JPS63226072A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63226072A
JPS63226072A JP5952187A JP5952187A JPS63226072A JP S63226072 A JPS63226072 A JP S63226072A JP 5952187 A JP5952187 A JP 5952187A JP 5952187 A JP5952187 A JP 5952187A JP S63226072 A JPS63226072 A JP S63226072A
Authority
JP
Japan
Prior art keywords
threshold voltage
electron beam
region
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5952187A
Other languages
Japanese (ja)
Other versions
JPH0728036B2 (en
Inventor
Hiroyasu Hagino
萩野 浩靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62059521A priority Critical patent/JPH0728036B2/en
Publication of JPS63226072A publication Critical patent/JPS63226072A/en
Publication of JPH0728036B2 publication Critical patent/JPH0728036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To avoid degradation of gate threshold voltage characteristics even after the manufacturing process by a method wherein the concentration of one surface is set at a specific value and then, after an electron beam is applied to that surface, annealing is performed to recover the threshold voltage to the predetermined value. CONSTITUTION:A source electrode 29 is formed on one surface of a p<+>type silicon substrate 21 so as to be contacted with an n<+> type source layer 25 and a p-type well layer 24 simultaneously and a drain electrode 30 is formed on the other surface of the silicon substrate 21. The initial threshold voltage VGS(th) of the element composition of the intermediate stage obtained like this is about 5-10 V. Then, after an electron beam of a dosage of about 5X10<13>-8X10<14> cm<-2> is applied, annealing is carried out at a temperature about 300 deg.C for about 2-5 hours to complete a vertical IGBT. Although the threshold voltage VGS(th) is lowered to about -4-5 V after the electron beam application, it is recovered to about 2-5V by the next annealing. The recovery of the threshold voltage VGS(th) is saturated in about 2-5 hours.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、さらに詳し
くは、主に電力用スイッチング素子として用いられる堅
型IGBT(Insulated Gate Bipo
larTransistor)の製造方法に係るもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device.
larTransistor).

〔従来の技術〕[Conventional technology]

近年、この種の電力用スイッチング素子には、従来から
一般に用いられてきたバイポーラトランジスタに代わる
ものとして、その高速性、および制御回路の簡略化が可
能であるなどの利点を有することから、いわゆる、堅型
パワーMO9FET(MO3Filed Effect
 Transistor)へc7)移行が注目されてい
る。しかしながら、一方で、500V以上での高耐圧の
堅型パワーMOS FETにおいては、必然的にそのオ
ン抵抗が高くなって、大電流を流すことが難かしくなる
と云う不利がある。
In recent years, this type of power switching element has been used as an alternative to the conventionally commonly used bipolar transistor, as it has advantages such as high speed and simplification of the control circuit. Rigid power MO9FET (MO3Filed Effect
c7) is attracting attention. However, on the other hand, a rigid power MOS FET with a high withstand voltage of 500 V or more has the disadvantage that its on-resistance inevitably becomes high, making it difficult to flow a large current.

そこで、この点を解消するための電力用スイッチング素
子として、先の1981年に、米国RCA社から、特開
昭56−150870号公報として示される堅型IGB
Tが提案された。この堅型IGETは、ドレイン領域に
ソース領域とは逆の導電型層を形成することにより、こ
の逆導電型層から高抵抗層への注入を起こさせ、高抵抗
層に伝導度変調を生じさせて、オン抵抗を下げるように
したものである。
Therefore, as a power switching element to solve this problem, in 1981, RCA Corporation of the United States proposed a rigid IGB disclosed in Japanese Patent Application Laid-Open No. 56-150870.
T was proposed. In this rigid IGET, by forming a layer of conductivity type opposite to that of the source region in the drain region, injection is caused from this opposite conductivity type layer to the high resistance layer, causing conductivity modulation in the high resistance layer. Therefore, the on-resistance is lowered.

第4図にこの提案に係る堅型IGBTの基本的な構成を
示す。
FIG. 4 shows the basic configuration of the rigid IGBT according to this proposal.

