JPS6323128A - Optical space modulating element - Google Patents

Optical space modulating element

Info

Publication number
JPS6323128A
JPS6323128A JP16732986A JP16732986A JPS6323128A JP S6323128 A JPS6323128 A JP S6323128A JP 16732986 A JP16732986 A JP 16732986A JP 16732986 A JP16732986 A JP 16732986A JP S6323128 A JPS6323128 A JP S6323128A
Authority
JP
Japan
Prior art keywords
film
layer
crystal
substrate
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16732986A
Other languages
Japanese (ja)
Inventor
Masato Harigai
真人 針谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16732986A priority Critical patent/JPS6323128A/en
Publication of JPS6323128A publication Critical patent/JPS6323128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a separated function type optical space modulating element having high performance and drivable at low voltage by successively forming a single crystal film or a film having oriented crystal axes, a ferroelectric layer and a photoconductive layer on a single crystal or glass substrate. CONSTITUTION:An electrically conductive film 4 having oriented crystal axes is formed on a substrate 5 of a single crystal such as sapphire or LiF or a glassy material such as quartz or glass by shaping an electrically conductive transparent material having orientable crystal axes such as ZnO, SnO2 or In2O3 into a thin film so that the crystal axes are oriented in one direction. A W-Mo type ferroelectric layer 3 and a photoconductive layer 2 of group II-VI elements, chalcogen, a group IV element, GeC, SiC or an org. photoconductive material are successively formed on the film 4. Electrically conductive transparent films 1, 6 as electrodes are further formed on the layer 2 and under the substrate 5 to obtain an optical space modulating element.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光情報処理、光コンピユーテイング等に用い
られる光空間変調素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical spatial modulation element used in optical information processing, optical computing, and the like.

(従来技術) 光空間変調素子は、実時間処理、実時間パターン認識シ
ステム、高速画像処理、ロボットアイ等の光情報処理や
光コンビューテングにおいて、印刷物や風景等のインコ
ヒーレントな画像情報をコヒーレント光で扱える形に変
換したり、光情報の並列入力、並列演算処理をおこなう
ための素子として多くの提案がなされ、光情報処理技術
のキイデバイスとして今後の発展が期待されている。
(Prior art) Optical spatial modulation elements are used to coherently convert incoherent image information such as printed matter and landscapes in optical information processing and optical computing such as real-time processing, real-time pattern recognition systems, high-speed image processing, and robot eyes. Many proposals have been made as elements for converting optical information into a form that can be handled, parallel input of optical information, and parallel arithmetic processing, and future development is expected as a key device in optical information processing technology.

従来、光空間変調素子としては、ポッケルス効果を有す
るBSO(Bi+zSiOzo)などの光伝導性強誘電
体結晶の薄片を絶縁層で包み、両端に透明電極をつけた
PROM (Pockels  Read−Ouj  
Opt、icalModulajor)や、Si、 C
dS、 ZnS等の光伝導層と光変調効果を有する液晶
とを積層タイプにした液晶ライトバルブ、そして、Cd
S、 ZnS等の光伝導体とDKDP (KDzP04
)やB14Ti20t2の強誘電体結晶も一体化し、電
気光学効果を利用する素子、例えばDKDPを用いるフ
ォトタイタス、さらに2次電子倍増効果をもつMCPと
LiNbO3,LiTa0う等の電気光学結晶とを祖み
合わせたMSLMなどが知ら九でいる。
Conventionally, as an optical spatial modulation element, a PROM (Pockels Read-Ouj
Opt, ical module), Si, C
A liquid crystal light valve in which a photoconductive layer such as dS or ZnS and a liquid crystal having a light modulation effect are laminated, and a Cd
Photoconductors such as S, ZnS and DKDP (KDzP04
) and B14Ti20t2 ferroelectric crystals were integrated, creating elements that utilize the electro-optic effect, such as phototitus using DKDP, and electro-optic crystals such as MCP and LiNbO3, LiTa0, etc., which have a secondary electron doubling effect. I don't know much about the combined MSLMs.

