JPH06127926A - Production of granular polycrystalline silicon - Google Patents

Production of granular polycrystalline silicon

Info

Publication number
JPH06127926A
JPH06127926A JP30635392A JP30635392A JPH06127926A JP H06127926 A JPH06127926 A JP H06127926A JP 30635392 A JP30635392 A JP 30635392A JP 30635392 A JP30635392 A JP 30635392A JP H06127926 A JPH06127926 A JP H06127926A
Authority
JP
Japan
Prior art keywords
reactor
gas
silicon
silane compound
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30635392A
Other languages
Japanese (ja)
Inventor
Yoshinori Komatsu
善徳 小松
Masaaki Ishii
正明 石井
Kazutoshi Takatsuna
和敏 高綱
Yasuhiro Saruwatari
康裕 猿渡
Nobuhiro Ishikawa
延宏 石川
大助 ▲廣▼田
Daisuke Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Toagosei Co Ltd
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp, Toagosei Co Ltd filed Critical Tonen Sekiyu Kagaku KK
Priority to JP30635392A priority Critical patent/JPH06127926A/en
Publication of JPH06127926A publication Critical patent/JPH06127926A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Abstract

PURPOSE:To effectively suppress the deposition of silicon on the walls, etc., of a reactor and the formation of fine powdery silicon in a gaseous phase in the process for production of the granular polycrystalline silicon by a fluidized bed method. CONSTITUTION:This process for production of the granular polycrystalline silicon by thermally decomposing a silane compd. on fluidized silicon particles and depositing the silicon on these silicon particles consists in producing the granular polycrystalline silicon by (i) heating at least a part of a diluting gas or a gaseous mixture composed of at least a part of this diluting gas and a part of the above-mentioned silane compd. by an indirect heat exchange with the reactor gas passing an empty tower section 8 and heating the resulted heating gas further at need, then supplying this gas into the reactor 1 from the bottom 4 of the reactor and (ii) ejecting the diluting gas of the temp. lower than the thermal decomposition initiation temp. of the above silane compd. into the empty tower section 8 from the wall surface of the empty tower section to lower the temp. of the empty tower section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動層反応器を用いる
シラン化合物の熱分解により粒状多結晶シリコンを製造
する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing granular polycrystalline silicon by thermal decomposition of a silane compound using a fluidized bed reactor.

【0002】[0002]

【従来技術及びその問題点】多結晶シリコンは、近年普
及の著しい半導体素子や太陽電池等の原料に用いられて
おり、デバイスの高性能化に伴い純度等への要求は年々
きびしくなっている。この製造は主にベルジャー法で行
われる。この方法はベルジャー型反応器内に設置された
直径5mm程度の細いシリコン棒を通電加熱し、そこに
ガス状シラン化合物と希釈ガスの混合ガスを導入してシ
リコン棒表面にシリコンを析出させる方法である。この
方法は高純度シリコンの製造に適するが、反応表面積が
小さいため生産性が低いうえ、ベルジャー型反応器表面
からの放熱が大きいため電力消費量が多く、さらにシリ
コン棒が一定の太さに生長する毎に回収し、別の新しい
シリコン棒と交換させるため反応停止が必要である等の
欠点があり、大量生産に好適とは云えない。ベルジャー
法は、原料ガスの種類でジーメンス法と小松法に分かれ
るが、現在の製品は大部分がトリクロルシランを原料に
するジーメンス法で生産されている。小松法は原料にモ
ノシランを使用する方法であり、モノシランを原料にす
るため原料純度が高く腐食性ガスを副生しない利点があ
るが、原料ガスが高価なうえシリコン析出防止のため器
壁を100℃以下に水冷しなければいけない。
2. Description of the Related Art Polycrystalline silicon has been used as a raw material for semiconductor devices, solar cells, etc., which have become very popular in recent years, and the demand for purity has become stricter year by year as the performance of devices has increased. This production is mainly carried out by the bell jar method. This method is a method in which a thin silicon rod having a diameter of about 5 mm installed in a bell jar type reactor is electrically heated and a mixed gas of a gaseous silane compound and a diluent gas is introduced therein to deposit silicon on the surface of the silicon rod. is there. This method is suitable for the production of high-purity silicon, but the productivity is low due to the small reaction surface area, and the heat dissipation from the surface of the bell jar-type reactor is large, so the power consumption is high and the silicon rod grows to a certain thickness. It is not suitable for mass production because it has a drawback that it needs to be stopped each time it is collected and replaced with another new silicon rod. The Belger method is divided into the Siemens method and the Komatsu method depending on the type of raw material gas, but most of the current products are produced by the Siemens method using trichlorosilane as a raw material. The Komatsu method uses monosilane as a raw material.Because monosilane is used as a raw material, there is an advantage that the raw material purity is high and no corrosive gas is produced as a by-product.However, the raw material gas is expensive and the wall of the chamber is 100% to prevent silicon precipitation. It must be water-cooled below ℃.

【0003】一方、省エネルギー型の多結晶粒状シリコ
ン製造方法として流動層法が最近注目されている。この
方法は、流動化状態のシリコン粒子表面にガス状シラン
化合物と希釈ガスとの混合ガスを導入し、該シラン化合
物の熱分解で生成したシリコンを前記シリコン粒子の表
面に析出させ、高純度で顆粒状の多結晶シリコンを得る
方法である。この方法では反応が流動化粒子の表面で行
われるため、反応表面積が大きく生産性が高いうえ連続
化も容易であり、熱の放散量もジーメンス法の1/10
以下にすぎないし、スケールアップも容易なため工業化
に最適である。流動層法多結晶粒状シリコンは、製品が
粒状のためジーメンス法で得られる円柱状シリコンより
搬送時も有利であるし、単結晶作製のためルツボで再溶
融する際にも供給し易く溶融容易など利点が多い。特
に、最近は製造コスト削減のため大型の単結晶シリコン
製造を指向しており、このための原料供給は粒状品でな
いと困難と言われている。
On the other hand, the fluidized bed method has recently received attention as an energy-saving method for producing polycrystalline granular silicon. This method introduces a mixed gas of a gaseous silane compound and a diluent gas onto the surface of a fluidized silicon particle, deposits silicon produced by thermal decomposition of the silane compound on the surface of the silicon particle, and in high purity. This is a method for obtaining granular polycrystalline silicon. In this method, since the reaction is carried out on the surface of the fluidized particles, the reaction surface area is large, the productivity is high, and the continuation is easy, and the heat dissipation is 1/10 of that of the Siemens method.
It is not more than the following, and is suitable for industrialization because it can be easily scaled up. The fluidized bed method polycrystalline granular silicon is more advantageous during transportation than cylindrical silicon obtained by the Siemens method because the product is granular, and it is easy to supply and easy to melt when remelting in a crucible for single crystal production. There are many advantages. In particular, recently, it has been aimed to manufacture large single crystal silicon in order to reduce the manufacturing cost, and it is said that it is difficult to supply raw materials for this purpose unless it is a granular product.