すなわち、この第4図従来例構成において、符号lは1
019/cゴ程度の高濃度ダシリコン基板であり、この
ダシリコン基板l上にエビタギシャル成長などにより高
濃度n+層2を形成させ、また、この高濃度n+層2上
に低不純物濃度のn一層3を形成させ、さらに、このn
一層3の主表面上にあって、DSA(Diffused
 Self−Alignment)法により pウェル
層4と同層4中へのn+型ソース層5とを選択的に形成
させる。
That is, in the conventional configuration shown in FIG. 4, the symbol l is 1.
A high concentration n+ layer 2 is formed on this silicon substrate l by epitaxial growth, etc., and an n layer 3 with a low impurity concentration is formed on this high concentration n+ layer 2. furthermore, this n
On the main surface of layer 3, the DSA (Diffused
A p-well layer 4 and an n+ type source layer 5 in the same layer 4 are selectively formed by a self-alignment method.

そして、前記11SA法では、 pウェルM4を形成す
るための拡散窓をして、n+型ソース層5を形成するた
めの拡散窓の一部として用いるために、チャンネル領域
θが素子のあらゆる部分で一定となるように、n1型ソ
一ス層5を形成できる。
In the 11SA method, in order to use the diffusion window for forming the p-well M4 as a part of the diffusion window for forming the n+ type source layer 5, the channel region θ is formed in all parts of the device. The n1 type source layer 5 can be formed so as to be constant.

ついで、チャンネル領域6上にゲート絶縁膜7を介して
ゲート電極8を形成させ、また、n1型ン一ス層5とp
ウェル層4とを同時にオーミックコンタクトするように
ソース電極9を形成させ、さらに、ダシリコン基板1の
他面にドレイン電極10を形成させ、このようにして目
的とする堅型IGBTUを得ているのである。
Next, a gate electrode 8 is formed on the channel region 6 with a gate insulating film 7 interposed therebetween, and the n1 type conductor layer 5 and the p
A source electrode 9 is formed to make ohmic contact with the well layer 4 at the same time, and a drain electrode 10 is further formed on the other surface of the silicon substrate 1, thus obtaining the intended rigid IGBTU. .

従って、前記構成による堅型IGBTIIの場合にあっ
ては、n“型ソース層5からチャンネル領域6を通って
n一層3に注入される電子電流に対し、ダシリコン基板
1から高濃度n1層2を介してn一層3へ正孔注入を生
じ、この結果、高抵抗を有するn″′′層3導度変調を
起こして低抵抗化を図り得るのである。
Therefore, in the case of the hard type IGBT II having the above configuration, the high concentration n1 layer 2 from the silicon substrate 1 is Through this, holes are injected into the n layer 3, and as a result, the conductivity of the n'''' layer 3, which has a high resistance, is modulated and the resistance can be lowered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記従来例構成による竪W IGBTU
では、一方でこの堅型IGBTIIをターンオフさせた
とき、高濃度n+暦2に注入された残留正孔のために、
ターンオフ時間が長くなると云う問題点がある。
However, the vertical W IGBTU according to the conventional configuration
On the other hand, when this rigid IGBTII is turned off, due to the residual holes injected into the high concentration n+ calendar 2,
There is a problem that the turn-off time becomes longer.

こ−で、一般に堅型rGBT11においては、高濃度n
一層2内での前記残留正孔のライフタイムを制御するた
めに1重金属や電子線などの放射線照射などをなしてお
り、特に電子線照射による手段が、ライフタイムの制御
性の良さ、およびオン電圧とターンオフ時間の相関の良
さによって採用されている。
Therefore, in general, in rigid rGBT11, high concentration n
In order to control the lifetime of the residual holes in the layer 2, irradiation with heavy metals, electron beams, etc. is used. In particular, electron beam irradiation provides good controllability of the lifetime and It is adopted because of the good correlation between voltage and turn-off time.

しかし、前記電子線照射方法によるときは、その電子線
照射によってMOS部のゲート絶縁膜7がダメージを受
は易く、この種の堅型IGBTIIの重要な特性の一つ
であるゲートしきい値電圧vGS(th)が大幅に低下
することになると云う不都合があった。
However, when using the electron beam irradiation method, the gate insulating film 7 of the MOS section is easily damaged by the electron beam irradiation, and the gate threshold voltage is one of the important characteristics of this type of hard IGBTI. There was the disadvantage that vGS(th) would be significantly reduced.