しかし、上記BSOを用いた光空間変調素子(PROM
等)は、その駆動電圧が2KVと非常に高く、また画像
書込み光も水銀燈やXe燈を必要とし、実際に光情報処
理システムに組込み時に問題が残る。−方、液晶タイプ
の光空間変調素子(液晶ライトバルブ等)では、 BS
Oを用いた光空間変調素子に比して駆動電圧はIOV以
内と低いが、液晶を用いているため応答時間が遅く1画
像処理システムとして利用した時に高速処理が可能とい
う光空間変調素子としての本来の目的を失なう可能性が
ある。
However, the optical spatial modulator (PROM) using the above BSO
etc.), its driving voltage is extremely high at 2 KV, and the image writing light requires a mercury lamp or a Xe lamp, which poses a problem when actually incorporated into an optical information processing system. -On the other hand, in liquid crystal type light spatial modulation elements (liquid crystal light valves, etc.), BS
Compared to optical spatial modulators using O, the driving voltage is lower, within IOV, but since it uses liquid crystal, the response time is slow, making it possible to perform high-speed processing when used as an image processing system. You may lose your original purpose.

また、半波長電圧低減のために強誘電体のキューリー点
近くまで冷却して使用するDKDP、を用いたフォトタ
イタスでは、DKDPのキューリー点が一50℃と室温
より低いため、寒剤や冷却器等で冷却して使用しなけれ
ばならないという欠点があり、さらにLiNbO3等の
電気光学結晶を用いたMSLM光空間変調素子では高感
度であるという特徴は有するが解像力が十分でないと同
時に応答時間が遅いという欠点を有している。
In addition, in PhotoTitus, which uses DKDP, which is cooled to near the Curie point of the ferroelectric material in order to reduce half-wave voltage, since the Curie point of DKDP is 150°C, which is lower than room temperature, it is necessary to use cryogens and coolers. MSLM optical spatial modulators using electro-optic crystals such as LiNbO3 have the disadvantage of having to be cooled before use, and although they have the feature of high sensitivity, they do not have sufficient resolution and have slow response times. It has drawbacks.

また、従来の光空間変調素子に用いられるBSOやDK
DP及びし1NbO等の強誘電体材料はバルク単結晶を
切断、研磨して得られたウェハーを使用しているため厚
みの限定を受け、解像力の向上を図りに<<、希望材料
の良質なバルク単結晶の育成も困難なことから半波長電
圧の低減も類しい、また。
In addition, BSO and DK used in conventional optical spatial modulation elements
Since ferroelectric materials such as DP and 1NbO are made from wafers obtained by cutting and polishing bulk single crystals, their thickness is limited. Since it is difficult to grow bulk single crystals, the reduction in half-wavelength voltage is also similar.

大型単結晶の育成が困難なことからウェハー面積が限定
されるため記録容量に制限が有るなど、かなりの問題点
を有していた。
This has had considerable problems, such as the difficulty in growing large single crystals, which limits the wafer area, which limits the recording capacity.

(目  的) 本発明は、上記従来技術による問題点を解決し、2次元
情報書込み光の選択の自由度を向上させると共に、半波
長電圧の低減、応答速度の向上等の光空間変調素子とし
ての機能の拡大を図るとともに、素子の大面積化による
記録容量の増大等の、高機能で低コストな光空間変調素
子を提供することを目的とする。
(Purpose) The present invention solves the problems caused by the above-mentioned prior art, improves the degree of freedom in selecting a two-dimensional information writing light, and provides an optical spatial modulator that reduces half-wave voltage, improves response speed, etc. It is an object of the present invention to provide a high-performance, low-cost optical spatial modulation device that can expand the functions of the device and increase the recording capacity by increasing the area of the device.

(構  成) 本発明は、上記の目的を達成させるため、単結晶基板又
は石英、ガラス等のガラス系基板上に、単結晶膜あるい
は結晶軸が一定方向に配向した結晶軸配向膜層と強誘電
体層及び光伝導体層とを物理的蒸着法(PVD法)又は
化学的蒸着法(CVO法)により積層して形成する。
(Structure) In order to achieve the above object, the present invention comprises a single crystal film or a crystal axis oriented film layer in which the crystal axes are oriented in a certain direction, and a strong crystalline film layer on a single crystal substrate or a glass substrate such as quartz or glass. A dielectric layer and a photoconductor layer are laminated and formed by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVO method).

