JPS63225512A - Production of high-purity granular silicon - Google Patents

Production of high-purity granular silicon

Info

Publication number
JPS63225512A
JPS63225512A JP5983487A JP5983487A JPS63225512A JP S63225512 A JPS63225512 A JP S63225512A JP 5983487 A JP5983487 A JP 5983487A JP 5983487 A JP5983487 A JP 5983487A JP S63225512 A JPS63225512 A JP S63225512A
Authority
JP
Japan
Prior art keywords
silicon
gas
plate
diameter
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5983487A
Other languages
Japanese (ja)
Inventor
Toshihiro Abe
智弘 安部
Hiroji Miyagawa
博治 宮川
Kenji Iwata
健二 岩田
Keiichi Ikeda
圭一 池田
Kenji Okimoto
沖本 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5983487A priority Critical patent/JPS63225512A/en
Publication of JPS63225512A publication Critical patent/JPS63225512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically and continuously obtain the title silicon useful as the raw material for solar battery and a semiconductor device while preventing the by- production of fine powder, by supplying silicon hydride, etc, and silicon crystal grains into a fluidized-bed reactor, and enhancing the contact efficiency through a gas rediffusing plate to carry out reaction. CONSTITUTION:The fluidized-bed reactor 5 made of the SiC with the inner surface coated with a high-purity silicon layer, quartz, or Si3N4 is heated to 550-1,000 deg.C by a heater 10, and the silicon hydride such as monosilane or disilane or the silanes and gaseous H2 and/or inert gas such as Ar are blown into the reactor from a line 1, diffused by a gas diffusing plate 6, and sent up. Silicon crystal grains having 150-350mu diameter are continuously supplied from a line 3 as the seeds. Plural gas rediffusing plates 8 each having holes with the diameter from iota3 times the maximum diameter of the fluidized grain to 10mm, having 20-80% numerical aperture, and fulfilling the relational inequality (DR is the diameter of the reactor 5, and DP is the diameter of the perforated plate) are provided to increase the contact efficiency between the bubble phase and the grain phase. The fluidization reaction is carried out under such conditions, silicon is deposited on the surface of the grain and grown, and the title silicon having 500-1,500mu mean particle diameter is continuously drawn out from a line 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高純度粒状珪素の製造方法に関し、さらに詳し
くいえば、溶融加工されて多結晶珪素の状態であるいは
単結晶化されて太陽電池や半導体素子の原料として用い
られる高純度粒状珪素の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing high-purity granular silicon, and more specifically, it can be melt-processed to form polycrystalline silicon or monocrystalline silicon for use in solar cells and other products. The present invention relates to a method for producing high-purity granular silicon used as a raw material for semiconductor devices.

(従来の技術) 従来、高純度多結晶珪素の製造方法としては。(Conventional technology) Conventionally, as a manufacturing method of high purity polycrystalline silicon.

ペルジャー型反応器にクロロシラン類と水素の混合ガス
あるいはモノシランガスを供給し1通電加熱された棒状
珪素に珪素を析出成長させる方法(以下ペルジャー反応
方式と呼称する)が工業的に用いられてきた。この方法
を用いれば容易に高純度珪素を製造できるものの、棒状
珪素を用いるため反応面である棒状珪素の単位反応容積
当りの表面積が小さく生産性が低い、ペルジャー型反応
器表面からの放熱が大きく電力消費量が大きい。
A method (hereinafter referred to as the Pelger reaction method) has been used industrially in which a mixed gas of chlorosilanes and hydrogen or monosilane gas is supplied to a Pelger type reactor, and silicon is deposited and grown on a rod-shaped silicon rod heated by one current. Although high-purity silicon can be easily produced using this method, since rod-shaped silicon is used, the surface area per unit reaction volume of the rod-shaped silicon, which is the reaction surface, is small and productivity is low. Heat radiation from the Pelger reactor surface is large. Power consumption is large.

製品珪素が棒状であるため製造が回分式となり製造能率
か悪いことと、さらにこれを熔融して単結晶とする場合
に破砕する必要があるなど種々の欠点があった。
Since the product silicon is rod-shaped, it has to be manufactured in batches, resulting in poor manufacturing efficiency, and it also has various drawbacks, such as the need to crush it when melting it into a single crystal.