この発明は従来のこのような問題点を解消するためにな
されたものであって、その目的とするところは、製造後
においてもゲートしきい値電圧特性を低下させることの
ない、この種の半導体装置の製造方法、こ−では堅型I
C8丁の製造方法を提供することである。
This invention was made to solve these conventional problems, and its purpose is to develop a semiconductor of this type that does not deteriorate the gate threshold voltage characteristics even after manufacturing. The manufacturing method of the device, in this case rigid type I
The purpose of the present invention is to provide a method for manufacturing C8.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、この発明に係る半導体装置
の製造方法は、チャンネル領域の形成時に、まず、その
表面濃度を、素子構成のしきい値電圧がお覧よそ5〜1
0v程度になるように設定させ、ついで、同表面側から
電子線を照射後、アニール処理して、電子線照射時に低
下したしきい値電圧を、お−よそ2〜5V程度まで回復
させるようにしたものである・ 〔作   用〕 すなわち、この発明においては、中間段階での素子構成
に電子線照射をなして製造終了した後における素子構成
のしきい値電圧を、所期の値であるお\よそ2〜5Vの
範囲に維持できると共に、高温度によるしきい値電圧の
低減に対しても、最低のしきい値電圧を保持し得るので
ある。
In order to achieve the above object, in the method of manufacturing a semiconductor device according to the present invention, when forming a channel region, first, the surface concentration of the channel region is adjusted so that the threshold voltage of the device structure is approximately 5 to 1.
Then, after irradiating the same surface side with an electron beam, an annealing treatment is performed to recover the threshold voltage, which decreased during electron beam irradiation, to approximately 2 to 5 V. [Function] That is, in the present invention, the device structure at an intermediate stage is irradiated with an electron beam, and the threshold voltage of the device structure after manufacturing is completed is set to the desired value. It is possible to maintain the voltage within the range of about 2 to 5 V, and even when the threshold voltage is reduced due to high temperature, the lowest threshold voltage can be maintained.

〔実 施 例〕〔Example〕

以下、この発明に係る半導体装置の製造方法の一実施例
につき、第1図ないし第3図を参照して詳細に説明する
Hereinafter, one embodiment of the method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図はこの実施例方法を適用した堅型IGBTの概要
構成を示す断面図である。
FIG. 1 is a sectional view showing the general structure of a rigid IGBT to which this embodiment method is applied.

すなわち、この実施例装置の場合にも、ダシリコン基板
21上には、エピタキシャル成長などにより高儂度1層
22.および低不純物濃度のn一層23を順次に形成さ
せ、かつこのn一層23の主表面上に、DSA法により
 pウェル層24.および同層24中へのn+型ソース
層25とを選択的に形成させてチャンネル領域2Bを得
る。そしてこのとき、このチャンネル領域26の表面濃
度をして、素子における電子線照射前のしきい値電圧が
5〜10v程度になるように設定しておくのである。
That is, in the case of this embodiment device as well, a high-temperature single layer 22. is formed on the silicon substrate 21 by epitaxial growth or the like. and a low impurity concentration n-type layer 23 are sequentially formed, and on the main surface of this n-type layer 23, a p-well layer 24 is formed by the DSA method. Then, an n+ type source layer 25 is selectively formed in the same layer 24 to obtain a channel region 2B. At this time, the surface concentration of the channel region 26 is set so that the threshold voltage of the element before electron beam irradiation is approximately 5 to 10V.

ついで、チャンネル領域26上にゲート絶縁膜27を介
してゲート電極28を、n+型ンース層25と pウェ
ル層24とを同時にオーミックコンタクトするようにソ
ース電極28を、ダシリコン基板21の他面にドレイン
電極30をそれぞれに形成させた上で、電子線を照射す
ると共に、かつ熱処理して、素子のしきい値電圧が2〜
5V程度になるようにしたものである。
Next, a gate electrode 28 is placed on the channel region 26 via the gate insulating film 27, a source electrode 28 is placed in ohmic contact with the n+ type source layer 25 and the p well layer 24, and a drain is placed on the other side of the silicon substrate 21. After forming the electrodes 30 on each of them, electron beam irradiation and heat treatment are performed to raise the threshold voltage of the device to 2 to 2.
The voltage is set to about 5V.

従って、前記のようにして製造された実施例構成による
堅型IGBTIIにおいては、装置の製造後にあって2
〜5V程度の範囲のしきい値電圧vGS(th)が得ら
れ、温度の経時変化に対しても、このしきい値電圧V。
Therefore, in the rigid IGBT II with the embodiment structure manufactured as described above, two
A threshold voltage vGS(th) in the range of ~5V is obtained, and this threshold voltage V remains constant even when the temperature changes over time.

5(th)は殆んど変動することがない。5(th) hardly changes.