以下において、本発明による光空間変調素子について説
明する。
In the following, a spatial light modulation element according to the present invention will be explained.

第1図は本発明による光空間変調素子の構造を示す概略
構成図で、その構成はサファイヤ、 LiF等の単結晶
、あるいは石英、ガラス等のガラス系材料よりなる基板
5の上に結晶軸配向性のZnO。
FIG. 1 is a schematic block diagram showing the structure of a spatial light modulation element according to the present invention, in which crystal axes are oriented on a substrate 5 made of a single crystal such as sapphire or LiF, or a glass-based material such as quartz or glass. sexual ZnO.

SnO□+ In2Oヨ等の透明導電性材料を、その結
晶軸が一定方向に配向するようにPVD法又はCVD法
により薄膜化して導電性結晶軸配向膜4を形成し。
A conductive crystal axis alignment film 4 is formed by thinning a transparent conductive material such as SnO□+In2O□ by a PVD method or a CVD method so that its crystal axis is oriented in a certain direction.

この結晶軸配向膜4の上に、 PVD法又はCVD法に
よりタングステンモリブデン系強誘電体層3を0.1〜
30μmの膜厚で積層し、さらにその上にII −Vl
族系、カルコゲン系、IV族系及びGeC,SiC系そ
して有機系光伝導体材料のいずれかの光伝導体材料をP
VD法又はCVD法により積層して光伝導体JIIJ2
を形成し、この光伝導体M12の上面及び基板5の下面
に電極としての透明導電膜1,6を形成したものである
On this crystal axis orientation film 4, a tungsten molybdenum based ferroelectric layer 3 of 0.1~
Laminated with a film thickness of 30 μm, and on top of that, II-Vl
Group-based, chalcogen-based, group IV-based, GeC, SiC-based, and organic photoconductor materials.
Photoconductor JIIJ2 is laminated by VD method or CVD method.
, and transparent conductive films 1 and 6 as electrodes are formed on the upper surface of the photoconductor M12 and the lower surface of the substrate 5.

以下、具体的な材料を用いて光空間変調素子を作成した
実施例について述べる。
An example in which a spatial light modulator was created using specific materials will be described below.

最初に結晶軸配向膜を形成した基板を作成する。First, a substrate on which a crystal axis orientation film is formed is created.

結晶軸配向膜としてはZnO,5n02. InzO3
等が使用できるが例としてC軸配向するZnOを用いた
場合について説明する。
As the crystal axis orientation film, ZnO, 5n02. InzO3
etc. can be used, but as an example, a case using C-axis oriented ZnO will be explained.

