JPS6184867A - Manufacture of igfet - Google Patents

Manufacture of igfet

Info

Publication number
JPS6184867A
JPS6184867A JP60214398A JP21439885A JPS6184867A JP S6184867 A JPS6184867 A JP S6184867A JP 60214398 A JP60214398 A JP 60214398A JP 21439885 A JP21439885 A JP 21439885A JP S6184867 A JPS6184867 A JP S6184867A
Authority
JP
Japan
Prior art keywords
substrate
region
source
junction
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214398A
Other languages
Japanese (ja)
Inventor
ロレンス アラン グツドマン
ジヨン パトリツク ラツセル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS6184867A publication Critical patent/JPS6184867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の背景〕 この発明は、金属酸化物半導体電界効果トランジスタ(
以下MO8FETと称する)のような絶縁ゲート電界効
果トランジスタ(以下IGFETと称する)に関する。
[Detailed Description of the Invention] [Background of the Invention] The present invention relates to a metal oxide semiconductor field effect transistor (
The present invention relates to insulated gate field effect transistors (hereinafter referred to as IGFETs) such as MO8FETs (hereinafter referred to as MO8FETs).

すなわち、この発明は半導体ウェハの一方の面にソース
およびゲート電極が配置され、反対側の面にドレン電極
が配置された縦型MO8FFI:TK閃し、特に導電度
変調FET(以下C0MFETと称する)のような縦型
2重拡散MO8FET (以下VDMO8、!:称する
>K。
That is, this invention is a vertical MO8FFI:TK type in which a source and gate electrode are arranged on one side of a semiconductor wafer and a drain electrode is arranged on the opposite side, and in particular, a conductivity modulated FET (hereinafter referred to as C0MFET). Vertical double diffusion MO8FET (hereinafter referred to as VDMO8, !:>K).

関する。related.

VDMO8装置は交互に導電型が変るソース、基体、ド
レンの各領域を半導体ウェハ内に直列に配置したもので
、その基体領域はウエハ面に隣接して配置され、ソース
およびドレン領域はウエハ表面の基体領域にチャンネル
領域の長さと幅を画定するように設けられている。V 
D IVI OSという用語はこの装置の製造方法に由
来しており、その方法は、半導体ウエハ面にドレン領域
を設け、そのドレン領域の一部にマスク開孔を介して基
体領域用ドーグ剤とソース領域用ドープ剤を通常順次拡
散する各段階からなる。
A VDMO8 device has source, substrate, and drain regions of alternating conductivity types arranged in series within a semiconductor wafer, with the substrate region located adjacent to the wafer surface and the source and drain regions adjacent to the wafer surface. A channel region is provided in the substrate region to define the length and width of the channel region. V
The term DIVI OS originates from the method of manufacturing this device, in which a drain region is provided on the surface of a semiconductor wafer, and a portion of the drain region is injected with a dope agent for the substrate region and a source through mask openings. The steps usually involve sequential diffusion of the dopant for the region.

ウェハ表面にはチャンネル領域に跨って絶縁ゲート電極
が設けられ、装置の動作中にこれに特定の聞直電圧より
大きな電圧を印加すると、チャンネル領域のウェハ表面
に隣接する部分における基体の導電型が反転し、これに
よってソース領域とドレン領域の間にfB子または正孔
、E流を流す反転チャンネルと称するものが形成される
。従って、装置の動作はゲートに印加される電圧によっ
て電子まだは正孔の流れが選択的に変調される→÷中゛
     −ユニポーラ 型のものとして説明される。通常のVDMO8の構造お
よび処理についてのこれ以上の細部は米国特許第4.1
45.700号および第4 、072 、975号の各
明細書に記載されている。
An insulated gate electrode is provided on the wafer surface spanning the channel region, and when a voltage greater than a certain direct voltage is applied to this during operation of the device, the conductivity type of the substrate in the portion of the channel region adjacent to the wafer surface changes. This forms what is called an inversion channel that allows fB electrons or holes, E current to flow between the source and drain regions. Therefore, the operation of the device can be described as unipolar, in which the flow of electrons and holes is selectively modulated by the voltage applied to the gate. Further details on the construction and processing of conventional VDMO8s are found in U.S. Patent No. 4.1.
No. 45.700 and No. 4,072,975.

