を真空中で連続形成できるので、上述の酸、化膜の
形成を防止できる。超電導集積回路においては、第1層
配線膜を抵抗膜とすることも可能である。ちなみに第1
層膜をM o N抵抗膜とし、第2層膜をNb膜とした
場合、本発明によれば抵抗の配線となる第2層配線膜は
M o N膜とNb膜の2層膜となるが、配線電流(超
電導電流)はNb膜部分でのみ流れるため、配線上特に
問題とならない。
For example, when using an Afl wiring film, in the conventional method of exposing the sample to the atmosphere, a 2-3 nm thick oxide film is formed on the surface of the AQ film, which acts as a channel barrier layer and reduces the junction current between the wirings. However, according to the present invention, the first. Since the second layer AQ wiring film can be formed continuously in a vacuum, the formation of the above-mentioned acidic and chemical films can be prevented. In a superconducting integrated circuit, it is also possible to use a resistive film as the first layer wiring film. By the way, the first
When the layer film is a M o N resistance film and the second layer film is a Nb film, according to the present invention, the second layer wiring film that becomes the resistance wiring is a two-layer film of the M o N film and the Nb film. However, since the wiring current (superconducting current) flows only in the Nb film portion, there is no particular problem with the wiring.

〔実施例2〕 以下、第2の発明の実施例を第2図により説明する。抵
抗膜とその保護絶縁膜の形成は、スパッタ槽と蒸着槽を
有する真空薄膜形成装置を用いて行った。まず直径5c
mのSjウェハ101上に熱酸化法により厚さ約300
nmの5i02膜102を形成した基板を該装置のスパ
ッタ槽側に設置し、該基板上に厚さ]、 OOn mの
M o N抵抗膜103を直流マグネトロンスパッタ法
により形成した。次いでこの試料を大気中に晒すことな
くスパッタ槽から蒸着槽側に移動し、S i −Tid
xi護絶縁膜104として厚さ150nmのSi膜と厚
さ1〜5nmのTiOx膜を真空蒸着法により形成した
(第2図(a))。M o N抵抗膜103は、真空槽
を2X10−4Pa以下まで真空排気したのち、2.6
mPaの窒素ガスを含むアルゴンガスを530mPa導
入し、350VX2Aの商科電力を印加して、12.5
cmX25cmのM。
[Example 2] Hereinafter, an example of the second invention will be described with reference to FIG. 2. The resistive film and its protective insulating film were formed using a vacuum thin film forming apparatus having a sputtering tank and a vapor deposition tank. First, diameter 5c
The thickness of approximately 300 mm is deposited on the SJ wafer 101 by thermal oxidation.
A substrate on which a 5i02 film 102 with a thickness of 100 nm was formed was placed on the sputtering tank side of the apparatus, and an M o N resistive film 103 with a thickness of 00 nm was formed on the substrate by direct current magnetron sputtering. Next, this sample was moved from the sputtering tank to the evaporation tank without being exposed to the atmosphere, and S i -Tid
As the xi-protecting insulating film 104, a Si film with a thickness of 150 nm and a TiOx film with a thickness of 1 to 5 nm were formed by vacuum evaporation (FIG. 2(a)). The M o N resistive film 103 is formed by evacuating the vacuum chamber to 2×10 −4 Pa or less, and then applying the pressure to 2.6 Pa.
Introducing 530 mPa of argon gas containing mPa of nitrogen gas and applying commercial power of 350 V x 2 A to 12.5
M of cmX25cm.

ターゲットからMoをスパッタリングすることにより形
成した。このときのスパッタ速度は1.6n m / 
sであった。この条件で形成したM o N膜で、液体
ヘリウム温度(4,2K)において0.22μΩmの抵
抗率が得られた。Si膜はM o N抵抗膜形成後7X
10−5Pa以下まで真空排気したのち2.6 X 1
0−4P a以下の真空中でWボー1−よりSiを蒸発
させて形成した。このSi膜の液体ヘリウム温度(4,
2K)における抵抗率は約100MΩmで、M o N
抵抗膜の抵抗率(0,22μΩm)よりも十分大きく、
保護絶縁膜としての機能を十分満たすものであった。T
jOX膜はフカ1〜レジスト膜との接着力を高めるため
のもので、Si膜膜着着後0、8 m P aの酸化ガ
ス雰囲気中でTj線を加熱蒸発させることにより形成し
た。
It was formed by sputtering Mo from a target. The sputtering speed at this time was 1.6nm/
It was s. The M o N film formed under these conditions had a resistivity of 0.22 μΩm at liquid helium temperature (4.2 K). The Si film is 7X after forming the M o N resistive film.
After evacuating to 10-5 Pa or less, 2.6 x 1
It was formed by evaporating Si from a W bow 1- in a vacuum of 0-4 Pa or less. The liquid helium temperature of this Si film (4,
The resistivity at 2K) is about 100 MΩm, and M o N
Sufficiently larger than the resistivity of the resistive film (0.22 μΩm),
It sufficiently fulfilled its function as a protective insulating film. T
The jOX film is intended to enhance the adhesion between the adhesive film 1 and the resist film, and was formed by heating and evaporating the Tj line in an oxidizing gas atmosphere at 0.8 mPa after the Si film was deposited.

次にフォトエツチング法により、該試料上にフォトレジ
スト(Shipley社製、商品名A Z 1470、
以下フオトレジス1〜はこの型式を使用した)で抵抗素
子用のフォトレジストパターン105を形成したのち、
アルゴンガスを用いたイオンミリング法によりSjとT
 i OXからなる保護絶縁膜]、 04をエツチング
した(第214171 (b) )。そして該レジスト
105をアセ1〜ンで溶解除去した(第2図(C))。
Next, a photoresist (manufactured by Shipley, trade name AZ 1470,
After forming a photoresist pattern 105 for a resistor element (this type is used for photoresist 1 to below),
Sj and T by ion milling method using argon gas
A protective insulating film made of iOX], 04 was etched (No. 214171 (b)). The resist 105 was then dissolved and removed using acetone (FIG. 2(C)).

その後、該保護絶縁膜104上にフォトエッチング法に
より該抵抗素子の配線端子部を開口したフォトレジスト
パターン106を形成し、プラズマエツチング法により
該検品絶縁膜104をエツチングしく第2図(d)) 
、該レジスj・106をアセトンで溶解除去した(第2
図(e))。
Thereafter, a photoresist pattern 106 is formed on the protective insulating film 104 using a photoetching method to open the wiring terminal portion of the resistor element, and the inspection insulating film 104 is etched using a plasma etching method (see FIG. 2(d)).
, the resist J・106 was dissolved and removed with acetone (second
Figure (e)).

次に厚さ200nmのNb配線膜107を直流マグネト
ロンスパッタ法により形成しく第2図(f))、フォト
エツチング法により配線用フカ1〜レジストパターン8
を形成したのち、プラズマエツチング法によりNb配線
膜107をエツチングした(第2図(g))。そして該
レジスI−108をアセトンで溶解除去したのち、厚さ
300nmのSi保護膜109を真空蒸着法により形成
して。
Next, a Nb wiring film 107 with a thickness of 200 nm is formed by direct current magnetron sputtering (FIG. 2(f)), and then by photo-etching, the Nb wiring film 107 is formed using a photoetching method.
After forming the Nb wiring film 107, the Nb wiring film 107 was etched by a plasma etching method (FIG. 2(g)). After the resist I-108 was dissolved and removed with acetone, a Si protective film 109 with a thickness of 300 nm was formed by vacuum evaporation.

Nb配線膜107とM o N抵抗膜103の側壁部を
絶縁保護し、超電導回路用M o N抵抗素子とそのN
b配線を完成した(第2図(h))。
The side walls of the Nb wiring film 107 and the M o N resistance film 103 are insulated and protected, and the M o N resistance element for the superconducting circuit and its N
b wiring has been completed (Fig. 2 (h)).

本実施例によれば、M o N抵抗膜形成直後と約24
時間大気中に放置した後、およびフォトエツチング工程
等を経た抵抗素子完成後の抵抗率の変化は、いづれも0
.05%以下の増加率であった。
According to this example, immediately after the formation of the M o N resistive film and about 24
The change in resistivity after being left in the atmosphere for an hour and after the resistor element is completed after going through a photo-etching process, etc., is 0.
.. The increase rate was less than 0.05%.

一方従来法の場合は、それぞれ1〜4%および6〜10
%抵抗率が増加していた。また、フォトレジスト膜が剥
離してパターン形成が困難になるという従来法の問題は
、本実施例で述べたようにM o N抵抗膜上に直接フ
ォトレジストパターンを形成しないため、解消した。従
来法の場合、M。
On the other hand, in the case of the conventional method, 1-4% and 6-10%, respectively.
% resistivity was increasing. In addition, the problem of the conventional method in which the photoresist film peels off and pattern formation becomes difficult has been solved because the photoresist pattern is not directly formed on the M o N resistive film as described in this embodiment. In the case of the conventional method, M.

N抵抗膜形成後、大気中に4時間放置すると5〜20%
のフォトレジストパターン(以下5μm×30μmのパ
ターンの場合)が剥離し、8時間放置すると50〜75
%、12時間以」二装置すると100%剥離した。
5-20% when left in the air for 4 hours after forming the N resistance film
The photoresist pattern (hereinafter in the case of a 5 μm x 30 μm pattern) peels off, and when left for 8 hours, it becomes 50 to 75
%, 100% peeling was achieved after 12 hours or more.

本実施例では抵抗膜としてM o N膜を用いた例を示
したが、Mo膜、Ta膜についても同様の結果が得られ
た。また保護絶縁膜としてSjのがわりにSi膜を用い
ても同様の結果が得られた。
In this example, an example was shown in which a Mo N film was used as the resistive film, but similar results were obtained with Mo films and Ta films. Similar results were also obtained when a Si film was used instead of Sj as the protective insulating film.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、第1の発明によれば第1層配線と
第2層配線を一括して形成、平坦化加工、配線加工を行
なえるので、平坦化2層配線が容易に形成できる。また
第1層配線と第2層配線を連続形成できるので、層間の
電気的接合特性、特に接合電流の低下を防止できる。
As described above, according to the first invention, the first layer wiring and the second layer wiring can be formed, planarized, and wire processed all at once, so that a flattened two-layer wiring can be easily formed. Furthermore, since the first layer wiring and the second layer wiring can be formed continuously, it is possible to prevent a decrease in electrical bonding characteristics between layers, particularly in junction current.

また、第2発明によれば、超電導回路用抵抗素子の製造
において、 (1)抵抗膜とその保護絶縁膜を連続形成して抵抗膜表
面の酸化を防止したため、これに起因する抵抗値の変化
を従来と比して100分の5以下に低減できた、 (2)抵抗膜上にかえて保護絶縁膜上にフォトレジスト
パターンを形成できるため、フォトレジスト膜の剥離は
なくなり、パターン形成が容易になった・ すなわち、回路部材の表面の変質を防止し超電導回路の
電気的特性を良好に保つことができる。
Further, according to the second invention, in manufacturing a resistive element for a superconducting circuit, (1) a resistive film and its protective insulating film are continuously formed to prevent oxidation of the resistive film surface, resulting in a change in resistance value caused by this; (2) Since the photoresist pattern can be formed on the protective insulating film instead of on the resistive film, there is no peeling of the photoresist film and pattern formation is easy. In other words, deterioration of the surface of the circuit member can be prevented and the electrical characteristics of the superconducting circuit can be maintained in good condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における製造工程を示す集積
回路の断面図である。 第2図は本発明の実施例2における製造工程を示す抵抗
素子の断面図である。 1・・・Si基板、2・・・5i02膜、3・・・第1
層パターン溝、4・・・第1層配線用Nb膜、5・・・
第2層配線用Nb膜、6・・・フォトレジスト、7・・
・フォトレジストパターン、8・・・Nb第1層配線、
9・・・Nb第2層配線、101・・・Siウェハ、1
02・・・5i02膜、103・・・M o N抵抗膜
、104・・・5L−TiOx保護絶縁膜、105,1
06,108・・・フォトレジストパターン、107・
・・Nb配線膜、109・・・Si保護膜。
FIG. 1 is a cross-sectional view of an integrated circuit showing the manufacturing process in Example 1 of the present invention. FIG. 2 is a cross-sectional view of a resistance element showing the manufacturing process in Example 2 of the present invention. 1...Si substrate, 2...5i02 film, 3...first
Layer pattern groove, 4... Nb film for first layer wiring, 5...
Nb film for second layer wiring, 6... photoresist, 7...
・Photoresist pattern, 8...Nb first layer wiring,
9...Nb second layer wiring, 101...Si wafer, 1
02...5i02 film, 103...M o N resistance film, 104...5L-TiOx protective insulating film, 105,1
06,108...Photoresist pattern, 107.
...Nb wiring film, 109...Si protective film.

Claims (1)