先ず、直径100mm 、純度99.9%のZn板をタ
ーゲットとし、公知のRFマグネトロンスパッタ法を用
いて純度99.9%の酸素とアルゴンガスとを共に一定
量流しながら、250°Cに加熱したサイズ25mm 
X25mmの四辺形の透明石英基板上にスパッタをおこ
なった。ここで基板を加熱するのは結晶軸が配向しやす
くするためである。そして、得られたZnOの薄膜をX
線回折にて解析したところ、その解析ピークはZnOの
(00,2)(00,4)のみである事が確認され、 
Zn、O薄膜の結晶C軸は基板に垂直に配向している事
が判った。次に、この様にして作成された石英基板上の
C軸配向したZnO膜の上に、タングステンブロンズ系
強誘電体Sr2 KNb50 +5のターゲットを用い
てガス圧8 Xl0−” Torrのアルゴン−酸素ガ
ス雰囲気中で、基板温度620°CとしてRFマグネト
ロンスパッタをおこない膜厚3μmの強誘電体層を形成
した。この時、ターゲット作成用の原料として用いたS
rCO3及びに2 co3はその組成比をやや多めにし
た。又、 RFパワーはL301i1〜190Wである
、この様にして作成された5rtKNbsOt5誘電体
膜をアルゴンガス雰囲気中で2時間の熱処理をおこなっ
た後、X線回折で解析した結果、C軸配向している事が
確認された。ちなみにZnOを積層していない石英基板
のみにSr2KNb501gをスパッタした時はC軸配
向が認められず、本発明による方法が強誘電体配向膜を
作成する上で有効に作用する事が確認された。
First, a Zn plate with a diameter of 100 mm and a purity of 99.9% was used as a target, and was heated to 250°C using a known RF magnetron sputtering method while flowing a constant amount of both oxygen and argon gases with a purity of 99.9%. Size 25mm
Sputtering was performed on a quadrilateral transparent quartz substrate measuring 25 mm in diameter. The reason why the substrate is heated here is to facilitate orientation of the crystal axes. Then, the obtained ZnO thin film was
When analyzed by line diffraction, it was confirmed that the analysis peak was only (00,2) (00,4) of ZnO,
It was found that the crystal C axis of the Zn, O thin film was oriented perpendicular to the substrate. Next, on the C-axis oriented ZnO film on the quartz substrate prepared in this way, argon-oxygen gas at a gas pressure of 8 RF magnetron sputtering was performed in an atmosphere with a substrate temperature of 620°C to form a ferroelectric layer with a thickness of 3 μm.At this time, S
The composition ratios of rCO3 and 2co3 were slightly increased. In addition, the 5rtKNbsOt5 dielectric film prepared in this way, whose RF power was L301i1~190W, was heat-treated for 2 hours in an argon gas atmosphere, and then analyzed by X-ray diffraction, showing that the C-axis was oriented. It has been confirmed that there is. Incidentally, when 501 g of Sr2KNb was sputtered only on a quartz substrate on which ZnO was not laminated, no C-axis orientation was observed, confirming that the method according to the present invention works effectively in creating a ferroelectric alignment film.

次に、上記作成試料の両面に透明電極を蒸着した後、本
試料の電気光学効果を測定した。
Next, after transparent electrodes were deposited on both sides of the prepared sample, the electro-optical effect of this sample was measured.

副室方法は第2図に示すように、レーザ光源11と偏光
子12と検光子14及び受光素子15、そして試料13
と試料13に印加する直流高圧電源16とによる測定系
を用い、入射方向[0011方向、電界方向[0011
方向とし、入射光は波長633nmのヘリウム−ネオン
レーザを使用し、印加電圧を20Vステツプづつ変化さ
せて測定した。その測定結果を第3図に示す。
As shown in FIG. 2, the sub-chamber method includes a laser light source 11, a polarizer 12, an analyzer 14, a light receiving element 15, and a sample 13.
and a DC high-voltage power supply 16 applied to the sample 13.
A helium-neon laser with a wavelength of 633 nm was used as the incident light, and the applied voltage was varied in 20 V steps for measurement. The measurement results are shown in FIG.

第3図より、半波長電圧は約380vと極めて低い値が
得られた。
From FIG. 3, a very low half-wave voltage of about 380 V was obtained.

このように、 ZnOのC軸配向膜上に形成されたSr
z KNbsO+s強誘電体膜層は半波長電圧がバルク
を用いたものと較べて低いため、この強誘電体層に。
In this way, the Sr formed on the C-axis oriented film of ZnO
z Since the half-wave voltage of the KNbsO+s ferroelectric film layer is lower than that using the bulk, this ferroelectric layer is used.

さらに光伝導体層を形成して光空間変調素子を作成する
ことにより、低電圧駆動で、しかも膜厚低減からくる解
像力の向上が期待できる光空間変調素子が実現できる。
Furthermore, by forming a photoconductor layer to create a spatial light modulation element, it is possible to realize a spatial light modulation element that can be driven at a low voltage and is expected to improve resolution due to a reduction in film thickness.