C0MFETはVDMO3装置の変形で、ドレン領域に
隣接してこれと反対の導電型の第4番目の半導体領域を
含んでいる。この第4番目の半導体領域は、陽極領域と
称することもあり、装置の動作中電荷キャリヤの供給源
となってこれに隣接するドレン領域の導電度を変調する
働らきをする。
A COMFET is a variation of a VDMO3 device that includes a fourth semiconductor region of opposite conductivity type adjacent to the drain region. This fourth semiconductor region, sometimes referred to as the anode region, serves as a source of charge carriers to modulate the conductivity of the adjacent drain region during operation of the device.

C0MFET装置の大きな特徴の1っけ同じ構造の3層
VDMO8FETに比して動作抵抗が極めて低いことで
ある。C0MFETの構造の詳細は米国特許第4,36
4,073号の明細書に記・載されている。
One major feature of the C0MFET device is that its operating resistance is extremely low compared to a three-layer VDMO8FET of the same structure. Details of the structure of C0MFET can be found in U.S. Patent No. 4,36.
It is described and described in the specification of No. 4,073.

MO3F’ETの3層ソース/基体/ドレンt→14造
には本来寄生npnまたはpnpバイポーラトランジス
タが備わっていて、ソース/基体/ドレンQのMOSF
ETの構造はエミッタ/ベース/コレクタ型の寄生バイ
ポーラ構造に対応する。MOSFETの動作中にエミッ
タ、ベース間p n 接合が順バイアスされると、寄生
バイポーラトランジスタが導通するが、これはMOSF
ETの性能に有害のため、寄生バイポーラトランジスタ
の利得を下げるだめの種々の努力が払われてきた。この
努力の1例は上記米国特許第4 、072 、975号
明細書の他特願昭60−34285号の明、細部にも記
載されている。
The three-layer source/substrate/drain t→14 structure of MO3F'ET is originally equipped with a parasitic npn or pnp bipolar transistor, and the source/substrate/drain Q MOSF
The structure of the ET corresponds to an emitter/base/collector type parasitic bipolar structure. When the p n junction between the emitter and base is forward biased during operation of the MOSFET, the parasitic bipolar transistor becomes conductive;
Various efforts have been made to reduce the gain of parasitic bipolar transistors because it is detrimental to ET performance. An example of this effort is described in the specification of the above-mentioned US Pat.

C0MFETにおいて寄生パイボーラトラノジスタの利
得を下げることは、寄生npnpまたはpnpnサイリ
スタのラッチアップを防ぐためソース/基体/ドレン型
バイポーラトランジスタの利得と陽極/ドレン/基体型
寄生バイポーラトランジスタの利得の和を1未満に維持
する必要がある点で特に重要である。もしラッチアップ
が生じるとゲート制御が失なわれて装置はもはやC0M
FETとして動作しなくなる。
Reducing the gain of the parasitic bipolar transistor in a C0MFET reduces the sum of the gain of the source/substrate/drain type bipolar transistor and the gain of the anode/drain/substrate type parasitic bipolar transistor to prevent latch-up of the parasitic npnp or pnpn thyristor. This is particularly important as it must be kept below 1. If latch-up occurs, gate control is lost and the device is no longer at C0M.
It will no longer work as an FET.

この発明はこのC0MFETにおけるラッチアップの発
生を抑制すると共に3層V D M OS装置における
寄生バイポーラトランジスタの影響ヲ減じるためになさ
れたものである。
This invention was made to suppress the occurrence of latch-up in this C0MFET and to reduce the influence of parasitic bipolar transistors in three-layer V D MOS devices.

〔発明の概要〕[Summary of the invention]

寄生バイポーラ効果を減じだIGFETはその 。 IGFETs reduce parasitic bipolar effects.

表面に第1の導電型のドレン領域を有する半導体ウェハ
を含み、その表面の一部から内部に第2の導電型の基体
領域を拡散して、基体/ドレンpn接合を形成した後、
その基゛体領域の境界内にウェハ表面から第1の導電型
のソース領域を拡散してその表面から所定の深さに沈ん
だソース/基体pn接合を形成する。このソース/基体
pn接合は基体/ドレンpn接合から離れてウェハ表面
の基体領域内にチャンネル領域を画定する。このウェハ
表面上に所定の深さのソース/基体pn接合と接触する
アルミニウム層が形成され、ソース/基体pn接合が装
置の動作時に順バイアスされるのを防いでいる。
comprising a semiconductor wafer having a drain region of a first conductivity type on a surface, and diffusing a substrate region of a second conductivity type inward from a portion of the surface to form a substrate/drain p-n junction;
A source region of a first conductivity type is diffused from the wafer surface into the boundaries of the substrate region to form a source/substrate p-n junction sunk to a predetermined depth from the surface. The source/substrate pn junction defines a channel region within the substrate region of the wafer surface separate from the substrate/drain pn junction. An aluminum layer is formed on the wafer surface in contact with the source/substrate pn junction at a predetermined depth to prevent the source/substrate pn junction from becoming forward biased during operation of the device.