そしてまた、通常、考えられる10mV/’0程度の高
温度V。5(th)の低減に対しても、 150℃の高
温において、最低0.7v程度の値を保証できるのであ
る。
Also, a high temperature V of about 10 mV/'0 is normally considered. Even with a reduction of 5(th), a minimum value of about 0.7V can be guaranteed at a high temperature of 150°C.

こ\で、前記した従来例構成におけるように、電子線照
射前に設定されたしきい値電圧V。5(th)が2〜5
V程度であると、電子線照射後に7二−ルしても、この
しきい値電圧vGS(th)が1〜2.5V程度までし
か回復せず、その下限値であるIVでは、10mV/’
0程度までの温度低減率を考慮するとき、150℃程度
の高温の場合にはノーマリ−オン状態となってしまい、
この堅型IGBTの制御が不能になる。
Here, as in the conventional configuration described above, the threshold voltage V is set before electron beam irradiation. 5(th) is 2 to 5
If it is about V, this threshold voltage vGS(th) will only recover to about 1 to 2.5V even after 7 hours after electron beam irradiation, and at the lower limit of IV, it will be 10mV/ '
When considering the temperature reduction rate down to about 0, at a high temperature of about 150℃, it will be in a normally on state,
This hard IGBT becomes uncontrollable.

そして、前記従来例構成での電子線照射前の初期しきい
値電圧vGS(th)を2〜5V程度に設定するのには
、この実施例構成の第1図を参考にして、チャンネル領
域28部を1〜2 X 1017cm−3の表面濃度に
するため、 1〜2 Xl014/crn”での9例え
ば、B+のイオン注入がなされる。しかして、この場合
」こは、n+型ソース層25の直下のpウェル領域24
の濃度が低下することによるところの、各層25,24
゜23.21でのnpnpサイリスタ領域のラッチアッ
プが問題になるために、通常、符号24で示したような
ラッチアップ対策用の1領域の形成を必要とするのであ
る。
To set the initial threshold voltage vGS(th) before electron beam irradiation in the conventional configuration to about 2 to 5V, refer to FIG. In order to achieve a surface concentration of 1-2 X 1017 cm-3 in the n+ type source layer 25, for example, B+ ion implantation is performed at 1-2 Xl014/crn. p-well region 24 directly under
Each layer 25, 24 due to a decrease in the concentration of
Since the latch-up of the npnp thyristor region at 23.21°C becomes a problem, it is usually necessary to form a region as shown by the reference numeral 24 to prevent latch-up.

しかして、このような従来例構成に対し、この実施例構
成の場合には、電子線照射前の初期しきい値電圧vcs
(th)を5〜IOV程度に高く設定しているために、
前記したチャンネル領域26部を3〜5X 1017c
m−3の表面濃度にし得て、n”ffiソース層25の
直下のpウェル領域24の濃度が高くなり、これによっ
て、ラフチアツブ対策用の1領域を形成せずに済み、偽
って製造プロセスの簡略化もまた可能になるのである。
However, in contrast to such a conventional configuration, in the case of this embodiment configuration, the initial threshold voltage vcs before electron beam irradiation
Because (th) is set as high as 5 to IOV,
26 parts of the channel area described above are 3 to 5X 1017c
m-3 surface concentration, and the concentration of the p-well region 24 directly under the n''ffi source layer 25 becomes high, thereby eliminating the need to form a region for preventing rough lumps and falsely improving the manufacturing process. Simplification is also possible.

次に、この実施例方法による具体例について述べる。Next, a specific example of this embodiment method will be described.

第2図(a)ないしくd)はこの実施例方法を適用した
堅型IGB↑の製造態様の概要を工程順に示すそれぞれ
断面図である。
FIGS. 2(a) to 2(d) are cross-sectional views showing an overview of the manufacturing method of the rigid IGB↑ to which the method of this embodiment is applied in order of steps.

すなわち、この実施例方法の場合にあっては、まず、0
.01Ω−C1程度のダ型シリコン基板21の主面上に
、0.1Ω−cm程度のn+不純物エピタキシャル層か
らなる高濃度11層22を約20gmの厚さに形成させ
、かつこの高濃度n+層22上に、50Ω−C■程度の
低不純物濃度のn一層23を約1100pの厚さに形成
させる(第2図(a))。
That is, in the case of this embodiment method, first, 0
.. On the main surface of the Da type silicon substrate 21 of about 0.1 Ω-C1, 11 high-concentration layers 22 consisting of an n+ impurity epitaxial layer of about 0.1 Ω-cm are formed to a thickness of about 20 gm, and this high-concentration n+ layer An n layer 23 having a low impurity concentration of about 50 Ω-C2 is formed on the layer 22 to a thickness of about 1100 p (FIG. 2(a)).