近年これら従来法の種々の欠点を解消した安価な高純度
多結晶珪素の新しい製造方法の開発研究が盛んに行われ
ている。その代表的な方法の1つとして水素ガスまたは
不活性ガスと前駆体ガスであるクロロシランガスあるい
はモノシランガスて流動状態に保持された珪素i晶粒子
の表面に該前駆体の還元反応または熱分解反応で珪素を
析着させ珪素結晶粒子を成長させる流動床反応方式があ
り、例えばこの方法は米国特許第3,012,861号
、同第3,012,862号に示されている。この方法
によれば従来のペルジャー反応方式に比べて反応面が粒
状珪素であるため単位反応容積当りの表面積が重大に増
加し生産性は著しく向上する。さらに小粒径の珪素種粒
子を連続的に供給し、Jl&、長じた大粒径の珪素粒子
を連続的に抜き出せば、連続運転が可能となり製造能率
は著しく向上する。さらに製造した珪素か粒状であるた
め、これを単結晶化のために熔融する場合、汚染の恐れ
のある破砕工程を必要とせずそのまま使用てきる利点を
有する。このように流動床反応方式による粒状珪素の製
造は数々の利点が期待されるため各社で精力的に開発研
究がなされており数多くの特許出願がなされている。
In recent years, research and development efforts have been actively conducted to develop new methods for producing inexpensive, high-purity polycrystalline silicon that eliminates the various drawbacks of these conventional methods. One of the typical methods is to apply hydrogen gas or inert gas and chlorosilane gas or monosilane gas as a precursor gas to the surface of silicon i-crystal particles held in a fluidized state by a reduction reaction or thermal decomposition reaction of the precursor. There is a fluidized bed reaction method for depositing silicon and growing silicon crystal particles; for example, this method is shown in US Pat. No. 3,012,861 and US Pat. No. 3,012,862. According to this method, since the reaction surface is made of granular silicon, the surface area per unit reaction volume is significantly increased and the productivity is significantly improved compared to the conventional Pelger reaction method. Furthermore, if silicon seed particles with a small particle size are continuously supplied and elongated silicon particles with a large particle size are continuously extracted, continuous operation becomes possible and the production efficiency is significantly improved. Furthermore, since the produced silicon is in the form of granules, it has the advantage that when it is melted for single crystallization, it can be used as is without requiring a crushing step that may cause contamination. As described above, the production of granular silicon by the fluidized bed reaction method is expected to have many advantages, and therefore various companies are actively researching and developing it, and numerous patent applications have been filed.

(発明が解決しようとする問題点) 前述したように流動床反応方式による粒状珪素の製造方
法は、既に工業化されているペルジャー反応方式に比べ
て数々の利点が考えられるため多結晶珪素の安価な製造
法として期待される。しかし、この方法は本発明者らの
検討によれば次のような難点を有することが判明した。
(Problems to be Solved by the Invention) As mentioned above, the method for producing granular silicon using the fluidized bed reaction method has many advantages over the Pelger reaction method, which has already been industrialized. It is expected to be a manufacturing method. However, studies conducted by the present inventors have revealed that this method has the following drawbacks.

すなわち前駆体ガスとして珪素水素化物を用いた流動床
反応方式による粒状珪素の製造において分解した前駆体
ガスの珪素のかなりの部分か目的としている珪素結晶粒
子に析着しないで微小珪素粒子として流動床反応器から
排出される。この微小珪素粒子の形態は一次粒子の大き
さが1gm以下と非常に細かく、−次粒子の状態のまま
、あるいは数個〜数十個が弱く凝集したフロック状とな
っている。この微小珪素粒子の生成量は、種結晶粒子の
粒径、粒径分布及び充填層高、ガス速度、反応温度の操
作条件により変動する。
That is, in the production of granular silicon by a fluidized bed reaction method using silicon hydride as a precursor gas, a considerable part of the silicon in the decomposed precursor gas is transferred to the fluidized bed as minute silicon particles without being deposited on the intended silicon crystal particles. is discharged from the reactor. The form of these micro silicon particles is very fine, with a primary particle size of 1 gm or less, and they remain in the state of secondary particles or form a floc in which several to several tens of particles are weakly aggregated. The amount of fine silicon particles produced varies depending on the particle size of the seed crystal particles, particle size distribution, and operating conditions such as packed bed height, gas velocity, and reaction temperature.

そしてこの微粉の生成は (1)前駆体ガスからの製品への収率が低下する(2)
反応器排出ガス中の微粉の捕集設備が必要となる。
The production of this fine powder leads to (1) a decrease in the yield of products from precursor gases (2)
Equipment for collecting fine powder in the reactor exhaust gas is required.

などの問題をひき起こし、ひいては製品コスト上昇の大
きな要因となる。排出された微粉を回収して反応器ヘリ
サイクルしそれ自身の粒子を成長させるか、または種結
晶粒子に付着成長させて製品粒子として取り出せれば(
1)の問題は解決することになるが、そのため設備費及
び電力等の用役費の増大を招き製品コストの上昇の原因
となる。
This causes problems such as this, and becomes a major factor in increasing product costs. If the discharged fine powder can be collected and recycled to the reactor to grow its own particles, or grown on seed crystal particles and taken out as product particles (
Although the problem 1) will be solved, this will lead to an increase in facility costs and utility costs such as electricity, which will cause an increase in product costs.

それ以上に難しい問題は、微粉がlpm以下の非ルギー
が大きいため循環ライン中で不純物をトラップする危険
性が非常に高く、目的としている高純度製品を得るため
には、微粉の接触するラインを流動床反応と同等の材質
で構成する必要があることと、厳重な運転管理を必要と
することである。
An even more difficult problem is that fine powder has a large non-lugity of less than lpm, so there is a very high risk of trapping impurities in the circulation line, and in order to obtain the desired high-purity product, it is necessary to It needs to be constructed from the same materials as those used in fluidized bed reactions, and it requires strict operational management.

一方、高純度粒状珪素を流動床で製造するためには流動
床反応器は操作が高温であることと、流動床である点か
ら高温でも不純物成分の揮発が少なく、かつ、珪素水素
化物、水素および固体珪素との反応性が小さい耐熱セラ
ミック材料が構造材として用いられる。さらに流動珪素
粒子による摩耗汚染防止も材料選定の重大な選定要因と
して挙げられ硬度の高いものが必要となる。必要とする
製品のグレードによって選定レベルは変化してよいか、
本発明者らが目的とする半導体グレートの製品を得るに
は、具体的には耐熱セラミック構造材としては珪素、炭
化珪素、ガラス質炭素、窒化珪素が用いられる。これら
の構造材の珪素水素化物または/ぶよγ)′掩1III
珪1粒子の接触する面は、摩耗汚染防止の[1的でCV
D法または熔融液への浸漬法などで高純度珪素層で被覆
される。
On the other hand, in order to produce high-purity granular silicon in a fluidized bed, a fluidized bed reactor must be operated at a high temperature, and since it is a fluidized bed, there is little volatilization of impurity components even at high temperatures, and silicon hydride and hydrogen A heat-resistant ceramic material having low reactivity with solid silicon is also used as the structural material. Furthermore, prevention of abrasion and contamination due to fluidized silicon particles is also cited as an important selection factor in material selection, and a material with high hardness is required. Is it okay to change the selection level depending on the grade of the product required?
In order to obtain the semiconductor grade product aimed at by the present inventors, silicon, silicon carbide, vitreous carbon, and silicon nitride are specifically used as the heat-resistant ceramic structural material. Silicon hydride or /flygamma)' cover 1III of these structural materials
The surface in contact with the silicon particles is coated with [1 and CV] to prevent wear and contamination.
It is coated with a high-purity silicon layer by the D method or the molten immersion method.

このような流動床反応器と同等の材質で循環ラインを構
成することは重大な設備費が必要となり経済性から不可
部である。
Constructing the circulation line from the same material as such a fluidized bed reactor requires significant equipment costs and is therefore indispensable from an economic point of view.

以上の理由から生成微粉の回収リサイクルをあきらめて
廃棄するにしても(2)は流動用ガスの循環再使用およ
び/または公害防止面から避けて通れない。
For the above-mentioned reasons, even if we give up on recovering and recycling the generated fine powder and discard it, (2) cannot be avoided from the viewpoint of circulating and reusing the fluidizing gas and/or preventing pollution.

また流動床により前駆体ガスである珪素水素化物を用い
て粒状珪素を製造する場合、1it動状態の安定を保持
するためには前駆体ガスを水素または不活性ガスで希釈
して供給することが望ましい。
Furthermore, when producing granular silicon using silicon hydride as a precursor gas in a fluidized bed, it is necessary to dilute the precursor gas with hydrogen or an inert gas before supplying it in order to maintain stability in the 1-item dynamic state. desirable.

そのためには流動床反応器から排出されたガスを循環再
使用することが経済性から望ましい。この場合製品の汚
染の原因となる微粉を完全に除去する必要が生ずる。
For this purpose, it is desirable from an economic standpoint to recycle and reuse the gas discharged from the fluidized bed reactor. In this case, it becomes necessary to completely remove fine particles that cause product contamination.

微粉の除去は公知の方法で行うことかできる。The fine powder can be removed by a known method.

例えばバッグフィルターなどのろ過方式、ベンチ・ユリ
−、スプレーなどを用いた水または薬液による洗浄方式
か用いられる。前者はガスの汚染か起こらないため好ま
しい方法であるが、微粉の粒径が非常に小さいため量が
多いとぼう大なろ過面積が必要となる。後者の場合は捕
集設備は小さくなるカフ、水または薬液によるガス汚染
が起こるため深冷分離または/および吸着による水また
は薬液の除去を目的としたガス精製設備が必要となる。
For example, a filtration method such as a bag filter, a cleaning method using water or a chemical solution using a bench lily, a spray, etc. are used. The former method is preferable because it does not cause gas contamination, but since the particle size of the fine powder is very small, if the amount is large, a large filtration area is required. In the latter case, the cuff of the collection equipment will be smaller, and gas contamination due to water or chemicals will occur, so gas purification equipment will be required to remove the water or chemicals by cryogenic separation and/or adsorption.

微粉の生成量が少ない場合は前者が望ましい。公害防止
面からはガスの精製設備を必要としないため後者が好ま
しい。本発明者らはyL動床により高純度粒状珪素を製
造する場合、副生ずる微粉を低減することが非常に重要
な課題であることを鑑み鋭意研究した結果本発明に到達
した。
The former is preferable when the amount of fine powder produced is small. From the viewpoint of pollution prevention, the latter is preferable because it does not require gas purification equipment. The present inventors have arrived at the present invention as a result of intensive research in view of the fact that it is a very important issue to reduce by-product fine powder when producing high purity granular silicon using a yL moving bed.

(問題点を解決するための手段) すなわち本発明は、珪素水素化物または珪素水素化物と
水素ガスまたは/および不活性ガスを吹込み、珪素結晶
粒子を流動状態に保持しながら、その表面に珪素を析着
させ珪素結晶粒子をr&長させるに当り、流動床反応域
内に、会合して成長した気泡を分割して粒子相に再分散
させ気泡相と粒子相の接触効率を高めるガス再分散板を
設けることを特徴とする高純度粒状珪素の製造方法を提
供するものである。
(Means for Solving the Problems) That is, the present invention injects silicon hydride or silicon hydride and hydrogen gas or/and inert gas to form silicon crystal particles on the surface while maintaining the silicon crystal particles in a fluid state. When depositing silicon crystal particles and lengthening the silicon crystal particles, a gas redispersion plate is installed in the fluidized bed reaction zone to split the bubbles that have grown together and redisperse them into the particle phase, thereby increasing the contact efficiency between the bubble phase and the particle phase. The present invention provides a method for producing high-purity granular silicon, which is characterized by providing a method for producing high-purity granular silicon.

本発明に用いられる珪素水素化物はモノシランまたはジ
シランあるいはこれらの混合ガスである。また不活性ガ
スとしてはヘリウム、アルゴンいずれも用いられるが安
価な点からアルゴンが好ましい、その表面に珪素を析着
させるいわゆる種として用いられる珪素結晶粒子は製品
珪素結晶粒子を破砕したものまたは熔融噴霧して冷却造
粒したもののいずれでもよい、その粒径は1507℃m
乃至350pmがこのましいが特にこれに限定されるも
のではない。
The silicon hydride used in the present invention is monosilane, disilane, or a mixed gas thereof. Both helium and argon can be used as the inert gas, but argon is preferred because of its low cost.The silicon crystal particles used as so-called seeds to deposit silicon on the surface are crushed product silicon crystal particles or melt sprayed. The particle size is 1507℃m.
The preferred range is from 350 pm to 350 pm, but it is not particularly limited thereto.

流動床反応域への珪素水素化物または珪素水素化物と水
素ガスまたは/および不活性ガスの供給速度は粒子の最
低流動化速度(Umf)の2乃至10倍になるように制
御される。2倍を下まわると粒子同志の固結が起こり易
く安定した流動状態の保持が困難となる。また10倍を
越えると微粉の生成量が増加し好ましくない、微粉の生
成量を下げるには出来るだけガス速度が小さい方か好ま
しい。
The supply rate of silicon hydride or silicon hydride and hydrogen gas or/and inert gas to the fluidized bed reaction zone is controlled to be 2 to 10 times the minimum fluidization rate (Umf) of the particles. If it is less than 2 times, particles tend to clump together, making it difficult to maintain a stable fluid state. Moreover, if it exceeds 10 times, the amount of fine powder produced increases, which is undesirable.In order to reduce the amount of fine powder produced, it is preferable that the gas velocity be as low as possible.

反応温度は550℃乃至1000℃とする。The reaction temperature is 550°C to 1000°C.

550℃を下まわると粒子同志の固結が起こり易く安定
した流動状態が得られない、また1000℃を越える反
応温度では加熱に要するエネルギーが大きくなり経済的
に好ましくない。反応圧力は特に限定しないが容易に実
施するためには大気圧以上が用いられる。好ましくは大
気圧乃至5気圧である。これを越える圧力は設備費の増
大を招き好ましくない。
If the reaction temperature is lower than 550°C, particles tend to solidify together and a stable fluid state cannot be obtained, and if the reaction temperature exceeds 1000°C, the energy required for heating increases, which is economically undesirable. Although the reaction pressure is not particularly limited, atmospheric pressure or higher is used to facilitate the reaction. Preferably the pressure is from atmospheric pressure to 5 atm. Pressure exceeding this is undesirable as it increases equipment costs.

末法で使用する種結晶粒子の粒径は流動床反応器の操作
条件に於て反応排ガスで吹き飛ばされないものを下限と
する。すなわち流動床反応器の流動粒子層の頂部におけ
るガス速度を越える終末沈降速度を持つ粒径のものが使
用される。また種結晶粒子は製品珪素結晶粒子を破砕し
たもの、または熔融噴霧して冷却し、造粒したものいず
れも用いられる。製品の粒子径は平均500 ILm乃
至1500終mが推奨される。
The lower limit of the particle size of the seed crystal particles used in the final method is set to a size that will not be blown away by the reaction exhaust gas under the operating conditions of the fluidized bed reactor. That is, particles of a particle size having a terminal settling velocity exceeding the gas velocity at the top of the fluidized particle bed of the fluidized bed reactor are used. Seed crystal particles may be either crushed product silicon crystal particles or those obtained by melt-spraying, cooling, and granulation. The recommended particle size of the product is an average of 500 ILm to 1500 ILm.

次に本発明の実施態様を図面に従って説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の概略装置構成図を示す。5は流動床反
応器で通常円筒型が使用されるか角型であってもかまわ
ない。また粒子の循環やガスの分散をよくするために下
部にコーン部を設けることもできる流動床反応器は製品
の汚染を防止するため内面が高純度珪素層で被覆された
珪素炭化珪素、ガラス状炭素、石英または窒化珪素が用
いられる。6はラインlから供給された水素ガスまたは
不活性ガス分散板で珪素水素化物の熱分解で生ずる珪素
固体が該ガス分散板に析着することを防止するため冷媒
で珪素水素化物の分解温度以上に冷却されている。ガス
分散板はステンレス鋼等の金属製の多孔板、焼結板、金
網が最も簡便に使用できるが製品汚染防止のため粒子接
触部には高純度珪素多孔板で被覆するのが望ましい、ま
た高純度珪素粒子の充填層て代替えすることもできる。
FIG. 1 shows a schematic diagram of an apparatus configuration of the present invention. 5 is a fluidized bed reactor, which is usually of cylindrical shape or may be of rectangular shape. Fluidized bed reactors can also be equipped with a cone section at the bottom to improve particle circulation and gas dispersion.The fluidized bed reactor is made of silicon carbide, glass-like material whose inner surface is coated with a high-purity silicon layer to prevent product contamination. Carbon, quartz or silicon nitride are used. 6 is a hydrogen gas or inert gas dispersion plate supplied from line 1, and in order to prevent silicon solids produced by thermal decomposition of the silicon hydride from being deposited on the gas dispersion plate, a refrigerant is used to keep the temperature above the decomposition temperature of the silicon hydride. is cooled to. As the gas distribution plate, a perforated plate made of metal such as stainless steel, a sintered plate, or a wire mesh can be used most easily, but to prevent product contamination, it is desirable to cover the part that comes into contact with particles with a high-purity silicon perforated plate. A packed bed of pure silicon particles can also be used instead.

この装置を用いて連続的に高純度粒状珪素を製造する場
合は1種結晶粒子は、ライン3から連続して供給され、
製品粒子抜出し管7を通って成長した珪素結晶粒子が連
続的にライン2から抜き出される。排ガスはライン4か
ら排出される。加熱用ヒーターlOは流動床反応器を所
定の温度に加熱するために用いられる。
When producing high-purity granular silicon continuously using this equipment, the first type crystal particles are continuously supplied from line 3,
The silicon crystal particles grown through the product particle extraction pipe 7 are continuously extracted from the line 2. Exhaust gas is discharged through line 4. A heating heater IO is used to heat the fluidized bed reactor to a predetermined temperature.

図中8.8,8は流動床反応器5内に設けたガス再分散
板であり、固定棒9により反応器壁と間隔を空けて設け
られている。ガス再分散板8は第2図の平面図に示した
ような構造が簡単な多孔板を用いることができる。第2
図において11は再分散板固定棒挿入孔を、12はガス
再分散用の孔を示している。多孔板の大きさは粒子の下
降流を防げないように流動床反応器壁と適度の間隔をあ
ける。流動床反応器及び多孔板の直径をDI、Dpとし
た場合0.65<DP /DH>0.95が適当である
。0.65より小さいとガスの一部が間隙を抜はガスの
分散の効率を下げ、また0、95を越すと粒子の下降流
の抵抗が上がり粒子の循環量が低下する。ガス再分散用
の孔径及び開孔率は上昇粒子の孔の通過抵抗とガスの再
分散効率から決定される。多孔板の孔径は最大流動粒子
径の3倍以上、10■l以下が適当である。また開孔率
は20〜80%が適当である。孔は必ずしも円である必
要はなく三角形、四角形、星形でも使用できる。また同
じ大きさの孔である必要もない。多孔板の材質は製品の
汚染を防止するため流動床反応器と同等のものを使用す
る。ガス再分散板は吹込んだ珪素水素化物が完全に分解
が終了した位置に設置される。その理由はガス再分散板
への固体珪素の析着な避けるためである。ガス再分散板
への珪素の析着は長時間の連続運転を不能に陥れるため
望ましくない、珪素水素化物の分解反応は気相分解反応
及び珪素固体表面反応に分5−tXれる。各々の反応速
度は文献に報告されておりそれを用いて分解終了の位置
を推定できる。気相分解反応および珪素固体表面反応の
速度は珪素水素化物の濃度の1次に比例で略整理できる
。総合した反応速度は反応温度1反応圧力、ガス速度及
び単位体積当りの粒状珪素の表面積で大幅に変化する。
In the figure, reference numeral 8.8 is a gas redispersion plate provided in the fluidized bed reactor 5, and is provided with a space between it and the reactor wall by a fixing rod 9. As the gas redistribution plate 8, a perforated plate with a simple structure as shown in the plan view of FIG. 2 can be used. Second
In the figure, reference numeral 11 indicates a redistribution plate fixing rod insertion hole, and reference numeral 12 indicates a hole for gas redispersion. The size of the perforated plate is such that it is spaced appropriately from the wall of the fluidized bed reactor so as not to prevent the downward flow of particles. When the diameters of the fluidized bed reactor and the perforated plate are DI and Dp, 0.65<DP/DH>0.95 is appropriate. If it is smaller than 0.65, part of the gas will escape through the gap, reducing the efficiency of gas dispersion, and if it exceeds 0.95, the resistance to the downward flow of particles will increase and the circulation rate of particles will decrease. The pore size and porosity for gas redispersion are determined from the resistance of rising particles to pass through the pores and the gas redispersion efficiency. The pore diameter of the perforated plate is suitably at least 3 times the maximum fluid particle diameter and at most 10 liters. Further, the appropriate porosity is 20 to 80%. The holes do not necessarily have to be circular; triangular, square, or star shapes can also be used. Also, the holes do not need to be of the same size. The material of the perforated plate is the same as that used in a fluidized bed reactor to prevent product contamination. The gas redispersion plate is installed at the position where the blown silicon hydride has been completely decomposed. The reason for this is to avoid deposition of solid silicon on the gas redispersion plate. Deposition of silicon on the gas redispersion plate is undesirable because it disables long-term continuous operation.The decomposition reaction of silicon hydride is divided into a gas phase decomposition reaction and a silicon solid surface reaction. The rate of each reaction is reported in the literature and can be used to estimate the end point of decomposition. The rates of the gas phase decomposition reaction and the silicon solid surface reaction can be approximately linearly proportional to the concentration of silicon hydride. The overall reaction rate varies significantly with reaction temperature, reaction pressure, gas velocity, and surface area of granular silicon per unit volume.

ガス分散板6とガス再分散板の間隔は、その間で珪素水
素化物が完全に分解する値以上を必要とする。この値は
反応温度、珪素結晶粒子径、ガス速度等の操作条件によ
り変動する。公知の反応速度式から大略推定できるが詳
細は実験で求める必要がある。ガス再分散板に到達した
気泡相はガス再分゛散板で小気泡に分割、再分散され流
動粒子と生成微粉の接触効率が上がり生成微粉の大部分
が珪素結晶粒子に捕集される。ガス分散板は多段に用い
ることにより微粉の生成°排出量をさらに減少すること
ができるが、その効果と設備費を勘案すれば5段以下が
望ましい。最終段を出た排ガスはライン4を通り排出さ
れる。
The distance between the gas distribution plate 6 and the gas redistribution plate must be at least a value at which the silicon hydride is completely decomposed therebetween. This value varies depending on operating conditions such as reaction temperature, silicon crystal particle size, and gas velocity. It can be roughly estimated from the known reaction rate equation, but the details need to be determined through experiments. The bubble phase that has reached the gas redispersion plate is divided into small bubbles and redispersed by the gas redispersion plate, increasing the contact efficiency between the fluidized particles and the generated fine powder, and most of the generated fine powder is collected by the silicon crystal particles. The amount of fine powder generated and discharged can be further reduced by using gas distribution plates in multiple stages, but in consideration of the effect and equipment cost, it is desirable to use five or fewer stages. The exhaust gas leaving the final stage is discharged through line 4.

(発明の効果) 本発明の簡便な設備及び方法を用いることにより望まし
くない副生微粉の生成量をかなり低減でき安価な高純度
粒状珪素を製造てきる。
(Effects of the Invention) By using the simple equipment and method of the present invention, the amount of undesirable by-product fine powder produced can be considerably reduced, and inexpensive high-purity granular silicon can be produced.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1〜9 第1図に示す装置を用い流動床反応法により高純度粒状
珪素を製造した。この反応条件を下記表−1に示した。
Examples 1 to 9 High purity granular silicon was produced by a fluidized bed reaction method using the apparatus shown in FIG. The reaction conditions are shown in Table 1 below.

ここでライン3として、流動床反応器で製品の汚染を防
止するため高純度珪素で内面を被覆した炭化珪素製反応
管を使用した0寸法は内径40■■、高さlookm−
である、ガス分散板6としては珪素水素化物の熱分解で
生じる珪素固体が該ガス分散板に析着するのを防止する
ため冷却水で冷却できる構造のものを使用した。その上
面に高純度珪素製の多孔板を置いて粒子との接触を避は
製品の汚染を防止した。加熱用ヒーター10で流動床反
応器を所定の温度に加熱した。ガス再分散板8として、
石英製多孔板を使用し、寸法は直径35m■φ、孔3.
5麿鵬φ、ピッチ5.25m鵬Δ配列である。ガス再分
散板固定棒として10s−φの石英棒を使用した。ガス
分散板6とガス再分散8の間隔は200■■とじた。
Here, line 3 uses a silicon carbide reaction tube whose inner surface is coated with high-purity silicon to prevent product contamination in the fluidized bed reactor.
The gas distribution plate 6 used had a structure that could be cooled with cooling water in order to prevent silicon solids produced by thermal decomposition of silicon hydride from depositing on the gas distribution plate. A perforated plate made of high-purity silicon was placed on the top surface to avoid contact with particles and prevent contamination of the product. The fluidized bed reactor was heated to a predetermined temperature using a heating heater 10. As a gas redispersion plate 8,
A perforated quartz plate is used, with dimensions of 35 m in diameter and 3 holes.
The arrangement is 5 mm φ and 5.25 m pitch Δ. A 10 s-φ quartz rod was used as a gas redispersion plate fixing rod. The distance between the gas distribution plate 6 and the gas redistribution plate 8 was set to 200mm.

次に運転方法について述べると、ライン3から供給した
所定量の珪素粒子を充填し、内部を完全に不活性ガスで
置換した後、ラインlから水素ガスまたは不活性ガスを
供給して粒子を流動化しながら加熱用ヒーター10を用
いて流動床反応器5を加熱した。所定の温度に到達した
らラインlからのガスを珪素水素化物と水素ガスまたは
不活性ガスの混合ガスに切替え反応を開始した0反応終
了後、排出ライン4より出た生成微粉を捕集、測定した
Next, to describe the operation method, a predetermined amount of silicon particles supplied from line 3 is filled, the inside is completely replaced with inert gas, and then hydrogen gas or inert gas is supplied from line 1 to fluidize the particles. The fluidized bed reactor 5 was heated using the heating heater 10 while the temperature was increasing. When the predetermined temperature was reached, the gas from line 1 was switched to a mixed gas of silicon hydride and hydrogen gas or inert gas to start the reaction. After the reaction was completed, the produced fine powder coming out from discharge line 4 was collected and measured. .

このようにして得られた結果を表−1に示した。The results thus obtained are shown in Table 1.

比較例1.2 ガス再分散板8.8.8を取外した以外は実施例1と同
様にして、粒状珪素を製造した。この結果を表−1に比
較例1として示した。また充填珪素の粒径な710〜8
40pmに変え同様の試験を行った。この結果を同表に
比較例2として示した。
Comparative Example 1.2 Granular silicon was produced in the same manner as in Example 1, except that the gas redispersion plate 8.8.8 was removed. The results are shown in Table 1 as Comparative Example 1. Also, the particle size of the filled silicon is 710~8
A similar test was conducted with the setting changed to 40 pm. The results are shown as Comparative Example 2 in the same table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される反応装置の概略構成図を示
し、第2図はガス再分散板の平面図である。 符号の説明 l・・・原料ガスライン、2・・・製品取出しライン、
3・・・結晶粒子充填ライン、4・・・排ガスライン。 5・・・流動床反応器、6・・・ガス分散板、7・・・
製品粒子抜き出し管、8・・・再分散板、9・・・再分
散板固定棒、10・・・加熱用ヒーター。 11・・・再分散板固定棒挿入孔、12・・・孔特許出
願人 三井東圧化学株式会社 代理人 弁理士 飯 1)敏 三5.:、:’、。 s3、(−1,。 第  1  図 第  2  図
FIG. 1 shows a schematic configuration diagram of a reaction apparatus used in the present invention, and FIG. 2 is a plan view of a gas redistribution plate. Explanation of symbols 1... Raw material gas line, 2... Product take-out line,
3...Crystal particle filling line, 4...Exhaust gas line. 5... Fluidized bed reactor, 6... Gas distribution plate, 7...
Product particle extraction pipe, 8... redispersion plate, 9... redispersion plate fixing rod, 10... heater for heating. 11...Redispersion plate fixing rod insertion hole, 12...hole Patent applicant Mitsui Toatsu Chemical Co., Ltd. agent Patent attorney Ii 1) Satoshi Mitsu5. :, :',. s3, (-1,. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)珪素水素化物または珪素水素化物と水素ガスまた
は/および不活性ガスを吹込み、珪素結晶粒子を流動状
態に保持しながら、その表面に珪素を析着させ珪素結晶
粒子を成長させるに当り、流動床反応域内に会合して成
長した気泡を分割して粒子相に再分散させ気泡相と粒子
相の接触効率を高めるガス再分散板を設けることを特徴
とする高純度粒状珪素の製造方法。
(1) Injecting silicon hydride or silicon hydride and hydrogen gas or/and inert gas to deposit silicon on the surface of silicon crystal particles while maintaining them in a fluid state to grow silicon crystal particles. A method for producing high-purity granular silicon, which is characterized by providing a gas redispersion plate that splits and redistributes bubbles that have grown together in a fluidized bed reaction zone into a particle phase and increases the contact efficiency between the bubble phase and the particle phase. .
(2)ガス再分散板が多孔板であることを特徴とする特
許請求の範囲第1項記載の高純度粒状珪素の製造方法。
(2) The method for producing high-purity granular silicon according to claim 1, wherein the gas redispersion plate is a perforated plate.
(3)珪素水素化物がモノシランまたはジシランあるい
はこれらの混合ガスであることを特徴とする特許請求の
範囲第1項記載の高純度粒状珪素の製造方法。
(3) The method for producing high-purity granular silicon according to claim 1, wherein the silicon hydride is monosilane, disilane, or a mixed gas thereof.
(4)不活性ガスがアルゴンであることを特徴とする特
許請求の範囲第1項記載の高純度粒状珪素の製造方法。
(4) The method for producing high-purity granular silicon according to claim 1, wherein the inert gas is argon.
JP5983487A 1987-03-14 1987-03-14 Production of high-purity granular silicon Pending JPS63225512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5983487A JPS63225512A (en) 1987-03-14 1987-03-14 Production of high-purity granular silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5983487A JPS63225512A (en) 1987-03-14 1987-03-14 Production of high-purity granular silicon

Publications (1)

Publication Number Publication Date
JPS63225512A true JPS63225512A (en) 1988-09-20

Family

ID=13124651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5983487A Pending JPS63225512A (en) 1987-03-14 1987-03-14 Production of high-purity granular silicon

Country Status (1)

Country Link
JP (1) JPS63225512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046098A1 (en) * 2000-12-06 2002-06-13 Solarworld Aktiengesellschaft Method for producing high-purity, granular silicon
US8728700B2 (en) 2011-09-05 2014-05-20 Ricoh Company, Ltd. Reactor, toner production method, and toner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046098A1 (en) * 2000-12-06 2002-06-13 Solarworld Aktiengesellschaft Method for producing high-purity, granular silicon
US8728700B2 (en) 2011-09-05 2014-05-20 Ricoh Company, Ltd. Reactor, toner production method, and toner

Similar Documents

Publication Publication Date Title
JP6038201B2 (en) Fluidized bed reactor system and method for reducing silicon deposition on reactor wall
US10576438B2 (en) System for producing high-purity granular silicon
KR100411180B1 (en) Method for preparing polycrystalline silicon
US8828324B2 (en) Fluidized bed reactor systems and distributors for use in same
CN102084038B (en) Direct silicon or reactive metal casting
KR20080098322A (en) Process for the continuous production of polycrystalline high-purity silicon granules
EP2294005B1 (en) Method and skull reactor for producing silicon or a reactive metal
GB1570131A (en) Manufacture of silicon
JPS63225512A (en) Production of high-purity granular silicon
JPH06127924A (en) Production of polycrystalline silicon
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JPH02279513A (en) Production of high-purity polycrystal silicon
CN107973300B (en) Liquid silicon production device and method
JPH0230611A (en) Method and device for producing polycrystalline silicon
JPH01239014A (en) Production of polycrystalline silicon and unit therefor
JPH06127926A (en) Production of granular polycrystalline silicon
JPS63225513A (en) Method and device for producing high-purity granular silicon
JPH01239013A (en) Production of polycrystalline silicon and unit therefor
US20170073234A1 (en) Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same
JP2003002627A (en) Method for manufacturing silicon
JPH0692617A (en) Production of seed silicon particle and production of granular polycrystalline silicon
JPH06127921A (en) Production of granular polycrystalline silicon
JPH01208311A (en) Production of granular silicon and apparatus therefor
JPS63225516A (en) Production of high-purity granular silicon
JP3341314B2 (en) Polycrystalline silicon manufacturing method