〔推奨実施例の詳細な説明〕[Detailed explanation of recommended examples]

図に示すように、この発明を含むV D M OS装置
10は例えば3層MO8FETまたは4ノラCOMFE
Tである。説明を明確にするだめ、この発明をNチャン
ネルVDMO3装置に実施しだ場合を引用するが、全て
の導電型を反転してpチャンネルV D M OS装置
を形成することもできることを理解されたい。この装置
10は第1および第2の主表面14.16を持つ半導体
ウエハ12を含み、その第2の主表面16の全面に比較
的高導電度のn型まだはp型の領域18が配置されてい
る。領域18は3層+ nチャンネルMOSFETではn型材料から成り、ドレ
ン領域と呼ばれるが、nチャンネルCQ M FETで
はp型材料から成り、陽極領域と呼ばれる。
As shown in the figure, a V D M OS device 10 including the present invention is configured using, for example, a 3-layer MO8FET or a 4-layer MO8FET.
It is T. For clarity of explanation, reference will be made to the implementation of the invention in an N-channel VDMO3 device, but it should be understood that all conductivity types can also be reversed to form a p-channel VDMOS device. The apparatus 10 includes a semiconductor wafer 12 having first and second major surfaces 14.16, with a relatively highly conductive n-type or p-type region 18 disposed over the second major surface 16. has been done. Region 18 is made of n-type material in a 3-layer + n-channel MOSFET and is called the drain region, whereas in an n-channel CQ M FET it is made of p-type material and is called the anode region.

nチャンネルC0MFET構造では、図に点線で示すよ
うに陽極領域18上にn型ドレン領域20が付加され、
そのn型ドレン領域20に隣接して、或いは領域20が
ないときは比較的高導電度の領域18に隣接して、第1
の主表面14の方向に拡るn−型延長ドし7頑域22が
ある。
In the n-channel C0MFET structure, an n-type drain region 20 is added above the anode region 18, as shown by the dotted line in the figure.
Adjacent to the n-type drain region 20, or in the absence of region 20, adjacent to the relatively high conductivity region 18, a first
There is an n-type extended region 22 extending in the direction of the major surface 14 of the substrate.

第1の主表面14からウェハ12内にp−型基体領域2
4が拡ってn−型延長ドレン領域22との境界に基体/
ドレノpn接合26を形成している。推奨実施例では、
基体領域24を主表面140選ばれた部分からウェハ内
に拡散させて、その基体/ドレンpn接合26が6角形
または4角形のような正多角形の形で主表面14と交わ
るようにしである。その基体領域24の境界内の第1の
主表面14からウェハ12内に+ n型ソース領域28が拡がり、基体領域24との境界で
ソース/基体pn接合30を形成している。このソース
/基体pn接合30は、第1の主表面14で基体/ドレ
ンpn接合26から離れてその主表面14で基体24内
にチャンネル領域32の長さと幅を画定している。ソー
ス領域28の形状は一般に環状であるが円形ではない。
A p-type substrate region 2 is formed into the wafer 12 from the first major surface 14.
4 expands to form a substrate/
A dreno pn junction 26 is formed. In the recommended practice,
The substrate region 24 is diffused into the wafer from selected portions of the major surface 140 such that the substrate/drain pn junction 26 intersects the major surface 14 in the form of a regular polygon, such as a hexagon or a quadrilateral. . A +n type source region 28 extends into the wafer 12 from the first major surface 14 within the boundaries of the substrate region 24 and forms a source/substrate pn junction 30 at the boundary with the substrate region 24 . The source/substrate p-n junction 30 defines the length and width of a channel region 32 within the substrate 24 at its first major surface 14 away from the substrate/drain p-n junction 26 at its first major surface 14 . The shape of source region 28 is generally annular, but not circular.