ついで、前記n一層23の表面を酸化させることにより
、約1000〜1500λの厚さのゲート絶縁膜27を
形成させたのち、その上に約5000λの厚さのポリシ
リコンからなるゲート電極28を形成させる。また、そ
の後、このゲート電極2日をマスクにしてイオン注入な
どの手段により、約5X 1014/crn’のB+を
ドープし、かつ拡散によって約10gm程度の深さのp
ウェル層24を選択的に形成させ、さらに、ゲート電極
28による窓の中央部のみを絶縁膜で覆い、これらのゲ
ート電極28および絶縁膜をマスクにしてAsやリンを
拡散し、 pウェル層24中にn+型ソース層25を選
択的に形成させてチャンネル領域26を得る(同図(b
))。
Next, by oxidizing the surface of the n-layer 23, a gate insulating film 27 with a thickness of about 1000 to 1500λ is formed, and then a gate electrode 28 made of polysilicon with a thickness of about 5000λ is formed thereon. let Then, using this gate electrode as a mask, B+ is doped at about 5X 1014/crn' by means such as ion implantation, and a p-type layer is doped to a depth of about 10 gm by diffusion.
The well layer 24 is selectively formed, and further, only the central part of the window formed by the gate electrode 28 is covered with an insulating film, and As and phosphorus are diffused using the gate electrode 28 and the insulating film as a mask to form the p-well layer 24. An n+ type source layer 25 is selectively formed therein to obtain a channel region 26 (see (b) in the same figure).
)).

さらに、前記n+型ソース層25とpウェル層24とを
同時にオーミックコンタクトするようにしてソース電極
28を形成させ・、また、前記ダシリコン基板21の他
面にはドレイン電極30をそれぞれに形成させる(同図
(C))、こへで、このようにして得た中間段階の素子
構成の初期しきい値電圧vGS(th)は5〜IQV程
度である。
Furthermore, a source electrode 28 is formed by simultaneously bringing the n+ type source layer 25 and the p well layer 24 into ohmic contact, and a drain electrode 30 is formed on the other surface of the silicon substrate 21, respectively. (C) of the same figure, the initial threshold voltage vGS(th) of the intermediate stage element configuration thus obtained is about 5 to IQV.

そしてまた、前記中間段階での素子構成に対しては、続
いて、5×10 〜8×1014cm−2程度の照耐量
の電子線を照射させ(同図(d))、その後、温度約3
00℃程度で、おへよそ2〜5時間程度アニール処理し
て、前記第1図に示した堅型IGBTを完成する。
Furthermore, the element configuration at the intermediate stage is then irradiated with an electron beam having an irradiation capacity of about 5 x 10 to 8 x 1014 cm-2 (see figure (d)), and then at a temperature of about 3
The rigid IGBT shown in FIG. 1 is completed by annealing at about 00° C. for about 2 to 5 hours.

しかして、この場合、第3図に示されている通り、前記
電子線の照射後のしきい値電圧vGS(th)は、−4
〜5V程度まで低下するが、その後のアニール処理に伴
ない2〜5V程度まで回復する。すなわち、このアニー
ル処理に伴なって、ターンオフ時間は、アニール処理時
間と共に徐々に回復し、一方、しきい値電圧V。5(t
h)は、その回復がお−よそ2〜5時間程度で飽和して
しまう、(7”1つて、このアニール処理は、温度約3
00℃程度で、 2〜5時間程度行なうことが望ましい
In this case, as shown in FIG. 3, the threshold voltage vGS(th) after irradiation with the electron beam is -4
Although it decreases to about 5 V, it recovers to about 2 to 5 V with the subsequent annealing process. That is, with this annealing treatment, the turn-off time gradually recovers as the annealing treatment time increases, while the threshold voltage V. 5(t
h), the recovery is saturated in about 2 to 5 hours (7"), and this annealing process is performed at a temperature of about 3.
It is desirable to carry out the heating at about 00°C for about 2 to 5 hours.

すなわち9以上のようにして、目的とするところの、前
記作用、効果を有する所期の堅型IGBTを製造し得る
のである。
That is, as described above, it is possible to manufacture the desired rigid IGBT having the desired functions and effects described above.