そこで、実施例として、上記作成法と同様にして作られ
た石英基板上のC軸配向ZnO薄膜上に積層された5r
2KNbsO+s強誘電体層の上に、抵抗加熱法により
Ss−Te(4wt%)光伝導体層を5μm厚に蒸着し
、さらに光伝導体層と石英基板下面に透明電極層を設け
ることによって光空間変調素子を試作し、試作した素子
に直流電圧300■を印加しながらハロゲンランプでテ
ストチャートを書き込んだ後、波長830nmの半導体
レーザを用いて偏光子、検光子を介して画像を読み出し
、これを写真撮影した後、その解像力(分解能)を解析
したところ、8 QP/mm (MTF50%)を得た
。また、書込み感度は6μJ/am2とほぼBSOを用
いた光空間変調素子なみの特性を得た。
Therefore, as an example, a 5r layer was laminated on a C-axis oriented ZnO thin film on a quartz substrate made in the same manner as the above-mentioned method.
On the 2KNbsO+s ferroelectric layer, an Ss-Te (4wt%) photoconductor layer is deposited to a thickness of 5 μm using a resistance heating method, and a transparent electrode layer is provided on the photoconductor layer and the bottom surface of the quartz substrate to create an optical space. After making a prototype modulation element and writing a test chart with a halogen lamp while applying a DC voltage of 300μ to the prototype element, the image was read out using a semiconductor laser with a wavelength of 830 nm via a polarizer and an analyzer. After taking a photograph, its resolution was analyzed and found to be 8 QP/mm (MTF 50%). Further, the writing sensitivity was 6 μJ/am2, which is almost the same as that of an optical spatial modulation element using BSO.

前記実施例で解像力が8QP/mmとBSOタイプに比
してやや劣るのは強誘電体層の結晶性が不十分であると
判断される。そこで、強誘電体層の作成条件のうち基板
温度を前記実施例の場合より30℃高く設定してRFマ
グネトロンスパッタをおこない。
The reason why the resolution in the above example was 8 QP/mm, which is slightly inferior to that of the BSO type, is considered to be because the crystallinity of the ferroelectric layer is insufficient. Therefore, among the conditions for forming the ferroelectric layer, RF magnetron sputtering was performed with the substrate temperature set 30° C. higher than in the above embodiment.

前記実施例と同様に膜厚3μmの強誘電体層を形成し、
その後アルゴンガス雰囲気中で3時間の熱処理をおこな
った後、5e−Te(4%11%)光伝導層を5μm厚
に蒸着し、さらに電極としての透明導電膜を形成して光
空間変調素子を作成した。そして前記実施例と同様に特
性を測定した結果解像力(分解能) 120 P/mm
 (MTF50%)と前記実施例と比較して50%の性
能アップを実現した。また、書込み感度は6μJ/am
” とほぼ前記実施例と同じ感度を得た。なお、素子の
印加電圧は150vとした。
A ferroelectric layer with a thickness of 3 μm was formed in the same manner as in the above example,
After heat treatment for 3 hours in an argon gas atmosphere, a 5e-Te (4% 11%) photoconductive layer was deposited to a thickness of 5 μm, and a transparent conductive film was further formed as an electrode to form an optical spatial modulation element. Created. The characteristics were measured in the same manner as in the above example, and the result was a resolution of 120 P/mm.
(MTF 50%), realizing a 50% increase in performance compared to the above example. Also, the writing sensitivity is 6μJ/am
”, almost the same sensitivity as in the above example was obtained.The voltage applied to the element was 150V.

以上の様に、本発明による光空間変素子は解像力の点で
満足する値に至ってはいないが、膜形成時の設定条件を
改善することにより、今後、その性能の向上が期待でき
る。また、光伝導層の材質、膜厚形成条件の改善及び強
誘電体層とのマツチング等の検討、さらに透過タイプの
光空間変調素子を作成する場合の反射防止膜や、反射タ
イプの場合の誘電体反射層の検討をおこなうことにより
一層の性能の向上が期待され、光空間変調素子としての
仕様に十分対応できる。
As described above, although the optical space varying element according to the present invention has not yet reached a satisfactory value in terms of resolution, it is expected that its performance will improve in the future by improving the setting conditions during film formation. In addition, we will consider improving the material of the photoconductive layer, improving the film thickness formation conditions, and matching it with the ferroelectric layer, as well as improving the antireflection coating when creating a transmissive type optical spatial modulator and the dielectric layer when creating a reflective type. By studying the body reflection layer, further improvement in performance is expected, and the device can fully meet the specifications as an optical spatial modulator.