ソース/基体pn接合30の外部は、基体/ドレンpn
接合26と同様の正多角形の形状で主表面14と交わっ
ている。環状ソース領域28によって包囲された基体領
域24の中央部には、その主表面14からp型相補基体
碩域34が入り込んでいる。
External to the source/substrate pn junction 30 is the substrate/drain pn
It intersects with the main surface 14 in a regular polygonal shape similar to the junction 26 . A p-type complementary substrate subregion 34 extends from the main surface 14 into the center of the substrate region 24 surrounded by the annular source region 28 .

チャンネル領域32上の第1の表面14には、その上の
ゲート絶縁物36とさらにその上のゲート電極38とを
含む絶縁ゲート電極が配置されている。ゲート絶縁物3
6は一般に厚さ約500〜2000人のノリコン酸化物
から成り、ゲート電@38は一般にドーグされた多結晶
シリコンから成る。このゲート電極38上にはこれをそ
の上層から電気的に絶縁するために燐珪酸ガラス、硼珪
酸ガラスまたは燐硼珪酸ガラスのような珪ポガラスを一
般に含む絶縁層40が被覆されている。この絶縁層40
上にはアルミニウムのソース電極42が被覆され、第1
の主表面14に接触してソース領域28および基体領域
24との接触を形成している。第2の主表面16上の高
導電  ・度碩域18にはドレン電極44が接触してい
る。
An insulated gate electrode is disposed on the first surface 14 over the channel region 32 and includes a gate insulator 36 thereon and a gate electrode 38 thereon. Gate insulator 3
6 typically consists of a Noricon oxide approximately 500 to 2000 thick and the gate electrode 38 typically consists of doped polycrystalline silicon. Overlying the gate electrode 38 is an insulating layer 40, typically comprising a silica glass such as phosphosilicate glass, borosilicate glass, or phosphoborosilicate glass, to electrically insulate it from layers above it. This insulating layer 40
An aluminum source electrode 42 is coated on top, and the first
, forming contact with source region 28 and substrate region 24 . A drain electrode 44 is in contact with the highly conductive region 18 on the second main surface 16 .

この発明の方法では、アルミニウムのソース電極42を
これがウェハ12内に少なくともソース/基体pn接合
30の深さまで進入してp型の基体領域24に接触する
ようにすることが肝要である。このアルミニウムの進入
部図中に43で示されている。
In the method of the present invention, it is important to extend the aluminum source electrode 42 into the wafer 12 at least to the depth of the source/substrate pn junction 30 so that it contacts the p-type substrate region 24. This aluminum entry is shown at 43 in the drawing.

このアルミニウムの進入現象の詳細は米国特許第3.6
09,470号明細書に記載されている。この発明では
アルミニウムがチャンネル領域32に有害な影響を与え
ずにできるだけ大きな面積でソース/基体pn接合を貫
通してこれに接触することが望ましい。進入の深さが最
適の場合、このアルミニウム進入部43はソース/基体
pn接合30を貫通するが、基体領域24内には余り進
入しない。
The details of this aluminum intrusion phenomenon are described in U.S. Patent No. 3.6.
No. 09,470. In the present invention, it is desirable for the aluminum to penetrate and contact the source/substrate pn junction in as large an area as possible without deleteriously affecting the channel region 32. If the depth of penetration is optimal, this aluminum penetration 43 penetrates the source/substrate pn junction 30 but does not penetrate significantly into the substrate region 24.

アルミニウム進入部は、ソース電極42の被着中または
彼着装に装置を熱処理することによって形成される。推
奨実施例では、アルミニウムのソース成極42が蒸着や
スパツタリングのような通常の蒸着手段によって被着さ
れだ後約400〜450℃で約15分ないし1時間熱処
理され、これによって主表面14から約0.5〜1.5
μm入り込んだアルミニウム進入部43が形成される。
The aluminum intrusion is formed by heat treating the device during or after the deposition of the source electrode 42. In a preferred embodiment, the aluminum source electrode 42 is deposited by conventional deposition means, such as evaporation or sputtering, and then heat treated at about 400-450° C. for about 15 minutes to 1 hour, thereby removing about 0.5-1.5
An aluminum intrusion portion 43 having a depth of μm is formed.