【0004】流動層法により粒状多結晶シリコンを製造
する方法では、一般に反応熱の供給を反応器外部熱源か
ら反応器壁を介するか、又は反応器内に配置した熱供給
器により行なわれる。反応器外部熱源より反応熱を供給
する場合の反応器内の温度分布は、その器壁面の温度が
最も高くなるため該器壁面においてもシリコン化合物の
分解が活発に生起し、大量のシリコンが器壁面に析出す
る。このようにして大量のシリコンが器壁表面等に析出
すると、反応器内容積が減少してシリコン生成反応の円
滑な進行が妨害されるだけでなく、反応器や熱供給器材
料とシリコンの熱膨張率が異なるため、反応開始時や反
応終了時の熱変化で反応器や熱供給器が破損する場合も
ある。また、反応器壁面の近傍は高温のためシラン化合
物の気相中での分解が起こり、微粉状シリコンが生成す
る。微粉状シリコンは、反応器や配管の閉塞トラブル等
の問題を生じる。
In the method of producing granular polycrystalline silicon by the fluidized bed method, the heat of reaction is generally supplied from a heat source external to the reactor through a reactor wall or by a heat supplier arranged in the reactor. When the reaction heat is supplied from the reactor external heat source, the temperature distribution in the reactor is such that the temperature of the wall surface of the reactor is the highest, so that the silicon compounds are actively decomposed on the wall surface of the reactor and a large amount of silicon is generated. Precipitates on the wall. When a large amount of silicon deposits on the surface of the vessel wall in this way, not only does the volume inside the reactor decrease and the smooth progress of the silicon production reaction is hindered, but also the reactor and heat supply materials and the heat of the silicon Since the expansion coefficients are different, the reactor and the heat supply device may be damaged by the heat change at the start and the end of the reaction. Further, since the temperature in the vicinity of the wall surface of the reactor is high, the silane compound is decomposed in the gas phase and fine powdery silicon is produced. The finely powdered silicon causes problems such as clogging trouble of the reactor and piping.

【0005】以上のような問題を回避するため、従来各
種の方法が提案されている。例えば、特開昭59−45
917号公報には、流動層反応器内を内筒と外筒からな
る2重筒構造とすると共に、内筒底部に分散板を配置し
た構造の反応装置が記載されている。この装置では、シ
ラン化合物含有原料ガスをその分散板を介して噴出さ
せ、その内筒内に充填されたシリコン粒子を流動化させ
ると共に、流動化したシリコン粒子の一部を外筒と内筒
との間の空隙部上部から底部方向に移動させ、この底部
に移動したシリコン粒子を分散板から噴出される原料ガ
スと共に再び内筒内に循環させる。この場合、反応に必
要な熱は外部熱源から外筒壁を介して前記の循環してい
るシリコン粒子が外筒と内筒との間を底部方向に移動し
ている際に、シリコン粒子の循環流に伝達される。そし
て、内筒内は該シリコン粒子の循環流によって所定の反
応温度に保持される。このような流動層反応器を使用す
る場合は、内筒内に原料ガスが供給され外筒と内筒の間
の空隙部に存在する未反応原料ガスはわずかなので、外
筒内壁面へのシリコン析出を効果的に防止することがで
き、しかも内筒内壁面の温度は外筒内壁面温度よりも低
く、内筒内のシリコン粒子温度とほぼ等しいために、内
筒内壁面に大量のシリコンが析出するのを防止すること
ができる。しかしながら、このような従来法の場合は内
筒底部に配置した分散板が高温のシリコン粒子循環流で
高温に加熱されるため、この分散板近傍で原料シリコン
化合物が熱分解し、その際に生成したシリコンが分散板
に付着して分散板の目詰まりを生じさせ、長時間にわた
って安定した装置の運転を困難にする。特開平2−27
9512号公報には、反応器壁面に接触するシリコン化
合物濃度を減少させるために、反応器の器壁面に沿って
水素を流通させて器壁面を水素シールし、その内側に原
料ガスを通過させることで器壁面へのシリコン析出を防
止する方法が示されている。しかし、この方法では、器
壁面をシールするために流通させる水素が原料ガスと速
やかに混合してしまうので、そのシール効果が十分では
なく、器壁面へのシリコンの析出を十分に防止すること
はできない。
In order to avoid the above problems, various methods have been conventionally proposed. For example, JP-A-59-45
Japanese Patent No. 917 describes a reactor having a double-layered structure including an inner cylinder and an outer cylinder in the fluidized bed reactor, and a dispersion plate arranged at the bottom of the inner cylinder. In this device, a silane compound-containing raw material gas is ejected through the dispersion plate to fluidize the silicon particles filled in the inner cylinder, and part of the fluidized silicon particles is divided into an outer cylinder and an inner cylinder. The gap is moved from the upper part to the bottom part, and the silicon particles moved to the bottom part are circulated again in the inner cylinder together with the raw material gas ejected from the dispersion plate. In this case, the heat required for the reaction is obtained by circulating the silicon particles from the external heat source through the outer cylinder wall while the circulating silicon particles move in the bottom direction between the outer cylinder and the inner cylinder. Transmitted to the flow. Then, the inside of the inner cylinder is maintained at a predetermined reaction temperature by the circulating flow of the silicon particles. When such a fluidized bed reactor is used, since the raw material gas is supplied to the inner cylinder and the amount of unreacted raw material gas existing in the gap between the outer cylinder and the inner cylinder is small, the silicon on the inner wall surface of the outer cylinder is Precipitation can be effectively prevented, and the temperature of the inner cylinder inner wall surface is lower than the outer cylinder inner wall surface temperature, which is almost equal to the temperature of the silicon particles in the inner cylinder. It is possible to prevent precipitation. However, in the case of such a conventional method, since the dispersion plate arranged at the bottom of the inner cylinder is heated to a high temperature by the high-temperature silicon particle circulation flow, the raw material silicon compound is thermally decomposed in the vicinity of this dispersion plate, and is generated at that time. The deposited silicon adheres to the dispersion plate and causes the dispersion plate to be clogged, making it difficult to operate the device stably for a long time. JP-A-2-27
In Japanese Patent Publication No. 9512, in order to reduce the concentration of silicon compounds in contact with the wall surface of the reactor, hydrogen is circulated along the wall surface of the reactor to seal the wall surface with hydrogen, and the raw material gas is passed inside the wall. Describes a method of preventing silicon deposition on the wall surface of a vessel. However, in this method, the hydrogen that is circulated to seal the vessel wall is quickly mixed with the source gas, so the sealing effect is not sufficient, and it is not possible to sufficiently prevent the deposition of silicon on the vessel wall. Can not.

【0006】前記のような流動層反応器において、流動
層を通過した高温の反応器ガスは、微粉状シリコンと未
反応シラン化合物を含む。この反応器ガスは、その反応
器の上方に配置された空塔部を通過し、系外へ排出され
るが、反応器ガスがその空塔部を通過する間に、反応器
ガス中に含まれる微粉が空塔部内壁に堆積するととも
に、反応器ガスに含まれる未反応のシラン化合物の熱分
解が起こって、空塔部内壁にはさらにシリコンの析出も
起る。このようにして、空塔部内壁には、微粉状シリコ
ンの堆積と、シラン化合物の熱分解により生成したシリ
コンの析出が起こって、空塔部は次第に閉塞され、流動
層反応条件に変動を与えるとともに、反応の開始時や終
了時に空塔部に大きな温度変化が起こったときに、空塔
部壁と析出シリコンとの熱膨張率の相違により、空塔部
に破損を生じる等の問題が起る。
In the fluidized bed reactor as described above, the high-temperature reactor gas passing through the fluidized bed contains finely powdered silicon and unreacted silane compound. This reactor gas passes through the empty column section located above the reactor and is discharged to the outside of the system, but is contained in the reactor gas while the reactor gas passes through the empty column section. The fine powder is deposited on the inner wall of the superficial part, and the unreacted silane compound contained in the reactor gas is thermally decomposed, so that silicon is further deposited on the inner wall of the superficial part. In this way, the inner wall of the superficial part is deposited with fine powdery silicon and the silicon produced by the thermal decomposition of the silane compound is deposited, and the superficial part is gradually closed, and the fluidized bed reaction conditions are changed. At the same time, when a large temperature change occurs in the superficial part at the start or end of the reaction, the difference in the thermal expansion coefficient between the wall of the superficial part and the deposited silicon causes damage to the superficial part. It

【0007】[0007]

【発明が解決しようとする課題】本発明は、流動層法に
よる粒状多結晶シリコンの製造方法において、反応器壁
等へのシリコン析出や気相中での微粉状シリコンの生成
を効果的に抑制すると共に、空塔部への微粉状シリコン
堆積による装置閉塞等のトラブルを防止することによ
り、装置寿命が長く、反応を安定的に長時間連続して行
うことのできる方法を提供することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention effectively suppresses the precipitation of silicon on a reactor wall or the like and the formation of fine powdery silicon in a gas phase in a method for producing granular polycrystalline silicon by a fluidized bed method. In addition, by preventing troubles such as device clogging due to the deposition of fine powdery silicon on the empty column part, the device life is long and it is possible to provide a method capable of carrying out the reaction stably and continuously for a long time. It is an issue.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。すなわち、本発明によれば、シリコン粒子を
流動化させた流動層反応器底部からシラン化合物とその
希釈ガスからなる供給ガスを反応器内に導入し、シラン
化合物を流動化シリコン粒子上で熱分解させてそのシリ
コン粒子上にシリコンを析出させると共に、流動層を通
過した反応器ガスを、反応器上方に配設した空塔部を通
過させて系外へ排出させる粒状多結晶シリコンの製造方
法において、(i)前記希釈ガスの少なくとも一部又は
前記希釈ガスの少なくとも一部と前記シラン化合物の一
部との混合ガスを、前記空塔部を通過する反応器ガスと
間接熱交換させて加熱し、得られた加熱ガスを必要に応
じて更に加熱してから反応器底部より反応器内に供給す
ること、(ii)空塔部壁面から空塔部内に前記シラン化
合物の熱分解開始温度より低い、温度の希釈ガスを噴出
させ、空塔部壁温を下げること、を特徴とする粒状多結
晶シリコンの製造方法が提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a feed gas consisting of a silane compound and its diluent gas is introduced into the reactor from the bottom of a fluidized bed reactor in which silicon particles are fluidized, and the silane compound is thermally decomposed on the fluidized silicon particles. In the method for producing granular polycrystalline silicon, in which the silicon is deposited on the silicon particles and the reactor gas that has passed through the fluidized bed is discharged to the outside of the system by passing through the superficial part disposed above the reactor. (I) heating at least a part of the diluent gas or a mixed gas of at least a part of the diluent gas and a part of the silane compound by indirect heat exchange with a reactor gas passing through the superficial part. The heated gas obtained is further heated, if necessary, and then supplied into the reactor from the bottom of the reactor, (ii) the temperature from the wall surface of the empty column is lower than the temperature at which thermal decomposition of the silane compound starts. , It is ejected dilution gas temperature, lowering the superficial wall temperature, method for producing a granular polycrystalline silicon, wherein there is provided.

【0009】本発明で用いるシラン化合物は、加熱によ
り熱分解してシリコンを析出するガス状のシラン化合物
であればよく、従来公知の各種のものが用いられる。こ
のようなシラン化合物としては、例えば、モノシラン、
ジシラン等のシラン化合物の他、モノクロルシラン、ジ
クロルシラン、トリクロルシラン等のハロゲン化シラン
化合物が挙げられる。シラン化合物は、500〜900
℃、好ましくは600〜750℃の温度で熱分解してシ
リコンを生成する。一方、ハロゲン化シランは、900
〜1350℃、好ましくは1050〜1150℃の温度
で熱分解してシリコンを生成する。シラン化合物は、シ
リコンと反応しないガス、例えば、水素、ネオン、ヘリ
ウム、アルゴン等のガスとの混合ガスの形態で有利に用
いられる。この場合、混合ガス中のシラン化合物の濃度
は、通常、5〜100vol%、好ましくは10〜50
vol%である。また、シラン化合物として、ハロゲン
化シランを用いる場合、その混合ガス中には、水素を4
0〜90vol%、好ましくは50〜80vol%の割
合で存在させるのがよい。
The silane compound used in the present invention may be any gaseous silane compound which is thermally decomposed by heating to precipitate silicon, and various conventionally known compounds are used. Examples of such silane compounds include monosilane,
In addition to silane compounds such as disilane, halogenated silane compounds such as monochlorosilane, dichlorosilane, trichlorosilane and the like can be mentioned. The silane compound is 500 to 900
C., preferably 600 to 750.degree. C. to pyrolyze to produce silicon. On the other hand, halogenated silane is 900
It is thermally decomposed at a temperature of ˜1350 ° C., preferably 1050-1150 ° C. to produce silicon. The silane compound is advantageously used in the form of a mixed gas with a gas that does not react with silicon, for example, a gas such as hydrogen, neon, helium, or argon. In this case, the concentration of the silane compound in the mixed gas is usually 5 to 100% by volume, preferably 10 to 50%.
vol%. When a halogenated silane is used as the silane compound, hydrogen is mixed in the mixed gas.
It is recommended to be present in a proportion of 0 to 90 vol%, preferably 50 to 80 vol%.

【0010】以下に、本発明を添付の図面を参照して更
に詳細に説明する。図1は本発明の実施に用いられる流
動層反応器の概要図である。この図において、1は反応
器であり、その外周面は環状ヒーター12で包囲されて
いる。4は反応器底板、5はガス分散板であり、その反
応器底板の上面及びガス分散板の下面には邪魔板6が配
設されている。11は製品シリコン粒子抜き出し管であ
って、底板4を貫通してガス分散板5の表面中心部に開
口している。また、底板4とガス分散板5の間は内室7
になっているが、この内室は邪魔板6で中心部7aと外
周部7bに分けられている。反応器1の上方には空塔部
8が連結され、この空塔部の外周壁には間隙を置いてジ
ャケット14が設けられ、空塔部外周壁とジャケット1
4との間は熱交換室に形成されている。また、空塔部8
の天板にはガス排出管2と種シリコン供給管3が設けら
れており、空塔部8の内壁にはガス噴出用の多孔板15
が設けられ、その多孔板と空塔部内壁との間はガス噴出
用のガス室20に形成されている。
The present invention will now be described in more detail with reference to the accompanying drawings. FIG. 1 is a schematic view of a fluidized bed reactor used for carrying out the present invention. In this figure, 1 is a reactor, the outer peripheral surface of which is surrounded by an annular heater 12. Reference numeral 4 is a reactor bottom plate, 5 is a gas dispersion plate, and baffle plates 6 are provided on the upper surface of the reactor bottom plate and the lower surface of the gas dispersion plate. Reference numeral 11 denotes a product silicon particle extracting pipe, which penetrates the bottom plate 4 and opens at the center of the surface of the gas dispersion plate 5. In addition, an inner chamber 7 is provided between the bottom plate 4 and the gas dispersion plate 5.
The inner chamber is divided into a central portion 7a and an outer peripheral portion 7b by a baffle plate 6. An empty column portion 8 is connected above the reactor 1, and a jacket 14 is provided on the outer peripheral wall of this empty column portion with a gap therebetween.
Between 4 and 4, a heat exchange chamber is formed. In addition, empty tower section 8
A gas discharge pipe 2 and a seed silicon supply pipe 3 are provided on the top plate of the above, and a porous plate 15 for ejecting gas is provided on the inner wall of the empty tower section 8.
Is provided between the perforated plate and the inner wall of the empty column portion to form a gas chamber 20 for ejecting gas.

【0011】本発明の方法を実施するには、先ず、種シ
リコン供給管3から種シリコン粒子を反応器1内に充填
する。次に、シラン化合物をライン21及びライン22
を介し、さらにシラン化合物導入管9を介して邪魔板6
で区画される内室7の中心部7aに導入する。一方、希
釈ガスはライン23、ライン24及びライン25を介
し、空塔部8の外壁とジャケット14で形成される熱交
換室内に導入すると共に、ライン26を通って抜き出し
た後、希釈ガス導入管10を介して邪魔板6で区画され
る内室外周部7bに導入する。この場合、希釈ガスの一
部を流量調節弁19及びライン27を通るルートによっ
て熱交換しないで反応器に供給しても良い。また、流量
調節弁17を介してシラン化合物供給ラインに希釈ガス
を導入し、反応器に供給するシラン化合物を任意の濃度
に希釈することができる。
To carry out the method of the present invention, first, seed silicon particles are charged into the reactor 1 from the seed silicon supply pipe 3. Next, the silane compound is added to the lines 21 and 22.
Baffle plate 6 through the silane compound introduction pipe 9
It is introduced into the central portion 7a of the inner chamber 7 partitioned by. On the other hand, the diluent gas is introduced into the heat exchange chamber formed by the outer wall of the empty column portion 8 and the jacket 14 through the line 23, the line 24, and the line 25, and is extracted through the line 26, after which the diluent gas introduction pipe is introduced. It is introduced into the outer peripheral portion 7 b of the inner chamber defined by the baffle plate 6 via 10. In this case, part of the diluent gas may be supplied to the reactor without heat exchange by the route passing through the flow rate control valve 19 and the line 27. Further, a diluent gas can be introduced into the silane compound supply line through the flow rate control valve 17 to dilute the silane compound supplied to the reactor to an arbitrary concentration.

【0012】前記のようにして反応器底部に導入された
シラン化合物と希釈ガスは、ガス分散板5から反応器内
部に噴出させ、ガス分散板5の上の種シリコン粒子を流
動化させて流動層13を形成させる。流動層13の温度
は、主に反応器内に導入される希釈ガスの温度及び量に
よってコントロールされ、また環状ヒーター12によっ
てもコントロールされる。希釈ガスの温度は空塔部8を
流通する反応器ガスの温度と、反応器ガスと希釈ガス間
の間接熱交換によってコントロールされるが、その温度
はできる限り反応温度(流動層温度)に近付けるのがよ
い。さらに、本発明においては、希釈ガスはライン30
及び流量調節弁31を介して、特に加熱することなくラ
イン26に導入できるが、加熱器28によって反応温度
又はそれ以上の温度に加熱することが好ましい。例えば
反応温度700℃の場合は、反応器に供給される希釈ガ
ス温度は750〜850℃にするのがよい。流動層温度
(反応温度)はシラン化合物の種類によって異なるが、
一般的にはシラン化合物の熱分解開始温度よりも50〜
450℃、好ましくは200〜350℃高い温度であ
る。例えば、モノシランの場合、600〜800℃、好
ましくは600〜750℃であり、トリクロルシランの
場合、900〜1350℃、好ましくは1050〜11
50℃である。
The silane compound and the diluent gas introduced into the bottom of the reactor as described above are ejected from the gas dispersion plate 5 into the reactor, and the seed silicon particles on the gas dispersion plate 5 are fluidized and flowed. Form layer 13. The temperature of the fluidized bed 13 is controlled mainly by the temperature and amount of the diluent gas introduced into the reactor, and also by the annular heater 12. The temperature of the diluent gas is controlled by the temperature of the reactor gas flowing through the empty column section 8 and the indirect heat exchange between the reactor gas and the diluent gas, and the temperature is as close as possible to the reaction temperature (fluidized bed temperature). Is good. Further, in the present invention, the diluent gas is the line 30.
It can be introduced into the line 26 via the flow control valve 31 and the flow control valve 31 without being particularly heated, but it is preferable to heat it to the reaction temperature or higher by the heater 28. For example, when the reaction temperature is 700 ° C., the temperature of the diluent gas supplied to the reactor is preferably 750 to 850 ° C. The fluidized bed temperature (reaction temperature) varies depending on the type of silane compound,
Generally, the temperature is 50 to 50% higher than the thermal decomposition start temperature of the silane compound.
The temperature is 450 ° C., preferably 200 to 350 ° C. higher. For example, in the case of monosilane, it is 600 to 800 ° C, preferably 600 to 750 ° C, and in the case of trichlorosilane, 900 to 1350 ° C, preferably 1050 to 11 ° C.
It is 50 ° C.

【0013】反応器内に導入されたシラン化合物は、流
動層内のシリコン粒子上で熱分解反応を受け、その際に
生成したシリコンがその流動化シリコン粒子上に析出し
て粒子が生長する。流動層13を通って上方へ流通する
反応器ガスは、空塔部8及びガス排出管2を通って系外
へ排出されるが、空塔部8を通過する際に、空塔部8の
外周面とジャケット14との間の環状空隙部(熱交換
室)を通る希釈ガスにその熱を与えて、希釈ガス温度を
高めると共に空塔部8の周壁はその希釈ガスにより冷却
される。熱交換室は、その熱交換伝熱面積が運転条件に
よって任意に調整できる構造を有している。種シリコン
粒子は、種シリコン供給管3より連続的又は間欠的に反
応器内に導入され、製品シリコン粒子は製品抜き出し管
11により連続的又は間欠的に抜き出される。
The silane compound introduced into the reactor undergoes a thermal decomposition reaction on the silicon particles in the fluidized bed, and the silicon produced at that time is deposited on the fluidized silicon particles to grow the particles. The reactor gas flowing upwards through the fluidized bed 13 is discharged to the outside of the system through the empty column section 8 and the gas discharge pipe 2, but when passing through the empty column section 8, the reactor gas of the empty column section 8 is discharged. The dilution gas passing through the annular space (heat exchange chamber) between the outer peripheral surface and the jacket 14 is given its heat to raise the temperature of the dilution gas and the peripheral wall of the empty column portion 8 is cooled by the dilution gas. The heat exchange chamber has a structure in which the heat exchange heat transfer area can be arbitrarily adjusted according to operating conditions. The seed silicon particles are continuously or intermittently introduced into the reactor from the seed silicon supply pipe 3, and the product silicon particles are continuously or intermittently extracted by the product extraction pipe 11.

【0014】本発明においては、前記のように、希釈ガ
スの少なくとも一部を、空塔部を通過する反応器ガスと
間接熱交換させて加熱し、反応器底部から反応器内に導
入するとともに、希釈ガスをその供給ライン23及び流
量調節弁16を介してガス室20に供給し、多孔板15
から空塔内に噴出させる。ガス噴出は間欠的でも連続的
でも良いが、連続的に噴出させるのが望ましい。ガス噴
出用多孔板15は、空塔部側壁の全面に配設するのが望
ましいが、空塔部側壁の一部の面に配設することもでき
る。ガスの噴出速度は多孔板ノズル出口の線速度として
1〜80m/秒、好ましくは3〜15m/秒である。多
孔板を介して空塔部内へ噴出させる希釈ガスの温度も、
シラン化合物の熱分解開始温度よりも低い温度である。
これら複合的な冷却効果によって空塔部壁温を150〜
450℃程度低下させることができる。
In the present invention, as described above, at least a part of the diluent gas is heated by indirect heat exchange with the reactor gas passing through the empty column portion and introduced into the reactor from the bottom of the reactor. , The dilution gas is supplied to the gas chamber 20 through the supply line 23 and the flow rate control valve 16, and the perforated plate 15
Spout it into the empty tower. The gas may be jetted intermittently or continuously, but it is desirable to jet the gas continuously. It is desirable that the gas jetting perforated plate 15 is provided on the entire side wall of the empty column portion, but it may be provided on a part of the side wall of the empty column portion. The gas ejection velocity is 1 to 80 m / sec, preferably 3 to 15 m / sec, as the linear velocity at the nozzle of the perforated plate. The temperature of the diluent gas ejected into the empty column through the porous plate is also
The temperature is lower than the thermal decomposition start temperature of the silane compound.
Due to these combined cooling effects, the wall temperature of the empty tower is 150-
It can be lowered by about 450 ° C.

【0015】本発明においては、前記のように、希釈ガ
スは、加熱した状態で反応器底部から反応器内へ導入さ
れ、反応器内にはその加熱希釈ガスの持つ熱エネルギー
が供給されることから、ヒーターにより反応器壁を介し
て導入される熱量はその分少なくてすむ。従って、希釈
ガスを加熱しないで反応器に供給する場合に比べて、ヒ
ーターの負荷は小さくなり、その分反応器壁の温度を低
下させ、反応器壁面に対するシリコンの析出及び反応器
壁面近傍でのシラン化合物の熱分解による微粉状シリコ
ンの発生を抑制することができる。本発明においては、
反応器に供給する希釈ガスの加熱温度は、反応温度又は
その付近の温度とすることが好ましい。従って、空塔部
で反応器ガスと間接熱交換によって加熱された希釈ガス
は、必要に応じ、別に設けた加熱器でさらに加熱した
後、反応器内に供給することが好ましい。反応器内壁面
の温度は、通常、反応温度(流動層平均温度)より10
0℃を超えない温度、好ましくは反応温度より低い温度
範囲に設定するのがよい。また、本発明においては、空
塔部の内壁に設けた多孔板を介して、その空塔部内へ希
釈ガスが噴出され、空塔部壁及び空塔部内が冷却される
とともに、空塔部内壁面近傍のシラン化合物濃度が著し
く低減され、また噴出ガスの流速により空塔部壁面の微
粉が空塔部内側に吹き飛ばされることから、空塔部内で
の未反応シラン化合物の熱分解を効果的に防止すること
ができ、空塔部内壁面への微粉シリコンの堆積とシリコ
ンの析出を著しく減少させることができる。
In the present invention, as described above, the diluent gas is introduced into the reactor from the bottom of the reactor while being heated, and the thermal energy of the heated diluent gas is supplied to the reactor. Therefore, the amount of heat introduced by the heater through the reactor wall can be reduced accordingly. Therefore, compared with the case where the diluent gas is supplied to the reactor without heating, the load on the heater is smaller, and the temperature of the reactor wall is reduced accordingly, and the deposition of silicon on the reactor wall surface and the vicinity of the reactor wall surface are reduced. Generation of fine powder silicon due to thermal decomposition of the silane compound can be suppressed. In the present invention,
The heating temperature of the diluent gas supplied to the reactor is preferably at or near the reaction temperature. Therefore, it is preferable that the diluent gas heated by the indirect heat exchange with the reactor gas in the empty column section is further heated by a heater provided separately, and then supplied into the reactor. The temperature of the inner wall surface of the reactor is usually 10 than the reaction temperature (fluidized bed average temperature).
It is preferable to set a temperature not exceeding 0 ° C, preferably a temperature range lower than the reaction temperature. Further, in the present invention, through the perforated plate provided on the inner wall of the empty column part, the diluent gas is jetted into the empty column part, the empty column part wall and the empty column part are cooled, and the empty column part inner wall surface is The concentration of silane compounds in the vicinity is significantly reduced, and the fine particles on the wall surface of the empty column are blown off inside the empty column due to the flow velocity of the ejected gas, effectively preventing the thermal decomposition of unreacted silane compounds in the empty column. It is possible to significantly reduce the deposition of fine silicon powder and the deposition of silicon on the inner wall surface of the empty column.

【0016】さらに、本発明においては、前記のよう
に、空塔部での未反応シラン化合物の熱分解及び空塔部
壁面への微粉シリコンの堆積とシリコンの析出を効果的
に防止し得ることから、反応器内(空塔部は含まない)
での流動層の高さを反応器高さの75%以上、好ましく
は80〜100%の範囲に設定し、反応器内の上部に形
成されるシリコン粒子の希薄空間を著しく減少させるこ
とができる。反応器上部のシリコン粒子の希薄空間部
は、未反応シランガスの気相中での熱分解が起りやすい
個所であり、その希薄空間部を包囲する反応器周壁にお
ける微粉状シリコンの堆積量は、シリコン流動層を包囲
する反応器周壁と比べて相当多く、長時間の反応を行う
と、反応器上部での反応器閉塞の問題が生じる。本発明
では、この問題は、前記のように、流動層高さを反応器
高さに近づけたりあるいはほぼ同じにし、反応器上部の
シリコン粒子希薄部空間を著しく減少させることによっ
て解決できる。そして、反応器上部におけるシリコン粒
子の希薄空間部を著しく減少させると、その希薄空間部
が反応器高さの25%以上存在する場合に比べて、空塔
部へ導入される反応器ガス中の微粉状シリコン量や、未
反応シラン化合物濃度は高くなり、空塔部壁への微粉状
シリコンの堆積や、空塔部での未反応シラン化合物の熱
分解が起りやすくなるという問題が生じるが、この問題
は、前記したように、本発明による反応器ガスを希釈ガ
スと間接熱交換させることによる空塔部と反応器ガスの
冷却と、反応器壁面に設けた多孔板を介しての希釈ガス
の空塔部内への噴出による空塔部壁と反応器ガスの冷
却、さらに反応器ガス中への希釈ガスの導入によるシラ
ンガスの希釈化により、効果的に解決される。
Further, in the present invention, as described above, it is possible to effectively prevent the thermal decomposition of the unreacted silane compound in the superficial part and the deposition of fine silicon powder and the deposition of silicon on the wall surface of the superficial part. From inside the reactor (empty tower is not included)
By setting the height of the fluidized bed at 75% or more of the height of the reactor, preferably in the range of 80 to 100%, the thin space of silicon particles formed in the upper part of the reactor can be significantly reduced. . The thin space part of the silicon particles in the upper part of the reactor is a part where thermal decomposition of the unreacted silane gas is likely to occur in the gas phase, and the deposition amount of fine powder silicon on the peripheral wall of the reactor surrounding the diluted space part is silicon. When the reaction is performed for a long time, which is considerably larger than the peripheral wall of the reactor surrounding the fluidized bed, the problem of clogging of the reactor at the upper part of the reactor occurs. In the present invention, this problem can be solved by bringing the height of the fluidized bed close to or almost the same as the height of the reactor as described above, and remarkably reducing the silicon particle lean space above the reactor. Then, when the lean space portion of the silicon particles in the upper portion of the reactor is remarkably reduced, compared with the case where the lean space portion is 25% or more of the height of the reactor, the lean gas portion in the reactor gas introduced into the empty column portion is The amount of finely powdered silicon and the concentration of unreacted silane compound become high, but there is a problem that the deposition of finely powdered silicon on the wall of the superficial part and the thermal decomposition of the unreacted silane compound in the superficial part easily occur, This problem is, as described above, the cooling of the empty space and the reactor gas by indirect heat exchange of the reactor gas with the diluent gas according to the present invention, and the dilution gas through the perforated plate provided on the reactor wall surface. This is effectively solved by cooling the wall of the empty column part and the reactor gas by jetting into the empty column part and further diluting the silane gas by introducing a diluent gas into the reactor gas.

【0017】さらにまた、図1に示すように、シラン化
合物を反応器底部の中心部から導入し、希釈ガスを反応
器底部の周辺部から導入することにより、反応器内壁近
傍のシランガス濃度を低減させ、これによって、反応器
壁面へのシリコンの析出を防止するとともに、反応器壁
面近傍でのシラン化合物の気相中での均一相熱分解によ
る微粉状シリコンの発生を防止することができる。
Furthermore, as shown in FIG. 1, the silane compound is introduced from the center of the bottom of the reactor and the diluent gas is introduced from the periphery of the bottom of the reactor to reduce the concentration of silane gas near the inner wall of the reactor. As a result, it is possible to prevent the deposition of silicon on the wall surface of the reactor and also to prevent the generation of fine powder silicon due to the homogeneous phase thermal decomposition of the silane compound in the gas phase near the wall surface of the reactor.

【0018】本発明で用いる種シリコンの平均粒子径は
50〜300μmとするのが好ましく、流動層内での平
均粒子径は300〜1500μmが好ましい。また、希
釈ガスとしては、水素、アルゴン、ネオン等が用いられ
るが、好ましくは水素である。
The seed silicon used in the present invention preferably has an average particle size of 50 to 300 μm, and an average particle size in the fluidized bed is preferably 300 to 1500 μm. Further, as the diluent gas, hydrogen, argon, neon or the like is used, but hydrogen is preferable.

【0019】前記のようにして粒状多結晶シリコンを製
造する場合、ライン23から導入される希釈ガスの一部
をライン22及び流量調節弁17を介してライン21を
通るシラン化合物に混合させ、この混合ガスを反応器内
に導入することができる。また、シラン化合物の一部を
流量調節弁18及びライン25を介してライン26を通
る希釈ガスに混合することもできる。本発明で用いる流
動層反応器においては、種々の変更が可能である。例え
ば、反応器1内には、ライナーとしてのシリコン管やセ
ラミックス管を挿入することができる。この場合のライ
ナーは反応管として作用するものである。また反応器1
として、外筒と内筒からなり、内筒の下端面がガス分散
板より上方に位置する二重管構造のもの(特開昭59−
45917号)を用いることができる。この場合、内筒
が反応管としての作用を示す。
In the case of producing granular polycrystalline silicon as described above, a part of the diluent gas introduced from the line 23 is mixed with the silane compound passing through the line 22 via the line 22 and the flow rate control valve 17, and this A mixed gas can be introduced into the reactor. It is also possible to mix a part of the silane compound with the diluent gas passing through the flow control valve 18 and the line 25 and passing through the line 26. Various modifications can be made to the fluidized bed reactor used in the present invention. For example, a silicon tube or a ceramic tube as a liner can be inserted in the reactor 1. In this case, the liner acts as a reaction tube. Also reactor 1
As a double-pipe structure having an outer cylinder and an inner cylinder, the lower end surface of the inner cylinder being located above the gas dispersion plate (JP-A-59-59).
No. 45917) can be used. In this case, the inner cylinder acts as a reaction tube.

【0020】[0020]

【実施例】次に、本発明を実施例及び比較例によってよ
り具体的に説明するが、本発明はこの実施例によって限
定されるものではない。
EXAMPLES Next, the present invention will be explained more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0021】実施例1 内径100mm、高さ600mmの石英製外筒の内部
に、内径80mm、高さ600mmの石英製内筒を備え
た流動層反応器を使用し、図1のような流動層法高純度
多結晶粒状シリコン製造装置を作製した。この装置にお
いて、反応器加熱用環状ヒーターはガス分散板水平面上
方の0mm〜600mmの位置に設置した。
Example 1 A fluidized bed reactor having a quartz inner cylinder having an inner diameter of 80 mm and a height of 600 mm inside a quartz outer cylinder having an inner diameter of 100 mm and a height of 600 mm was used. A high-purity polycrystalline granular silicon manufacturing apparatus was manufactured. In this apparatus, the annular heater for heating the reactor was installed at a position of 0 mm to 600 mm above the horizontal surface of the gas dispersion plate.

【0022】反応器1内に粒径300〜1000μmで
平均粒径700μmの高純度多結晶シリコンを充填し、
反応器底部からモノシランガスと、加熱水素ガスを、線
速度0.6m/秒で上昇させることによって、高さが6
00mmの流動層(流動層高さは反応器高さと同じで、
希薄空間部はなし)を形成するとともに、ヒーターによ
ってその流動層を加熱した。反応器内へ導入するモノシ
ランガス濃度は、モノシランガスと水素ガスとの合計量
に対し、20vol%とし、反応器へ供給する水素ガス
の温度は300℃とし、反応温度は700℃とした。流
動層を通過した反応器ガスは、図1に示す構造の空塔部
を流通させて、系外へ排出した。この場合、多孔板を介
して空塔部内へ水素ガスを連続的に噴出させたが、その
水素ガス噴出速度は45リットル/分とした。空塔部の
壁温は390〜420℃に保持した。また空塔部におい
て反応器ガスとの間接熱交換及び加熱器により加熱され
た水素ガスの温度は300℃とした。以上のようにし
て、240時間反応を継続したが、その反応の実施には
トラブルは何ら生じなかった。240時間で反応を停止
し、反応器や空塔部内を点検したが、反応管壁へのシリ
コン析出は最大で2mm厚程度にすぎず、一方、空塔部
への微粒子状シリコン堆積も極く僅かであった。
The reactor 1 is filled with high-purity polycrystalline silicon having a particle size of 300 to 1000 μm and an average particle size of 700 μm,
The height of the monosilane gas and the heated hydrogen gas increased from the bottom of the reactor to 6 by increasing the linear velocity at 0.6 m / sec.
00 mm fluidized bed (fluidized bed height is the same as reactor height,
While forming a thin space portion), the fluidized bed was heated by a heater. The concentration of monosilane gas introduced into the reactor was 20 vol% with respect to the total amount of monosilane gas and hydrogen gas, the temperature of hydrogen gas supplied to the reactor was 300 ° C, and the reaction temperature was 700 ° C. The reactor gas that passed through the fluidized bed was circulated through the empty column portion having the structure shown in FIG. 1 and discharged out of the system. In this case, hydrogen gas was continuously jetted into the empty column portion through the porous plate, and the hydrogen gas jet rate was 45 liters / minute. The wall temperature of the empty column was maintained at 390 to 420 ° C. In addition, the temperature of the indirect heat exchange with the reactor gas and the temperature of the hydrogen gas heated by the heater in the empty column were 300 ° C. As described above, the reaction was continued for 240 hours, but no trouble occurred in carrying out the reaction. The reaction was stopped in 240 hours, and the inside of the reactor and the empty column was inspected, but the maximum deposition of silicon on the wall of the reaction tube was only about 2 mm, while the deposition of fine particulate silicon on the empty column was extremely small. It was a little.

【0023】実施例2 空塔部側壁からの水素噴出速度を57リットル/分に、
反応温度を750℃に、流動層へのシランと水素の混合
ガス供給速度を線速度で0.5m/秒にして流動層高さ
を500mm(流動層高さ及び希薄空間部はそれぞれ反
応器高さの83%、17%である)に変更した以外は、
実施例1と同じ方法で192時間の連続実験を行った。
この実験では空塔部壁温は390〜400℃に保持し
た。この実施例でも、実施例1と同様に反応継続中のト
ラブルは皆無であった。また、192時間での反応終了
後に反応器や空塔部の内壁を充分に点検したところ、反
応器内壁に最大で2〜3mm厚のシリコン析出が認めら
れる以外には大きな変化が認められず、空塔部への微粉
状シリコンの堆積も極めて少なかった。また、反応器上
部における微粉の堆積も認められなかった。
Example 2 The hydrogen ejection rate from the side wall of the superficial part was 57 liters / minute,
The reaction temperature was 750 ° C., the mixed gas supply rate of silane and hydrogen to the fluidized bed was 0.5 m / sec in linear velocity, and the fluidized bed height was 500 mm (the fluidized bed height and the dilute space part are respectively reactor heights. Other than 83% and 17%)
A continuous experiment for 192 hours was performed in the same manner as in Example 1.
In this experiment, the wall temperature of the superficial part was maintained at 390 to 400 ° C. In this example as well, as in Example 1, there were no troubles during the continuous reaction. Further, when the inner wall of the reactor and the empty column portion was thoroughly inspected after the reaction at 192 hours, no significant change was observed except that a maximum of 2 to 3 mm of silicon deposition was observed on the inner wall of the reactor, The amount of fine-powdered silicon deposited on the empty column was also extremely small. In addition, accumulation of fine powder was not observed on the upper part of the reactor.

【0024】比較例1 空塔部側壁からの水素噴出を行わない以外は、実施例1
と同一の条件で120時間の連続実験を行った。この実
験では、空塔部壁温は530〜620℃となった。12
0時間で反応を停止し、反応器及び空塔部の内部を点検
したところ、空塔部側壁や天板のほか反応器上部内壁に
まで微粉状シリコンが堆積し、その厚さは3〜5mmに
達していた。また、ガス排出管入口は閉塞しかけてい
た。
Comparative Example 1 Example 1 was repeated except that hydrogen was not ejected from the side wall of the superficial part.
A continuous experiment for 120 hours was performed under the same conditions as above. In this experiment, the wall temperature of the empty tower was 530 to 620 ° C. 12
When the reaction was stopped at 0 hours and the inside of the reactor and the empty column was inspected, fine powdery silicon was deposited on the sidewall of the empty column and the top plate as well as the inner wall of the upper part of the reactor, and the thickness was 3 to 5 mm. Had reached. Further, the gas exhaust pipe inlet was almost blocked.

【0025】比較例2 比較例1において、反応開始時のシリコン充填量を減ら
し、流動層高さを200mm(流動層高さ及び希薄空間
部はそれぞれ反応器高さの33%、67%)にした以外
は比較例1と同様にして98時間の連続実験を行った。
この実験においては、空塔部側壁温度は490〜550
℃となった。98時間で反応を停止し、反応器及び空塔
部の内部を点検したところ、空塔部の側壁とその天板及
び反応器上部(希薄空間部に相当)の内壁部分にも3〜
5mm厚の微粒子状シリコンの堆積が認められた。ま
た、反応器上部内壁には、シリコンの析出も生じてい
た。
Comparative Example 2 In Comparative Example 1, the filling amount of silicon at the start of the reaction was reduced and the height of the fluidized bed was set to 200 mm (the height of the fluidized bed and the lean space portion were 33% and 67% of the height of the reactor, respectively). A continuous experiment for 98 hours was performed in the same manner as in Comparative Example 1 except that the above was carried out.
In this experiment, the side wall temperature of the superficial part was 490 to 550.
It became ℃. The reaction was stopped after 98 hours, and the inside of the reactor and the empty column was inspected. As a result, the side wall of the empty column and the top plate of the empty column and the inner wall of the upper part of the reactor (corresponding to the dilute space) were 3 to
A deposition of 5 mm thick particulate silicon was observed. In addition, silicon was also precipitated on the inner wall of the upper part of the reactor.

【0026】比較例3 内径100mm、高さ1200mmの石英製外筒の内部
に内径80mm、高さ1100mmの石英製内筒を備え
た流動層反応器を使用し、該流動層反応器を包み込むよ
うに高さ1100mmのヒーターで加熱し、空塔部側壁
からの水素噴出を行わない以外は、実施例1と同様にし
て100時間の連続実験を行った。この実験では、流動
層の高さは、反応器の高さの1/3とした。この実験で
は、空塔部側壁温度は480〜510℃となった。10
0時間で反応を停止し、反応器及び空塔部の内部を点検
したところ、空塔部の側壁とその天板及び反応器上部の
内壁面に2〜5mmの微粉状シリコンの堆積が認められ
た。また、反応器上部の内壁面には厚さ3〜5mmに達
するシリコンの析出も認められた。
COMPARATIVE EXAMPLE 3 A fluidized bed reactor having a quartz inner cylinder having an inner diameter of 100 mm and a height of 1,200 mm and an inner quartz tube having an inner diameter of 80 mm and a height of 1,100 mm was used inside the quartz outer cylinder, and the fluidized bed reactor was wrapped. A continuous experiment was conducted for 100 hours in the same manner as in Example 1 except that the heating was performed with a heater having a height of 1100 mm and the hydrogen was not ejected from the side wall of the superficial part. In this experiment, the height of the fluidized bed was 1/3 of the height of the reactor. In this experiment, the side wall temperature of the superficial part was 480 to 510 ° C. 10
When the reaction was stopped at 0 hours and the inside of the reactor and the empty column was inspected, 2 to 5 mm of fine powdery silicon was found to be deposited on the sidewall of the empty column, the top plate of the empty column and the inner wall of the upper part of the reactor. It was Further, deposition of silicon having a thickness of 3 to 5 mm was also observed on the inner wall surface of the upper portion of the reactor.

【0027】[0027]

【発明の効果】請求項1の発明によれば、反応器内壁及
び空塔部内壁への微粉状シリコンの堆積やシリコンの析
出が効果的に防止され、流動層の適正な運転を困難にす
るようなトラブルを生じることなく、長時間にわたって
安定した状態で反応操作を行うことができる。請求項2
の発明によれば、反応器周壁部付近でのシラン化合物濃
度が低減され、反応器内壁面へのシリコンの析出が防止
される。
According to the first aspect of the present invention, the deposition of fine powder silicon and the deposition of silicon on the inner wall of the reactor and the inner wall of the empty column are effectively prevented, which makes proper operation of the fluidized bed difficult. It is possible to carry out the reaction operation in a stable state for a long time without causing such trouble. Claim 2
According to the invention, the concentration of the silane compound in the vicinity of the peripheral wall of the reactor is reduced, and the deposition of silicon on the inner wall surface of the reactor is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の一例につ
いての概要図である。
FIG. 1 is a schematic diagram of an example of an apparatus for performing the method of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状反応器 2 ガス排出管 3 種シリコン供給管 4 底板 5 ガス分散板 6 邪魔板 7 内室 8 空塔部 9 シラン化合物導入管 10 希釈ガス導入管 11 製品抜き出し管 12 ヒーター 13 流動層 14 ジャケット 15 多孔板 16,17,18,19,29,31 流量調節弁 20 ガス室 21,22,23,24,25,26,27,30 ラ
イン 28 加熱器
1 Cylindrical Reactor 2 Gas Discharge Pipe 3 Type Silicon Supply Pipe 4 Bottom Plate 5 Gas Dispersion Plate 6 Baffle Plate 7 Inner Chamber 8 Vacant Tower 9 Silane Compound Introducing Pipe 10 Diluting Gas Introducing Pipe 11 Product Extracting Pipe 12 Heater 13 Fluidized Bed 14 Jacket 15 Perforated plate 16, 17, 18, 19, 29, 31 Flow rate control valve 20 Gas chamber 21, 22, 23, 24, 25, 26, 27, 30 Line 28 Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高綱 和敏 神奈川県川崎市川崎区千鳥町3番1号 東 燃化学株式会社技術開発センター内 (72)発明者 猿渡 康裕 神奈川県川崎市川崎区千鳥町3番1号 東 燃化学株式会社技術開発センター内 (72)発明者 石川 延宏 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 (72)発明者 ▲廣▼田 大助 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazutoshi Takatsuna Kazutoshi Takatsuna 3-1, Chidori-cho, Kawasaki-ku, Kanagawa Prefecture Tonen Kagaku Co., Ltd. Technology Development Center (72) Yasuhiro Saruwatari Chidori, Kawasaki-ku, Kawasaki-shi, Kanagawa 3-1, Machi Tonen Kagaku Co., Ltd. Technology Development Center (72) Inventor Nobuhiro Ishikawa 23, Toagosei Kagaku Kogyo Co., Ltd. Nagoya Plant, 23, 17 Showa-cho, Minato-ku, Nagoya, Aichi Prefecture (72) Inventor ▲ Hirota Tasuke 23 Toagosei Synthetic Chemical Industry Co., Ltd. Nagoya Plant 23, 17 Showa-cho, Minato-ku, Nagoya

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン粒子を流動化させた流動層反応
器底部からシラン化合物とその希釈ガスからなる供給ガ
スを反応器内に導入し、シラン化合物を流動化シリコン
粒子上で熱分解させてそのシリコン粒子上にシリコンを
析出させると共に、流動層を通過した反応器ガスを、反
応器上方に配設した空塔部を通過させて系外へ排出させ
る粒状多結晶シリコンの製造方法において、 (i)前記希釈ガスの少なくとも一部又は前記希釈ガス
の少なくとも一部と前記シラン化合物の一部との混合ガ
スを、前記空塔部を通過する反応器ガスと間接熱交換さ
せて加熱し、得られた加熱ガスを必要に応じて更に加熱
してから反応器底部より反応器内に供給すること、 (ii)空塔部壁面から空塔部内に前記シラン化合物の熱
分解開始温度より低い温度の希釈ガスを噴出させ、空塔
部壁温を下げること、を特徴とする粒状多結晶シリコン
の製造方法。
1. A feed gas consisting of a silane compound and a dilution gas thereof is introduced into the reactor from the bottom of a fluidized bed reactor in which silicon particles are fluidized, and the silane compound is thermally decomposed on the fluidized silicon particles and In the method for producing granular polycrystalline silicon, in which silicon is deposited on silicon particles, and the reactor gas that has passed through the fluidized bed is discharged to the outside of the system by passing through a superficial part disposed above the reactor, ) At least a part of the diluent gas or a mixed gas of at least a part of the diluent gas and a part of the silane compound is heated by indirect heat exchange with the reactor gas passing through the superficial part. The heated gas is further heated, if necessary, and then supplied into the reactor from the bottom of the reactor, (ii) Dilution at a temperature lower than the thermal decomposition start temperature of the silane compound from the wall surface of the empty column into the empty column. Scan is ejected, reducing the superficial wall temperature, method for producing a granular polycrystalline silicon, wherein.
【請求項2】 シラン化合物又は希釈ガスを含むシラン
化合物を反応器底部の中央部又は中央部付近から反応器
内へ供給し、希釈ガス又は少量のシラン化合物を含む希
釈ガスを反応器底部の周辺部から反応器内へ供給するこ
とを特徴とする請求項1の粒状多結晶シリコンの製造方
法。
2. A silane compound or a silane compound containing a diluting gas is supplied into the reactor from a central portion of the bottom of the reactor or the vicinity thereof, and a diluting gas or a diluting gas containing a small amount of the silane compound is provided around the bottom of the reactor. 2. The method for producing granular polycrystalline silicon according to claim 1, wherein the polycrystal silicon is supplied into the reactor from one part.
JP30635392A 1992-10-20 1992-10-20 Production of granular polycrystalline silicon Pending JPH06127926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30635392A JPH06127926A (en) 1992-10-20 1992-10-20 Production of granular polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30635392A JPH06127926A (en) 1992-10-20 1992-10-20 Production of granular polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPH06127926A true JPH06127926A (en) 1994-05-10

Family

ID=17956059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30635392A Pending JPH06127926A (en) 1992-10-20 1992-10-20 Production of granular polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH06127926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026667A1 (en) * 2009-09-04 2011-03-10 G+R Technology Group Ag Reactor for producing polycrystalline silicon
JP2011132089A (en) * 2009-12-25 2011-07-07 Cosmo Oil Co Ltd Method and apparatus for preventing blockage of exhaust pipe of reactor for polycrystalline silicon production
US20110212011A1 (en) * 2008-09-16 2011-09-01 Sunnyside Technologies, Inc. Reactor and method for producing high-purity granular silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212011A1 (en) * 2008-09-16 2011-09-01 Sunnyside Technologies, Inc. Reactor and method for producing high-purity granular silicon
US8535614B2 (en) * 2008-09-16 2013-09-17 Sunnyside Technologies, Inc. Reactor and method for producing high-purity granular silicon
WO2011026667A1 (en) * 2009-09-04 2011-03-10 G+R Technology Group Ag Reactor for producing polycrystalline silicon
JP2011132089A (en) * 2009-12-25 2011-07-07 Cosmo Oil Co Ltd Method and apparatus for preventing blockage of exhaust pipe of reactor for polycrystalline silicon production

Similar Documents

Publication Publication Date Title
JP3592660B2 (en) Polycrystalline silicon manufacturing equipment
EP1924349B1 (en) Silicon spout-fluidized bed
CN102084038B (en) Direct silicon or reactive metal casting
JP2015120160A (en) Fluidized bed reactor systems and methods for reducing deposition of silicon on reactor walls
CN101696013B (en) Method and device for producing polysilicon by using plasma assisting fluidized bed process
JP4157281B2 (en) Reactor for silicon production
JPH05139891A (en) Method and device for producing semiconductor grade multi-crystal silicon
EP2294005B1 (en) Method and skull reactor for producing silicon or a reactive metal
US20040091630A1 (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
JPH06191818A (en) Production of polycrystal silicon
JPH06127924A (en) Production of polycrystalline silicon
CN201598181U (en) Device for producing polycrystalline silicon by plasma auxiliary fluidized bed process
JPH06127926A (en) Production of granular polycrystalline silicon
JPH06127916A (en) Production of spherical high-purity polycrystalline silicon
JPH08169797A (en) Method and apparatus for preparation of polycrystalline silicon rod
JPH02279513A (en) Production of high-purity polycrystal silicon
JPH0230611A (en) Method and device for producing polycrystalline silicon
CN107973300B (en) Liquid silicon production device and method
JPH06127921A (en) Production of granular polycrystalline silicon
JPH06127914A (en) Production of polycrystalline silicon
JPH01239014A (en) Production of polycrystalline silicon and unit therefor
JPH0680412A (en) Production of polycrystalline silicon
JPH06191817A (en) Production of granular polycrystal silicon
JPH02279512A (en) Production of high-purity polycrystal silicon
JPH06127927A (en) Production of granular polycrystalline silicon