なお、前記実施例方法においては、素子構成各部の導電
形をそれぞれに特定した場合について述べたが、これら
を逆の導電形にした場合にも適用できて、同様な作用、
効果を得られることは勿論である。
In addition, in the above-mentioned example method, the case where the conductivity type of each component part of the element is specified respectively is described, but it can also be applied to the case where these are made to be the opposite conductivity type, and the same effect,
Of course, it is effective.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、相互に逆の導電
形で直列に隣接するソース領域、ウェル領域、基体領域
、およびドレイン領域を有してサイリスタ構成とされ、
かつソース領域とウェル領域との表面に、 DSA法に
よって自己整合的にチャンネル領域を形成させ、チャン
ネル領域にゲート絶縁膜を介して形成されるゲート電極
により制御可能にした堅型IGBTにおいて、まず、チ
ャンネル領域の形成時に、このチャンネル領域の表面濃
度を、素子構成のしきい値電圧がお〜よそ5〜lOv程
度になるように設定させ、ついで、同表面側から電子線
を照射後、アニール処理して、電子線照射時に低下した
しきい値電圧を、お覧よそ2〜5V程度まで回復させる
ようにしたから、中間段階での素子構成に電子線照射を
なして製造終了した後のしきい値電圧を、常時、所定の
値であるところの、お−よそ2〜5Vの範囲に維持し得
ると共に、高温度によるしきい値電圧の低減に対しても
、最低のしきい値電圧を効果的に保持でき、しかも、こ
の種のサイリスタ構成におけるラッチアップ対策をも自
動的に講することができて、製造工程自体の簡略化をも
図り得るなどの優れた特長を有するものである。
As described in detail above, according to the present invention, a thyristor is formed by having a source region, a well region, a base region, and a drain region adjacent in series and having mutually opposite conductivity types,
In a rigid IGBT in which a channel region is formed in a self-aligned manner on the surfaces of a source region and a well region by the DSA method, and can be controlled by a gate electrode formed in the channel region via a gate insulating film, first, When forming the channel region, the surface concentration of this channel region is set so that the threshold voltage of the device structure is approximately 5 to 1 Ov, and then, after irradiation with an electron beam from the same surface side, annealing treatment is performed. As a result, the threshold voltage, which had decreased during electron beam irradiation, was restored to approximately 2 to 5 V, so that the threshold voltage after the device configuration was irradiated with electron beams at an intermediate stage and manufacturing was completed. The value voltage can always be maintained at a predetermined value in the range of approximately 2 to 5 V, and the lowest threshold voltage can be effectively maintained even when the threshold voltage is reduced due to high temperature. Furthermore, it has excellent features such as being able to automatically take measures against latch-up in this type of thyristor configuration and simplifying the manufacturing process itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体装置の製造方法の一実施
例を適用した堅型IGBTの概要構成を示す断面図、第
2図(a)ないしくd)は同上堅型IGBTの製造態様
の概要を工程順に示すそれぞれ断面図、第3図は同上方
法でのアニール処理時におけるしきい値電圧、およびタ
ーンオフ時間と、アニール処理時間との関係を示す説明
図であり、また、第4図は同上従来例による堅型IGB
Tの概要構成を示す断面図である。 21・・・・p+シリコン基板、22・・・・高濃度B
+層、23・・・・低不純物濃度のn一層、24・・・
・pウェル層、25・・・・n+型ソース層、26・・
・・チャンネル領域、27・・・・ゲート絶縁膜、28
・・・・ゲート電極28.29・・・・ソース電極、3
0・・・・ドレイン電極。 代理人  大  岩  増  雄 第11 第2図 第2図 第3図 ↑(h rs、) 第4図 手続補正書(自発) 2、発明の名称 半導体装置の製造方法 3、補正をする者 代表者志岐守哉 4、代理人 住 所    東京都千代田区丸の内二丁目2番3号5
、補正の対象 6、補正の内容 (1)  明細書の特許請求の範囲を別紙のとおり補正
する。 (2)同書6頁14行の「同表面側から」を削除する。 以  上 特許請求の範囲 (1)  相互に逆の導電形で直列に隣接するソース領
域、ウェル領域、基体領域、およびドレイン領域を有し
、かつ前記ソース領域とウェル領域との表面に、DSA
法によって自己整合的にチャンネル領域を形成した素子
構成とされ、前記チャンネル領域にゲート絶縁膜を介し
て形成したゲート電極にょυ制御される堅型IGBTに
おいて、前記チャンネル領域の形成時に1まず、その表
面濃度を、素子構成のしきい値電圧がお\よそ5〜IO
V程度になるように設定させ、ついで、電子線を照射後
、アニール処理して、電子線照射時に低下した前記しき
い値電圧を、お\よそ2〜5V程度まで回復させるよう
にしたことを特徴とする半導体装置の製造方法。 (2)チャンネル領域形成時における表面濃度か、3〜
5x10170yI−sであることを特徴とする特許請
求の範囲第1項に記載の半導体装置の製造方法。 (3)電子線照射量が、5×1013”〜8×1014
伽であることを特徴とする特許請求の範囲第1項に記載
の半導体装置の製造方法。 (4)アニール処理条件が、お\よそ300℃の温度で
、2〜5時間の処理であることを特徴とする特許請求の
範囲第1項に記載の半導体装置の製造方法。
FIG. 1 is a sectional view showing the general structure of a rigid IGBT to which an embodiment of the method for manufacturing a semiconductor device according to the present invention is applied, and FIGS. FIG. 3 is an explanatory diagram showing the relationship between the threshold voltage, turn-off time, and annealing time during annealing in the same method as above, and FIG. Rigid IGB according to the conventional example above
FIG. 2 is a cross-sectional view showing the general configuration of T. 21...p+ silicon substrate, 22...high concentration B
+ layer, 23...N layer with low impurity concentration, 24...
・P well layer, 25...n+ type source layer, 26...
... Channel region, 27 ... Gate insulating film, 28
...Gate electrode 28.29...Source electrode, 3
0...Drain electrode. Agent Masuo Oiwa No. 11 Figure 2 Figure 2 Figure 3 ↑ (hrs,) Figure 4 Procedural amendment (voluntary) 2. Name of the invention Method for manufacturing semiconductor devices 3. Representative of the person making the amendment Moriya Shiki 4, agent address: 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo
, Subject of amendment 6, Contents of amendment (1) The claims of the specification are amended as shown in the attached sheet. (2) Delete "from the front side" on page 6, line 14 of the same book. Claims (1) A source region, a well region, a base region, and a drain region that are of mutually opposite conductivity types and are adjacent in series, and a DSA is provided on the surfaces of the source region and the well region.
In a rigid IGBT, which has a device configuration in which a channel region is formed in a self-aligned manner by a method, and which is controlled by a gate electrode formed in the channel region via a gate insulating film, when forming the channel region, 1. The surface concentration is determined by the threshold voltage of the device configuration being approximately 5 to IO.
After irradiating the electron beam, annealing is performed to recover the threshold voltage, which decreased during electron beam irradiation, to approximately 2 to 5 V. A method for manufacturing a featured semiconductor device. (2) Surface concentration at the time of channel region formation, 3~
5. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is 5x10170yI-s. (3) Electron beam irradiation amount is 5×1013” to 8×1014
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a tong. (4) The method for manufacturing a semiconductor device according to claim 1, wherein the annealing treatment conditions are a treatment at a temperature of approximately 300° C. for 2 to 5 hours.