【特許請求の範囲】 1、下記工程を含むことを特徴とする超電導回路のパタ
ーン形成方法。 (1)基板表面に第1層パターン用の溝を形成する工程
、 (2)前記基板上に前記溝の深さよりも厚い第1層膜を
形成し、前記第1層膜上に第2層膜を形成する工程、 (3)前記第2層膜上にフォトレジストを塗布する工程
、 (4)前記フォトレジストおよび前記第2層膜をエッチ
ングして、前記第2層膜表面を平坦化する工程、 (5)前記平坦化された第2層膜表面に第2層パターン
用のフォトレジストよりなるマスクパターンを形成する
工程、 (6)前記マスクパターンをマスクとして、前記第2層
膜および前記第1層膜を基板表面までエッチングして、
前記溝内に前記第1層膜を残すことにより、第1層パタ
ーンおよび第2層パターンを形成する工程。 2、下記工程を含むことを特徴とする超電導回路のパタ
ーン形成方法。 (1)基板表面に抵抗膜を形成する工程、 (2)前記工程(1)に連続して前記抵抗膜上に保護絶
縁膜を形成する工程、 (3)前記保護絶縁膜上に、フォトレジストパターンを
形成する工程、 (4)前記保護絶縁膜を前記フォトレジストパターンを
マスクとしてエッチングする工程、 (5)前記保護絶縁膜上に延在する配線膜を形成する工
程、 (6)前記配線膜をパターン化する工程、 (7)前記配線膜上に保護膜を形成する工程。
[Scope of Claims] 1. A method for forming a pattern of a superconducting circuit, characterized by including the following steps. (1) Forming a groove for a first layer pattern on the substrate surface; (2) Forming a first layer film thicker than the depth of the groove on the substrate, and forming a second layer on the first layer film. (3) applying a photoresist on the second layer; (4) etching the photoresist and the second layer to planarize the surface of the second layer; (5) forming a mask pattern made of photoresist for a second layer pattern on the planarized surface of the second layer film; (6) using the mask pattern as a mask, forming the second layer film and the second layer film; Etching the first layer film to the substrate surface,
forming a first layer pattern and a second layer pattern by leaving the first layer film in the groove; 2. A method for forming a pattern of a superconducting circuit, characterized by including the following steps. (1) Forming a resistive film on the surface of the substrate; (2) Forming a protective insulating film on the resistive film following the step (1); (3) Applying photoresist on the protective insulating film. (4) etching the protective insulating film using the photoresist pattern as a mask; (5) forming a wiring film extending on the protective insulating film; (6) the wiring film. (7) forming a protective film on the wiring film;
JP62067789A 1987-03-24 1987-03-24 Formation of pattern of superconducting circuit Pending JPS63234575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067789A JPS63234575A (en) 1987-03-24 1987-03-24 Formation of pattern of superconducting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067789A JPS63234575A (en) 1987-03-24 1987-03-24 Formation of pattern of superconducting circuit

Publications (1)

Publication Number Publication Date
JPS63234575A true JPS63234575A (en) 1988-09-29

Family

ID=13355071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067789A Pending JPS63234575A (en) 1987-03-24 1987-03-24 Formation of pattern of superconducting circuit

Country Status (1)

Country Link
JP (1) JPS63234575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464339A (en) * 1987-09-04 1989-03-10 Toshiba Corp Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979584A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Resistor fot josephson integrated circuit
JPS6143488A (en) * 1984-08-08 1986-03-03 Agency Of Ind Science & Technol Manufacture of superconductive contact
JPS61115360A (en) * 1984-11-10 1986-06-02 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit
JPS61241988A (en) * 1985-04-19 1986-10-28 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979584A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Resistor fot josephson integrated circuit
JPS6143488A (en) * 1984-08-08 1986-03-03 Agency Of Ind Science & Technol Manufacture of superconductive contact
JPS61115360A (en) * 1984-11-10 1986-06-02 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit
JPS61241988A (en) * 1985-04-19 1986-10-28 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464339A (en) * 1987-09-04 1989-03-10 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2839579B2 (en) Semiconductor device and manufacturing method thereof
US6764960B2 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
JP4614212B2 (en) Manufacturing method of magnetic tunnel junction element
JPS63234533A (en) Formation of josephson junction element
JPS6161280B2 (en)
JPS63234575A (en) Formation of pattern of superconducting circuit
JPH05211355A (en) Manufacture of josephson integrated circuit
JPS62195190A (en) Formation of planar type josephson junction device
JP2991388B2 (en) Method for manufacturing semiconductor device
JPS5979585A (en) Manufacture of josephson junction element
JPH0634411B2 (en) Superconducting device
JP2535539B2 (en) Josephson circuit manufacturing method
JPH05243628A (en) Josephson device and manufacture thereof
JPH06244187A (en) Manufacture of semiconductor device
JPH0149025B2 (en)
JPH0828538B2 (en) Method for forming superconducting thin film pattern
JPH05175562A (en) Manufacture of josephson ic
JPH0637365A (en) Connecting structure for superconducting wiring
JPS61208879A (en) Manufacture of josephson integrated circuit
JPS58125880A (en) Josephson junction element
JPH0530310B2 (en)
JPS61263178A (en) Manufacture of superconducting integrated circuit
JPH03263884A (en) Manufacture of josephson integrated circuit
JPS6396973A (en) Manufacture of josephson junction element
JPS6260835B2 (en)