1 、5 fmがこの熱処理によるほぼ最大の進入距離
であるので、装置の他の処理によってソース/基体pn
接合30の主表面14からの深さが絶対に1.5μm未
満になるようにしなければならない。この推奨実施例で
は、ソース/基体pn接合30の深さは1μm未満がよ
く、約0.5μm未満が最適である。これはソース領域
の深さが1μm以上ある通常の装置に比較して浅いが、
この比較的浅いソース/基体pn接合の深さを制御でき
るようにするにはソース領域28用のn型ドープ剤とし
て砒素を用いることが望ま゛しい。砒素に代えて燐をn
型ソースドープ剤に用いることもできるが、拡散を1μ
m以下に制御するのが困難になる。
Since 1,5 fm is approximately the maximum penetration distance by this heat treatment, the source/substrate pn
It must be ensured that the depth of the bond 30 from the main surface 14 is never less than 1.5 μm. In this preferred embodiment, the depth of the source/substrate pn junction 30 should be less than 1 μm, optimally less than about 0.5 μm. Although this is shallow compared to a conventional device in which the depth of the source region is 1 μm or more,
It is desirable to use arsenic as the n-type dopant for source region 28 to allow control of the depth of this relatively shallow source/substrate p-n junction. phosphorus instead of arsenic
It can also be used as a type source dopant, but the diffusion is limited to 1 μm.
It becomes difficult to control the temperature to below m.

この装置10の製造において、絶縁ゲート電画は、11
主表面14にソース領域28と基本領域24の位la決
めをするマスクの動きをする。一般に絶縁ゲート電極は
孔あき層の形をしており、基体領域とソース領域のドー
プ剤がこの開孔を介してウェハ12内に導入される。こ
の絶縁ゲート電極の開孔を図に符号46で示す。この発
明の進入部形成効果を最大にするという観点から見ると
、第1主表面14上のソース電極42の接触領域は、チ
ャンネル領域32からできるだけ離れた点でソース/基
体pn接合30の上に来る必要がある。これによって上
述の熱処理後アルミニウム進入部43が接触するソース
/基本pn接合30の面積が最大になる。
In the manufacture of this device 10, the insulated gate electrodes are 11
A mask movement is performed to position the source region 28 and basic region 24 on the main surface 14. Generally, the insulated gate electrode is in the form of a perforated layer through which the dopants of the substrate and source regions are introduced into the wafer 12. The opening of this insulated gate electrode is indicated by reference numeral 46 in the figure. From the point of view of maximizing the entry-forming effect of the present invention, the contact area of the source electrode 42 on the first major surface 14 should be placed over the source/substrate p-n junction 30 at a point as far away from the channel region 32 as possible. I need to come. This maximizes the area of the source/basic pn junction 30 with which the aluminum entry portion 43 contacts after the above-mentioned heat treatment.

さらに、この発明を実施するときはp型の基体領域24
のドープ剤濃度を調節してソース領域28の比較的浅い
拡散に対して装置の闇値電圧を補償する必要がある。す
なわち、ソース領域を比較的浅くする拡散では、横方向
の拡散距離も比較的短かくなる。閾値電圧(すなわち反
転チャンネルが形成されている所の電圧)は、チャンネ
ル領域32に隣接するソース/基体pn接合30のキャ
リヤ濃度によって制御されるので、ソース/基体pn接
合30の基体領域24内のp型ドープ剤濃度はソース領
域28のn型ドーグ剤の横方向拡散距離の減少と均衡す
るように減じる必要がある。
Furthermore, when carrying out this invention, the p-type base region 24
It is necessary to adjust the dopant concentration of the dopant to compensate the dark value voltage of the device for the relatively shallow diffusion of the source region 28. That is, when the source region is diffused to be relatively shallow, the lateral diffusion distance is also relatively short. The threshold voltage (i.e., the voltage at which the inversion channel is formed) is controlled by the carrier concentration of the source/substrate pn junction 30 adjacent the channel region 32, so that the The p-type dopant concentration must be reduced to balance the reduction in the lateral diffusion length of the n-type dopant in source region 28.