Claims (4)

【特許請求の範囲】[Claims] (1)相互に逆の導電形で直列に隣接するソース領域、
ウェル領域、基体領域、およびドレイン領域を有し、か
つ前記ソース領域とウェル領域との表面に、DSA法に
よつて自己整合的にチャンネル領域を形成した素子構成
とされ、前記チャンネル領域にゲート絶縁膜を介して形
成したゲート電極により制御される堅型IGBTにおい
て、前記チャンネル領域の形成時に、まず、その表面濃
度を、素子構成のしきい値電圧がおゝよそ5〜10V程
度になるように設定させ、ついで、同表面側から電子線
を照射後、アニール処理して、電子線照射時に低下した
前記しきい値電圧を、おゝよそ2〜5V程度まで回復さ
せるようにしたことを特徴とする半導体装置の製造方法
(1) Source regions adjacent in series with mutually opposite conductivity types;
The device has a well region, a base region, and a drain region, and has a channel region formed in a self-aligned manner on the surfaces of the source region and the well region by the DSA method, and has a gate insulator in the channel region. In a rigid IGBT controlled by a gate electrode formed through a film, when forming the channel region, first, the surface concentration is adjusted so that the threshold voltage of the device structure is approximately 5 to 10 V. Then, after irradiating an electron beam from the same surface side, an annealing treatment is performed to recover the threshold voltage, which decreased during the electron beam irradiation, to about 2 to 5 V. A method for manufacturing a semiconductor device.
(2)チャンネル領域形成時における表面濃度が、3〜
5×10^1^7cm^−^3であることを特徴とする
特許請求の範囲第1項に記載の半導体装置の製造方法。
(2) The surface concentration at the time of channel region formation is 3~
The method for manufacturing a semiconductor device according to claim 1, wherein the size is 5×10^1^7 cm^-^3.
(3)電子線照射量が、5×10^1^3〜8×10^
1^4cm^−^2であることを特徴とする特許請求の
範囲第1項に記載の半導体装置の製造方法。
(3) The electron beam irradiation amount is 5 x 10^1^3 to 8 x 10^
The method for manufacturing a semiconductor device according to claim 1, wherein the thickness is 1^4 cm^-^2.
(4)アニール処理条件が、おゝよそ300℃の温度で
、2〜5時間の処理であることを特徴とする特許請求の
範囲第1項に記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1, wherein the annealing treatment conditions are a treatment at a temperature of approximately 300° C. for 2 to 5 hours.
JP62059521A 1987-03-13 1987-03-13 Method for manufacturing semiconductor device Expired - Lifetime JPH0728036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059521A JPH0728036B2 (en) 1987-03-13 1987-03-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059521A JPH0728036B2 (en) 1987-03-13 1987-03-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63226072A true JPS63226072A (en) 1988-09-20
JPH0728036B2 JPH0728036B2 (en) 1995-03-29

Family

ID=13115650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059521A Expired - Lifetime JPH0728036B2 (en) 1987-03-13 1987-03-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0728036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185069A (en) * 1988-12-02 1990-07-19 Motorola Inc Semiconductor device having high-energy stopping power and temperature-compensated stopping voltage
JPH0327573A (en) * 1989-06-26 1991-02-05 Hitachi Ltd Semiconductor device
KR102251761B1 (en) * 2019-11-27 2021-05-14 현대모비스 주식회사 Power semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929741B2 (en) * 2012-01-23 2016-06-08 株式会社デンソー Manufacturing method of semiconductor device

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CONF. REC. IEEE IND. APPL. SOC. ANNU. MEET. 21ST=1986 *
IEEE TRANSACTIONS ON ELECTRON DEVICES=1977 *
IEEE TRANSACTIONS ON ELECTRON DEVICES=1984 *
IEEE TRANSACTIONS ON ELECTRON DEVICES=1985 *
J. ELECTROCHEM. SOC.=1977 *
J. ELECTROCHEM. SOC.=1983 *
SOLID-STATE ELECTRONICS=1983 *
VLSI TECHNOLOGY=1983 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185069A (en) * 1988-12-02 1990-07-19 Motorola Inc Semiconductor device having high-energy stopping power and temperature-compensated stopping voltage
JPH0327573A (en) * 1989-06-26 1991-02-05 Hitachi Ltd Semiconductor device
KR102251761B1 (en) * 2019-11-27 2021-05-14 현대모비스 주식회사 Power semiconductor device

Also Published As

Publication number Publication date
JPH0728036B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
KR100232206B1 (en) Method of manufacturing semiconductor device
KR920009745B1 (en) Manufacturing method of semiconductor
JPH0467343B2 (en)
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JPS60210861A (en) Semiconductor device
JP3863926B2 (en) Three-terminal power insulated gate transistor and manufacturing method thereof
JPH07101737B2 (en) Method for manufacturing semiconductor device
JPS63226072A (en) Manufacture of semiconductor device
JPH0436584B2 (en)
US4216038A (en) Semiconductor device and manufacturing process thereof
JPS6184867A (en) Manufacture of igfet
JP3240896B2 (en) MOS type semiconductor device
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP3369862B2 (en) Method for manufacturing semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH0234937A (en) Manufacture of semiconductor device
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JPH05343667A (en) Manufacture of conductivity modulation type mosfet
JP3017783B2 (en) Conduction modulation type MOSFET
JPH0472771A (en) Mosfet
JPS6223170A (en) Manufacture of vertical type field-effect transistor for power
JPH01189175A (en) Double-diffusion type field effect semiconductor device
JPS6369271A (en) Semiconductor device and manufacture thereof
JPH07249760A (en) Fabrication of semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage