JPS63224732A - Production of ultrafine particles - Google Patents

Production of ultrafine particles

Info

Publication number
JPS63224732A
JPS63224732A JP62056781A JP5678187A JPS63224732A JP S63224732 A JPS63224732 A JP S63224732A JP 62056781 A JP62056781 A JP 62056781A JP 5678187 A JP5678187 A JP 5678187A JP S63224732 A JPS63224732 A JP S63224732A
Authority
JP
Japan
Prior art keywords
ultrafine particles
reactive gas
gas
vacuum vessel
laser beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056781A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakada
清和 仲田
Moriaki Ono
守章 小野
Shigechika Kosuge
小菅 茂義
Itaru Watanabe
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62056781A priority Critical patent/JPS63224732A/en
Publication of JPS63224732A publication Critical patent/JPS63224732A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Abstract

PURPOSE:To produce homogeneous particles having small particle diameter and narrow distribution of particle size, by introducing reactive gas while maintaining the pressure in a vacuum vessel at the prescribed pressure, pulsatively projecting laser beams and causing gaseous phase reaction by the reactive gas. CONSTITUTION:A gaseous mixture consisting of e.g. SiH4 and NH3 is introduced into a vacuum vessel 1 as reactive gas while maintaining the inside of the vacuum vessel 1 at the prescribed pressure. Then the CO2 laser beams 3 are pulsatively projected to the reactive gas. In other words, the laser beams of output p1 are projected to the reactive gas for time t1 to heat it at such degree that it is not reacted and thereafter the laser beams of output p2 are projected to reactive gas for t2 time to cause gaseous phase reaction. By such a way, ultrafine particles 4 consisting of Si3N4 are formed. These ultrafine particles 4 are recovered from the inside of the vacuum vessel 1 together with nonreacted gas for the following time t1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超微粒子の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing ultrafine particles.

〔従来の技術〕[Conventional technology]

一般に金属又はセラミックスの粉末のうち、粒径がl/
Lm以下の固体粒子を超微粒子と呼ぶが、比表面積(容
積に対する表面積の割合)が太きいため、一般の微粒子
には認められない特異な性質を有する。即ち、超微粒子
は化学的活性が強いばかりでなく、熱的、電気的、磁気
的、光学的にも興味深い性質を示し、触媒、電子素子、
磁気素子、生物医学機能素子への応用が考えられている
Generally, among metal or ceramic powders, the particle size is l/
Solid particles of Lm or less are called ultrafine particles, but because they have a large specific surface area (ratio of surface area to volume), they have unique properties not found in general fine particles. In other words, ultrafine particles not only have strong chemical activity, but also exhibit interesting thermal, electrical, magnetic, and optical properties, and are useful for catalysts, electronic devices,
Applications to magnetic elements and biomedical functional elements are being considered.

従来の超微粒子の製造方法としては、ガス中蒸発法、プ
ラズマ蒸発法、水素プラズマ反応法、アトマイゼイショ
ンなどがある。
Conventional methods for producing ultrafine particles include in-gas evaporation, plasma evaporation, hydrogen plasma reaction, and atomization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述したような従来の製造方法においては、生
成粒子の凝集が起り易いために粒子の平均粒径が大きく
且つ粒度分布が広い。さらに、目的物質を含んだ適切な
蒸発源材料が必要となるため(−1製造可能々超微粒子
の種類が限定され、しかも、均質且つ高純度の超微粒子
を製造することが困難である。
However, in the conventional manufacturing method as described above, agglomeration of the produced particles tends to occur, so that the average particle size of the particles is large and the particle size distribution is wide. Furthermore, since an appropriate evaporation source material containing the target substance is required (-1), the types of ultrafine particles that can be produced are limited, and it is difficult to produce homogeneous and highly pure ultrafine particles.

従って、この発明の目的は、平均粒径が小さく且つ粒度
分布が狭く、しかも、均質且つ高純度の超微粒子の製造
方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing ultrafine particles having a small average particle size and a narrow particle size distribution, and which are homogeneous and highly pure.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、真空容器内に反応ガスを、前記真空容器内
の圧力を所定圧力に維持しながら導入し、レーザビーム
を前記真空容器内の反応ガスにパルス的に照射して気相
反応を起こさせ、かくして、超微粒子を得ることに特徴
を有するものである。
In this invention, a reaction gas is introduced into a vacuum container while maintaining the pressure inside the vacuum container at a predetermined pressure, and a laser beam is irradiated to the reaction gas in the vacuum container in a pulsed manner to cause a gas phase reaction. This method is characterized in that ultrafine particles are obtained.

次に、この発明の一実施態様を図面を参照しながら説明
する。
Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は、この発明の一実施態様の概略断面図である。FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention.

第1図に示すように、真空容器1内に、例えば、5in
4とNH3とからなる混合ガス2を反応ガスとして真空
容器1内を所定圧力に維持しながら導入し、そして、前
記反応ガスに、例えば、CO2レーザビーム3を第2図
に示すようにパルス的に照射する。
As shown in FIG. 1, for example, a 5 inch
A mixed gas 2 consisting of 4 and NH3 is introduced as a reaction gas into the vacuum vessel 1 while maintaining a predetermined pressure, and then a CO2 laser beam 3 is applied to the reaction gas in a pulsed manner as shown in FIG. irradiate.

即ち、t1時間出力P1  のレーザビームを反応ガス
に照射して反応ガスをこれが反応しない程度に加熱し、
次に、t2  時間出力P2のレーザビームを反応ガス
に照射して反応ガスに気相反応を起こさせる。かくして
、Si3N4からなる超微粒子4が製造される。次(−
1このようにして得られた超微粒子を、次のt5時間の
間に未反応ガスと共に真空容器l内から回収(排気装置
及び回収装置は図示せず)t1時間の間、レーザの出力
がPlと低いために、反応ガスは気相反応を起こさず、
ガス温度は低下する。従って、製造された超微粒子は凝
集を起こさず、粒径が小さく、粒度分布の狭いものとな
る。
That is, the reactant gas is heated to such an extent that it does not react by irradiating the reactant gas with a laser beam having an output of P1 for a time t1,
Next, the reactant gas is irradiated with a laser beam having an output of P2 for a time t2 to cause a gas phase reaction in the reactant gas. In this way, ultrafine particles 4 made of Si3N4 are produced. Next (−
1 The ultrafine particles obtained in this way are collected from the vacuum vessel l together with the unreacted gas during the next time t5 (exhaust equipment and collection equipment are not shown). During the time t1, the laser output is Because of the low
Gas temperature decreases. Therefore, the produced ultrafine particles do not agglomerate, have a small particle size, and have a narrow particle size distribution.

上記レーザビームの照射サイクルは、次の通りが好まし
い。
The irradiation cycle of the laser beam is preferably as follows.

繰返し周波数 :l−1000Hz ピーク比(P2/Pl)  :  P+ が0〜3 /
 4 P 2、Duty(t、z/i++t2) ; 
10〜90%。
Repetition frequency: l-1000Hz Peak ratio (P2/Pl): P+ is 0 to 3 /
4 P 2, Duty (t, z/i++t2);
10-90%.

〔実施例1〕 真空容器内にSiH4とNH3とからなる反応ガスを、
真空容器内をl 5 Torr  の圧力に維持しなが
ら導入し、そして、前記反応ガスにCO2レーザビーム
を、繰返し周波数: 200 )LZ 、 Duty(
t、2/ll+t2) : 50チ、P2:200Wに
設定し、P、を0〜150Wに変化させて、前記反応ガ
スに下式に示す気相反応を起こさせた。
[Example 1] A reaction gas consisting of SiH4 and NH3 was placed in a vacuum container.
A CO2 laser beam is introduced into the vacuum container while maintaining a pressure of l 5 Torr, and a CO2 laser beam is applied to the reaction gas at a repetition frequency: 200 ) LZ , Duty (
t, 2/ll+t2): 50 cm, P2: set at 200 W, P was changed from 0 to 150 W, and the reaction gas was caused to undergo a gas phase reaction as shown in the following formula.

3 S iH4−1−4NH3→513N4+12H2
このようにして、813N4からなる超微粒子を製造し
た。この超微粒子の粒度分布および生産効率ノ結果ヲ、
200Wの002レーザビームを連続照射した結果と合
わせて第1表に示す。なお、本発明法によって得られた
超微粒子は、所定の化学組成(5i3N4)からなり、
純度も99.9%であった。
3 S iH4-1-4NH3→513N4+12H2
In this way, ultrafine particles made of 813N4 were produced. The results of the particle size distribution and production efficiency of these ultrafine particles are
The results are shown in Table 1 together with the results of continuous irradiation with a 200W 002 laser beam. The ultrafine particles obtained by the method of the present invention have a predetermined chemical composition (5i3N4),
The purity was also 99.9%.

第1表 ただし P2=200(W)、 Duty(t2/l+
+t2)=50%繰返し周波数 200 Hz 第1表から明らかなよう(二、本発明法は、レーザビー
ムを連続照射した場合に比べて生産効率は若干劣るが、
粒度分布の面で優れていることがわかる。
Table 1 However, P2=200(W), Duty(t2/l+
+t2) = 50% repetition frequency 200 Hz As is clear from Table 1 (2. The production efficiency of the method of the present invention is slightly inferior to that of continuous laser beam irradiation, but
It can be seen that the particle size distribution is excellent.

〔実施例2〕 真空容器内にSiH4とC2H4とからなる反応ガスを
、真空容器内を25 Torr  の圧力に維持し表か
ら導入し、そして、前記混合ガスにC02レーザビーム
を、第2表に示す種々の条件で照射して、前  □記反
応ガスに下式に示す気相反応を起こさせた。
[Example 2] A reaction gas consisting of SiH4 and C2H4 was introduced into a vacuum container from the front while maintaining the pressure inside the vacuum container at 25 Torr, and a C02 laser beam was applied to the mixed gas as shown in Table 2. Irradiation was performed under the various conditions shown to cause the gas phase reaction shown in the following formula to occur in the reaction gas described above.

28i H4+C2H4→2 S IC+ 6 H2第
2表 このようにしてSiCからなる超微粒子を製造し6一 た。第2表に示した全ての条件において、超9粒子の平
均粒径は小さく且つ粒度分布は12〜25μmであり、
従来法によって製造した場合の粒度分布50〜200μ
mと比べて著しく狭かった。
28i H4+C2H4→2 S IC+ 6 H2 Table 2 In this manner, ultrafine particles made of SiC were produced. Under all conditions shown in Table 2, the average particle size of Super 9 particles was small and the particle size distribution was 12 to 25 μm,
Particle size distribution when manufactured by conventional method: 50-200μ
It was significantly narrower than m.

〔実施例3〕 真空容器内にT i C4とNH3とからなる反応ガス
を、真空容器内を20 Torr  の圧力に維持しな
がら導入し、そして、前記反応ガスにCO2レーザビー
ムを、p、: 50W、P2: 150W、繰返し周波
数: 200 Hz 、 Duty : 50%の条件
に従って照射して、前記反応ガスに下式に示す気相反応
を起こさせた。
[Example 3] A reaction gas consisting of T i C4 and NH3 was introduced into a vacuum container while maintaining the pressure inside the vacuum container at 20 Torr, and a CO2 laser beam was applied to the reaction gas, p: The reaction gas was irradiated under the following conditions: 50 W, P2: 150 W, repetition frequency: 200 Hz, and duty: 50% to cause a gas phase reaction shown in the following formula.

TIC、I−4+ NHs + 1/ 2H2→TiN
+4HCfこのようにしてTiNからなる超微粒子を製
造した。この超微粒子の純度は99.99%以上で、且
つ粒度分布は15〜25μmであった。又、化学組成に
ついては化学量論的なTiNであった。
TIC, I-4+ NHs + 1/2H2→TiN
+4HCf In this way, ultrafine particles made of TiN were produced. The purity of the ultrafine particles was 99.99% or more, and the particle size distribution was 15 to 25 μm. Furthermore, the chemical composition was stoichiometric TiN.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、平均粒径が小
さく且つ粒度分布が狭く、しかも、均質且つ高純度の超
微粒子を製造することができるといったきわめて有用な
効果がもたらされる。
As explained above, the present invention brings about extremely useful effects such as being able to produce ultrafine particles with a small average particle size and narrow particle size distribution, and which are homogeneous and highly pure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施態様を示す概略断面図、第
2図は、レーザ出力と時間との関係を示すグラフである
。図面において、 1・・・真空容器、    2・・・反応ガス、3・・
・レーザビーム、  4・・・超微粒子。
FIG. 1 is a schematic sectional view showing one embodiment of the present invention, and FIG. 2 is a graph showing the relationship between laser output and time. In the drawings, 1... vacuum container, 2... reaction gas, 3...
・Laser beam, 4...Ultrafine particles.

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に反応ガスを、前記真空容器内の圧力を所定
圧力に維持しながら導入し、レーザビームを前記真空容
器内の反応ガスによるパルス的に照射して気相反応を起
こさせ、かくして、超微粒子を得ることを特徴とする、
超微粒子の製造方法。
A reaction gas is introduced into a vacuum container while maintaining the pressure in the vacuum container at a predetermined pressure, and a laser beam is irradiated with the reaction gas in the vacuum container in a pulsed manner to cause a gas phase reaction, thus, characterized by obtaining ultrafine particles,
Method for producing ultrafine particles.
JP62056781A 1987-03-13 1987-03-13 Production of ultrafine particles Pending JPS63224732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056781A JPS63224732A (en) 1987-03-13 1987-03-13 Production of ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056781A JPS63224732A (en) 1987-03-13 1987-03-13 Production of ultrafine particles

Publications (1)

Publication Number Publication Date
JPS63224732A true JPS63224732A (en) 1988-09-19

Family

ID=13036971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056781A Pending JPS63224732A (en) 1987-03-13 1987-03-13 Production of ultrafine particles

Country Status (1)

Country Link
JP (1) JPS63224732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877591A1 (en) * 2004-11-09 2006-05-12 Commissariat Energie Atomique SYSTEM AND PROCESS FOR PRODUCING CONTINUOUS FLOW OF NANOMETRIC OR SUB-MICROMETRIC POWDERS UNDER LASER PYROLYSIS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877591A1 (en) * 2004-11-09 2006-05-12 Commissariat Energie Atomique SYSTEM AND PROCESS FOR PRODUCING CONTINUOUS FLOW OF NANOMETRIC OR SUB-MICROMETRIC POWDERS UNDER LASER PYROLYSIS
WO2006051233A1 (en) * 2004-11-09 2006-05-18 Commissariat A L'energie Atomique System and method for continuous flow production of nanometric or sub-micrometric powders by the action of a pyrolytic laser
US8822878B2 (en) 2004-11-09 2014-09-02 Commissariat A L'energie Atomique Production of nanometric or sub-micrometric powders in continuous flux

Similar Documents

Publication Publication Date Title
US8163264B2 (en) Expanded graphite and process for producing the expanded graphite
Li et al. Sonochemical synthesis of silver, copper and lead selenides
JPS62102827A (en) Production of metallic or ceramic fine grain
JPH0433490B2 (en)
US4769064A (en) Method for synthesizing ultrafine powder materials
US5861136A (en) Method for making copper I oxide powders by aerosol decomposition
KR100221181B1 (en) Method for making gold powder by aerosol decomposition
JPS63107898A (en) Method for synthesizing diamond with plasma
US9166170B1 (en) Apparatus for producing carbon-coated nanoparticles and carbon nanospheres
JPS58223606A (en) Preparation of ultrafine hollow microsphere of metallic oxide
JPH03193681A (en) Surface reforming method and device and surface reformed base material
Dean et al. Catalytic etching of platinum foils and thin films in hydrogen-oxygen mixtures
JPS63224732A (en) Production of ultrafine particles
KR102230246B1 (en) Continuous synthesizing method of carbon nanotubes
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JP2000103608A (en) Production of titanium nitride
JP3099539B2 (en) Manufacturing method of artificial diamond powder
JPS58150427A (en) Preparation of fine powder of metal compound
JPH0388707A (en) Production of high purity artificial diamond powder
JPH0474810A (en) Manufacture of nickel base metal fine powder
Mostovshchikov et al. Transformations in aluminum oxyhydroxide under powerful short-pulse microwave radiation
JPH0458404B2 (en)
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material
JPS6242734A (en) Pulverizing method
JPS6136114A (en) Production of fine powder of silica