アルミニウム進入部43はVDMO3装置10のnpn
型ソース/基体/ドレ/構造に対応する寄生バイポーラ
トランジスタの順方向−流利得αを効果的に減少させる
。この発明を含む装置をアルミニウム進入部を設けない
装置と比較すると、進入部を設けない装置でばαが約0
.9であるが、典型的な進入部を設けた装置ではαが0
.25以下となることが観測され、COM F E T
にこの発明を実施するとアルミニウム進入部がランチア
ンプ電流を100倍までも増加させることが観測された
The aluminum entry portion 43 is the npn of the VDMO3 device 10.
effectively reducing the forward-flow gain α of the parasitic bipolar transistor corresponding to the type source/substrate/drain/structure. When comparing a device including this invention with a device not having an aluminum inlet, α is approximately 0 in the device not having an inlet.
.. 9, but in a device with a typical entry section, α is 0.
.. 25 or less, and COM F E T
When the invention was practiced, it was observed that the aluminum inlet increases the launch amplifier current by up to 100 times.

さらに、この発明の方法では、アルミニウム進入部43
が基体領域24とソース/基体pn接合の双方に接触を
形成してp型基体領域24をソース電槙42に接続する
ため、p型の補充用基体領域34の必要がなくなること
もある。さらにまたこの発明の方法では、ソース領域2
8を環状とする必要がないため、これをさらに簡単な形
にすることもできる。
Furthermore, in the method of the present invention, the aluminum entry portion 43
The need for a p-type supplemental substrate region 34 may be eliminated because the p-type substrate region 24 forms contacts to both the substrate region 24 and the source/substrate p-n junction to connect the p-type substrate region 24 to the source voltage 42. Furthermore, in the method of the present invention, the source region 2
Since 8 does not need to be annular, it can also be made into a simpler shape.

アルミニウム進入部43はソース/基体pn接合30の
深さに入り込んでいるので、基体領域24を第1主表面
14でソース電極に接続するための補充領域34の必要
もなくなる。
Because the aluminum entry 43 extends to the depth of the source/substrate pn junction 30, the need for a supplementary region 34 to connect the substrate region 24 to the source electrode at the first major surface 14 is also eliminated.

最後に、この発明をVDMO8装置について説明したが
、IGFETと同様に横型MO8装置にも容易に適用し
得ることを理解すべきである。
Finally, although the invention has been described with respect to a VDMO8 device, it should be understood that it can be easily applied to lateral MO8 devices as well as IGFETs.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明を宮むVDMO8の断面図である。 12・・・ウェハ、14・・・ウエハ1面、22・・・
ドレン、24・・・基体、26・・・基体/ドレンpn
接合、28・・・ソース、30・・・ソース/基体pn
接合、32・・・チャンネル。
The figure is a sectional view of the VDMO 8 embodying the present invention. 12... Wafer, 14... One wafer surface, 22...
drain, 24...substrate, 26...substrate/drain pn
Junction, 28...source, 30...source/substrate pn
Junction, 32...channel.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体ウェハの表面に隣接して第1の導電型のド
レン領域を設ける段階と、その表面の一部から上記ウェ
ハ内に第2の導電型の基体領域を拡散して基体/ドレン
pn接合を形成する段階と、上記基体領域の境界内に第
1の導電型のソース領域を拡散して上記ウェハの表面か
ら所定の深さに沈み、上記基体/ドレン接合から離れて
そのウエハ表面の上記基体領域内にチャンネル領域を限
定するソース/基体pn接合を形成する段階と、上記ウ
ェハ表面に上記所定の深さの上記ソース/基体接合に接
触するアルミニウム層を形成して、装置の動作中に上記
ソース/基体pn接合が順バイアスされるのを防ぐよう
にする段階とを含むIGFETの製造方法。
(1) providing a drain region of a first conductivity type adjacent to the surface of a semiconductor wafer, and diffusing a base region of a second conductivity type into the wafer from a portion of the surface to drain the base/drain pn; forming a junction; and diffusing a source region of a first conductivity type within the boundaries of the substrate region to a predetermined depth below the surface of the wafer and away from the substrate/drain junction to a depth of the wafer surface. forming a source/substrate p-n junction defining a channel region within the substrate region; and forming an aluminum layer on the wafer surface in contact with the source/substrate junction at the predetermined depth during operation of the apparatus. and preventing the source/substrate pn junction from becoming forward biased.
JP60214398A 1984-09-27 1985-09-26 Manufacture of igfet Pending JPS6184867A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65510984A 1984-09-27 1984-09-27
US655109 1984-09-27

Publications (1)

Publication Number Publication Date
JPS6184867A true JPS6184867A (en) 1986-04-30

Family

ID=24627549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214398A Pending JPS6184867A (en) 1984-09-27 1985-09-26 Manufacture of igfet