さて、次に、5r2KNb50 +s以外のタングステ
ンブロンズ系強誘電体層も前記実施例同様に結晶軸配向
を示すことを確認するため、ZnOのC軸配向膜上にタ
ンタルニオブ酸カリウムを用いて強誘電体膜を形成した
。膜の作成条件は前記実施例と同様にRFマグネトロン
スパッタ法によりアルゴン−酸素ガス雰囲気中で基板温
度620°Cに加熱しておこなった。なお、ターゲット
として使用したタンタルニオブ酸カリウムは、最初に単
結晶を作成し、これを粉細して微粉末とした後、加圧成
形して焼成することにより作成したものを用いた。RF
マグネトロンスパッタ法により形成されたタンタルニオ
ブ酸カリウムの強誘電体膜をX線回折で解析した結果、
はぼC軸配向している事が確認された。
Next, in order to confirm that the tungsten bronze ferroelectric layer other than 5r2KNb50 +s also exhibits crystal axis orientation in the same way as in the above example, potassium tantalum niobate was used on the ZnO C-axis oriented film to form a ferroelectric layer. A body membrane was formed. The film was formed using the same RF magnetron sputtering method as in the previous example, in which the substrate was heated to a temperature of 620 DEG C. in an argon-oxygen gas atmosphere. Note that the potassium tantalum niobate used as a target was created by first creating a single crystal, pulverizing this into a fine powder, and then press molding and firing. RF
As a result of X-ray diffraction analysis of a ferroelectric film of potassium tantalum niobate formed by magnetron sputtering,
It was confirmed that the fibers were oriented along the C-axis.

この様に、 ZnO等の結晶軸配向膜を基板上に形成し
た上に強誘電体層を蒸着することにより、タングステン
ブロンズ系強誘電体層の結晶軸配向を促進することが可
能をとなる。
In this way, by forming a crystal axis orientation film such as ZnO on a substrate and then depositing a ferroelectric layer, it becomes possible to promote the crystal axis orientation of the tungsten bronze ferroelectric layer.

(効  果) 本発明による光空間変調素子のように、PVD法又はC
VD法により、単結晶あるいはガラス系基板上に単結晶
膜あるいは結晶軸配向膜を形成し、その上に強誘電体層
、光伝導体層を積層して形成することにより、機能分離
タイプの高性能、低駆動電圧の光空間変調素子の実現が
期待できる。また、結晶軸配向性のZnO等の導電膜な
予め基板上に形成しておくことにより、その上に形成さ
れる強誘電体層が軸配向しやすくなる様に蒸着すること
ができるため素子の大面積化も可能であり、単結晶育成
の困難な誘電体材料への適用もでき、使用誘電体材料の
積類拡大による半波長電圧の低減や大面積化、解像力の
増大、さらに光伝導層との機能分離効果による感度の増
大、そして応答速度の向上が期待でき、また、単結晶バ
ルクに比較して作成も容易であるため低コストな素子を
提供できる。
(Effect) Like the optical spatial modulation element according to the present invention, the PVD method or C
By forming a single crystal film or crystal axis orientation film on a single crystal or glass substrate using the VD method, and then laminating a ferroelectric layer and a photoconductor layer on top of it, a functionally separated type high-performance We can expect to realize optical spatial modulation elements with high performance and low driving voltage. In addition, by forming a conductive film such as ZnO with crystal axis orientation on a substrate in advance, the ferroelectric layer formed thereon can be deposited in a manner that facilitates axis orientation. It is possible to increase the area, and it can also be applied to dielectric materials that are difficult to grow single crystals.By expanding the variety of dielectric materials used, it is possible to reduce the half-wave voltage, increase the area, increase resolution, and further improve the photoconductive layer. An increase in sensitivity and an improvement in response speed can be expected due to the functional separation effect, and since it is easier to produce than a single crystal bulk, a low-cost device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明による光空間変調素子の概略構成図、
第2図は電気光学効果の測定系を示す図、第3図は本発
明によるSrzにNb5O+5強誘電体層の電気光学効
果の測定結果を示す。 2・・・・光伝導体層、3・・・・強誘電体層、4・・
・・結晶軸配向膜、5・・・・基板。 εp加宅ヱ(V)
FIG. 1 is a schematic configuration diagram of a spatial light modulation element according to the present invention;
FIG. 2 shows a system for measuring the electro-optic effect, and FIG. 3 shows the results of measuring the electro-optic effect of the Srz and Nb5O+5 ferroelectric layers according to the present invention. 2... Photoconductor layer, 3... Ferroelectric layer, 4...
...Crystal axis alignment film, 5...Substrate. εpKatakue (V)

Claims (1)

【特許請求の範囲】[Claims] 単結晶あるいは石英、ガラス等のガラス系材料よりなる
基板上に、単結晶膜あるいは結晶軸が同一方向に配向し
た結晶軸配向膜と強誘電体層と光伝導体層とを物理的又
は化学的蒸着法により積層して形成したことを特徴とす
る光空間変調素子。
A single crystal film or a crystal axis oriented film in which the crystal axes are oriented in the same direction, a ferroelectric layer, and a photoconductor layer are formed on a substrate made of a single crystal or a glass material such as quartz or glass by physical or chemical treatment. An optical spatial modulation element characterized in that it is formed by laminating layers using a vapor deposition method.
JP16732986A 1986-07-16 1986-07-16 Optical space modulating element Pending JPS6323128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16732986A JPS6323128A (en) 1986-07-16 1986-07-16 Optical space modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16732986A JPS6323128A (en) 1986-07-16 1986-07-16 Optical space modulating element

Publications (1)

Publication Number Publication Date
JPS6323128A true JPS6323128A (en) 1988-01-30

Family

ID=15847723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16732986A Pending JPS6323128A (en) 1986-07-16 1986-07-16 Optical space modulating element

Country Status (1)

Country Link
JP (1) JPS6323128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof
JPH02291183A (en) * 1989-05-01 1990-11-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JP2010254157A (en) * 2009-04-25 2010-11-11 Iseki & Co Ltd Walking type control machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof
JPH02291183A (en) * 1989-05-01 1990-11-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JP2010254157A (en) * 2009-04-25 2010-11-11 Iseki & Co Ltd Walking type control machine

Similar Documents

Publication Publication Date Title
Haertling PLZT electrooptic materials and applications—a review
CA1060573A (en) Electrostatically bonded dielectric-on-semiconductor device, and a method of making the same
US4799773A (en) Liquid crystal light valve and associated bonding structure
US7253869B1 (en) Silicon-on-sapphire display with audio transducer and method of fabricating same
JPS62205266A (en) Ferroelectric thin film element and its production
JPS6323128A (en) Optical space modulating element
Saito et al. Structure of atomically smoothed LiNbO3 (0001) surface
JPS6241311B2 (en)
JPH05254991A (en) Thin-film laminated crystal body and production thereof
JP2000281495A (en) Highly crystalline zinc oxide thin film and its production
JPH0672800B2 (en) Pyroelectric infrared sensor
Meng et al. A-axis oriented Zn0. 72Mg0. 28O epitaxial thin films with large second-order nonlinear susceptibility
JP2710973B2 (en) Manufacturing method of ferroelectric thin film
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
CN216956565U (en) NbSe 2-metal multilayer structure-based electric control polarization modulator
JP2002196297A (en) Optical waveguide device
JP3006749B2 (en) Spatial light modulator
JPS59141104A (en) Method of producing ferrodielectric thin film
CN116679370A (en) Novel polaroid and preparation method thereof
JPH0417659A (en) Production of thin oxide film
Sashital et al. Low voltage high speed & high contrast electrooptical thin film devices for free space optical interconnects
Fukunishi et al. Properties of LiNbO3 Thin Films Fabricated by RF Sputtering
JPH0335247B2 (en)
JPS60147180A (en) Piezoelectric element
Neurgaonkar et al. Integration of Ferroelectric/Semiconductor Thin Films for SLM and Photorefractive Operations.