Country Status (4)

Country Link
JP (1) JPS6184867A (en)
DE (1) DE3533808A1 (en)
FR (1) FR2570880A1 (en)
GB (1) GB2165091B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181571A (en) * 1988-01-11 1989-07-19 Nippon Denso Co Ltd Conduction modulation type mosfet
JPH01235277A (en) * 1988-03-15 1989-09-20 Nec Corp Vertical field-effect transistor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2193597A (en) * 1986-08-08 1988-02-10 Philips Electronic Associated Method of manufacturing a vertical DMOS transistor
JPS63302535A (en) * 1987-06-03 1988-12-09 Mitsubishi Electric Corp Gallium arsenide integrated circuit
JP2510710B2 (en) * 1988-12-13 1996-06-26 三菱電機株式会社 MOS field effect transistor formed in semiconductor layer on insulator substrate
KR20100135521A (en) * 2009-06-17 2010-12-27 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
CN106206300A (en) * 2015-04-29 2016-12-07 北大方正集团有限公司 Vertical double diffused metal-oxide semiconductor field effect transistor and processing method
CN109817707A (en) * 2019-01-15 2019-05-28 上海华虹宏力半导体制造有限公司 RC-IGBT structure and its manufacturing method
CN117238969A (en) * 2023-11-13 2023-12-15 深圳基本半导体有限公司 Silicon carbide MOSFET device and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363983A (en) * 1976-11-19 1978-06-07 Toshiba Corp Semiconductor device
JPS543480A (en) * 1977-06-09 1979-01-11 Fujitsu Ltd Manufacture of semiconductor device
DE2930780C2 (en) * 1979-07-28 1982-05-27 Deutsche Itt Industries Gmbh, 7800 Freiburg Method of manufacturing a VMOS transistor
DE3240162C2 (en) * 1982-01-04 1996-08-01 Gen Electric Method of fabricating a double-diffused source-based short-circuit power MOSFET
US4503598A (en) * 1982-05-20 1985-03-12 Fairchild Camera & Instrument Corporation Method of fabricating power MOSFET structure utilizing self-aligned diffusion and etching techniques
JPS5957477A (en) * 1982-09-27 1984-04-03 Fujitsu Ltd Semiconductor device
CA1216968A (en) * 1983-09-06 1987-01-20 Victor A.K. Temple Insulated-gate semiconductor device with improved base-to-source electrode short and method of fabricating said short

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181571A (en) * 1988-01-11 1989-07-19 Nippon Denso Co Ltd Conduction modulation type mosfet
JPH01235277A (en) * 1988-03-15 1989-09-20 Nec Corp Vertical field-effect transistor

Also Published As

Publication number Publication date
FR2570880A1 (en) 1986-03-28
DE3533808A1 (en) 1986-04-03
GB2165091A (en) 1986-04-03
GB8523651D0 (en) 1985-10-30
GB2165091B (en) 1988-04-20

Similar Documents

Publication Publication Date Title
US4737471A (en) Method for fabricating an insulated-gate FET having a narrow channel width
JP2987098B2 (en) Manufacturing method of integrated circuit
US5378920A (en) High breakdown voltage semiconductor device
US4529456A (en) Method of forming bifets by forming isolation regions connected by diffusion in semiconductor substrate and epitaxial layer
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JP2000188391A (en) Manufacture of semiconductor integrated circuit device
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
US4851889A (en) Insulated gate field effect transistor with vertical channel
US5043788A (en) Semiconductor device with functional portions having different operating voltages on one semiconductor substrate
KR0134887B1 (en) Dipole transistor manufacturing method
JPS6184867A (en) Manufacture of igfet
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
JPH056354B2 (en)
US4742015A (en) Method for producing a protective arrangement for a field-effect transistor
JP2000068372A (en) Semiconductor device and manufacture thereof
JP2504567B2 (en) Method for manufacturing semiconductor device
JPH0656855B2 (en) Insulated gate type field effect transistor
JP3193984B2 (en) High voltage MOS transistor
JPS6112390B2 (en)
JPH0728036B2 (en) Method for manufacturing semiconductor device
JP2005135979A (en) Insulated gate-type bipolar transistor and manufacturing method therefor
KR100201779B1 (en) Semiconductor device and method of manufacturing the same
JPS58157169A (en) Semiconductor device
JP2687489B2 (en) Semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage