JPS63223020A - Production of polyphenols - Google Patents

Production of polyphenols

Info

Publication number
JPS63223020A
JPS63223020A JP5665587A JP5665587A JPS63223020A JP S63223020 A JPS63223020 A JP S63223020A JP 5665587 A JP5665587 A JP 5665587A JP 5665587 A JP5665587 A JP 5665587A JP S63223020 A JPS63223020 A JP S63223020A
Authority
JP
Japan
Prior art keywords
reaction
polyphenols
water
phenols
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5665587A
Other languages
Japanese (ja)
Other versions
JPH0762060B2 (en
Inventor
Takahito Nakamura
隆人 中村
Motojiro Aoi
青井 元次郎
Shunichi Hamamoto
俊一 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5665587A priority Critical patent/JPH0762060B2/en
Publication of JPS63223020A publication Critical patent/JPS63223020A/en
Publication of JPH0762060B2 publication Critical patent/JPH0762060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain high-purity polyphenols with a low content of low-molecular compounds, by carrying out condensation reaction of phenols with specific dialdehydes in the presence of an acid catalyst while keeping the water concentration in the reaction system at a given value or below. CONSTITUTION:(A) Phenols (e.g. phenol) and (B) dialdehydes selected from glyoxal and glutaraldehyde (e.g. glutaraldehyde) are subjected to condensation reaction in the presence of an acid catalyst (e.g. p-toluenesulfonic acid), preferably at 80-140 deg.C reaction temperature while keeping the water concentration in the reaction system at <=2wt.% to afford the aimed polyphenols. Furthermore, the molar ratio (A/B) of the components (A) to (B) is preferably 4-50.

Description

【発明の詳細な説明】 本発明は、耐熱性エポキシ樹脂や耐熱性フェノール樹脂
の原料、プラスチックの改質剤として優れている低分子
化合物の含有量の少ないポリフェノール類の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyphenols with a low content of low-molecular-weight compounds, which are excellent as raw materials for heat-resistant epoxy resins and heat-resistant phenolic resins, and as modifiers for plastics.

[従来技術及び問題点] フェノール類と、グリオキザールまたはグルタルアルデ
ヒドとを酸触媒の存在下に縮合反応させると式(I)お
よび高次縮合物からなるポリフェノール類が生成するが
、このほかに活性なメチロール基(ンC1(OH)を有
する式(II )及び式(m)の低分子化合物、及びこ
れら式(■)。
[Prior art and problems] When phenols are subjected to a condensation reaction with glyoxal or glutaraldehyde in the presence of an acid catalyst, polyphenols consisting of formula (I) and higher-order condensates are produced. Low molecular weight compounds of formula (II) and formula (m) having a methylol group (C1(OH)), and these formulas (■).

式(m)の分子内脱水で生成した化合物(以下、式(■
)9式(m)及びこれらの脱水生成物を「低分子化合物
」と言う)が生成する。
A compound produced by intramolecular dehydration of formula (m) (hereinafter referred to as formula (■
) 9 formula (m) and their dehydrated products are referred to as "low molecular compounds") are produced.

n=0または3 (I) (III) これらの低分子化合物を含むポリフェノール類をエポキ
シ樹脂およびフェノール樹脂の原料にした場合、耐熱性
及び機械的強度が著しく低下する。しかも、これらの低
分子化合物とポリフェノール類との分離は極めて難しく
、工業的な分離方法は見い出されていない。
n=0 or 3 (I) (III) When polyphenols containing these low molecular weight compounds are used as raw materials for epoxy resins and phenolic resins, heat resistance and mechanical strength are significantly reduced. Furthermore, it is extremely difficult to separate these low-molecular compounds from polyphenols, and no industrial separation method has yet been found.

そこで、低分子化合物を低減させる改良法として、フェ
ノール類とアルデヒドとを反応させた後、未反応フェノ
ールと水とを留去し、その後、低分子化合物を含むポリ
フェノール類に、再びフェノール類と酸触媒を加えて縮
合反応し、引続いてフェノール類と水とを除去してポリ
フェノール類を製造する方法(特開昭58−14290
8号)が提案されている。しかし、製造工程が複雑なた
め実用的でない。
Therefore, as an improved method for reducing low-molecular compounds, after reacting phenols with aldehydes, unreacted phenol and water are distilled off, and then polyphenols containing low-molecular compounds are mixed with phenols and acids again. A method for producing polyphenols by adding a catalyst and carrying out a condensation reaction, and subsequently removing phenols and water (Japanese Patent Laid-Open No. 58-14290
No. 8) has been proposed. However, it is not practical because the manufacturing process is complicated.

[問題点を解決するための手段] 本発明は、フェノール類と、グリオキザール。[Means for solving problems] The present invention relates to phenols and glyoxal.

グルタルアルデヒドより選ばれたジアルデヒド類とを酸
触媒の存在下に縮合反応によってポリフェノール類を製
造する方法において、反応系中の水の濃度を2重量%以
下に保持することを特徴とするポリフェノール類の製造
法である。
A method for producing polyphenols by a condensation reaction with a dialdehyde selected from glutaraldehyde in the presence of an acid catalyst, characterized in that the concentration of water in the reaction system is maintained at 2% by weight or less. This is the manufacturing method.

本発明に用いられるフェノール類としては、フェノール
、クレゾール、キシレノール、カテコール、レゾルシン
、ハイドロキノンなどが挙げられ、フェノール類(a)
とジアルデヒド類(b)とのモル比(a/b)は4〜5
0、好ましくは5〜30である。(a/b)が4より小
さいと高次縮合物が多く生成し、一方、(a/b)が5
0より大きいとポリフェノール類に対する未反応フェノ
ーノに量が多く、これの回収に多量のエネルギーを費や
すので好ましくない。
Examples of the phenols used in the present invention include phenol, cresol, xylenol, catechol, resorcinol, hydroquinone, etc. Phenols (a)
The molar ratio (a/b) of and dialdehyde (b) is 4 to 5
0, preferably 5-30. When (a/b) is smaller than 4, many higher-order condensates are produced; on the other hand, when (a/b) is 5
If it is larger than 0, there will be a large amount of unreacted phenol with respect to polyphenols, and a large amount of energy will be expended to recover it, which is not preferable.

酸触媒としては、硫酸、塩酸、過塩素酸、フェノールス
ルホンs、トルエンスルホン酸、シュウ酸などが挙げら
れ、これらの触媒濃度は原料フェノール類に対して0.
01〜4重量%が好ましい。
Examples of acid catalysts include sulfuric acid, hydrochloric acid, perchloric acid, phenolsulfone s, toluenesulfonic acid, and oxalic acid, and the concentration of these catalysts is 0.0% relative to the raw material phenols.
01 to 4% by weight is preferred.

反応温度は80−140℃、好ましくは90〜120℃
であり、80℃より低いと反応速度が遅く、しかも低分
子化合物の生成量が多くなる。一方、140℃より高い
温度では高次縮合物の生成量が多くなるので好ましくな
い。
Reaction temperature is 80-140℃, preferably 90-120℃
If the temperature is lower than 80°C, the reaction rate will be slow and the amount of low molecular weight compounds produced will increase. On the other hand, temperatures higher than 140° C. are not preferred because the amount of higher-order condensates produced increases.

グリオキザール及びグルタルアルデヒドは無水の状態で
は非常に不安定なため40〜50%水溶液で市販されて
いる。したがって、反応系(反応液)には通常、ジアル
デヒド水溶液として混入する水と、フェノール類とジア
ルデヒド類との縮合反応によって生成する水が存在する
0反応系の水の濃度が2重量%より高い条件でフェノー
ルとジアルデヒド類との縮合反応をすると低分子化合物
が著しく多く生成するが、2重量%以下の濃度に保持す
ると、低分子化合物の生成量が少ない。
Since glyoxal and glutaraldehyde are very unstable in anhydrous state, they are commercially available as 40-50% aqueous solutions. Therefore, the concentration of water in the reaction system (reaction liquid) usually contains water mixed as an aqueous solution of dialdehyde and water generated by the condensation reaction between phenols and dialdehydes, and the concentration of water in the reaction system is less than 2% by weight. If the condensation reaction between phenol and dialdehydes is carried out under high conditions, a significantly large amount of low molecular weight compounds will be produced, but if the concentration is maintained at 2% by weight or less, the amount of low molecular weight compounds produced will be small.

水を除去する方法としては特に制約はないが、一般には
蒸留除去が望ましい、すなわち、反応系内を常圧または
減圧にして加熱留出させるか、または窒素、ヘリウムな
どの不活性ガスを通気しながら除去するか、またはトル
エン、キシレンなどの溶媒と共沸させて除去する方法が
挙げられる。
There are no particular restrictions on the method of removing water, but it is generally desirable to remove it by distillation. In other words, by heating the reaction system under normal pressure or reduced pressure, or by passing an inert gas such as nitrogen or helium through the reaction system. Examples of methods include removing the compound while removing the compound, or removing the compound by azeotropic distillation with a solvent such as toluene or xylene.

なお、反応後、反応系の触媒を除去またはアルカリで中
和し、水及び未反応フェノールを留去してポリフェノー
ル類を得る。
After the reaction, the catalyst in the reaction system is removed or neutralized with an alkali, and water and unreacted phenol are distilled off to obtain polyphenols.

[発明の効果] 本発明によれば、簡単な製造法で低分子化合物の含有量
が少なく、純度の高いポリフェノール類が得られ、これ
は優れた耐熱性と機械的強度を有するエポキシ樹脂用及
びフェノール樹脂用の原料として使用される。
[Effects of the Invention] According to the present invention, polyphenols with a low content of low-molecular-weight compounds and high purity can be obtained by a simple production method. Used as a raw material for phenolic resins.

[本発明の実施例] 実施例1 水分離器及び滴下ロートを備えた内容積2fLのフラス
コにフェノール940gと市販の40%グリオキザール
水溶液230g (a/b=6.3)を仕込み、この反
応液を100−105℃、圧力700mmHgに加熱、
減圧にして、反応系内の水120gを系外に留出させた
0反応液の水の濃度が1.7重量%になった時点で50
%P−トルエンスルホン酸水溶液3.8gを滴下ロート
から徐々に添加し、縮合反応によって生成する水を連続
的に留去しながら、反応系の水の濃度を0.9〜1.9
重量%に保持し、110℃、2時間反応させた0反応後
、4%苛性ソーダ水溶液1008gを添加してp−)ル
エンスルホン酸触媒を中和した。引続き減圧下に反応系
を180℃まで加熱しながら、水と未反応フェノールを
留去し、低分子化合物8重量%、1,1,2.2−テト
ラキス(ヒドロキシフェニル)エタン54重IJ%、及
び高次縮合物38重量%からなるポリフェノール類(軟
化点152℃)470gを得た。。
[Examples of the present invention] Example 1 A flask with an internal volume of 2 fL equipped with a water separator and a dropping funnel was charged with 940 g of phenol and 230 g of a commercially available 40% glyoxal aqueous solution (a/b = 6.3), and the reaction solution was heated to 100-105℃ and pressure 700mmHg,
The pressure was reduced and 120 g of water in the reaction system was distilled out of the system. When the concentration of water in the reaction solution reached 1.7% by weight,
%P-Toluenesulfonic acid aqueous solution (3.8 g) was gradually added from the dropping funnel, and the water concentration in the reaction system was adjusted to 0.9 to 1.9 while continuously distilling off the water produced by the condensation reaction.
After the reaction was carried out at 110° C. for 2 hours while maintaining the same weight percentage, 1008 g of a 4% aqueous sodium hydroxide solution was added to neutralize the p-)luenesulfonic acid catalyst. While subsequently heating the reaction system to 180°C under reduced pressure, water and unreacted phenol were distilled off, and 8% by weight of low molecular weight compounds, 54% by weight IJ of 1,1,2.2-tetrakis(hydroxyphenyl)ethane, and 470 g of polyphenols (softening point: 152° C.) consisting of 38% by weight of higher-order condensates were obtained. .

なお、低分子化合物はテトラヒドロフラン溶液を高速液
体クロマトグラフ(東洋曹達製H’LC802型)で分
析した。
Note that low molecular weight compounds were analyzed by analyzing a tetrahydrofuran solution using a high performance liquid chromatograph (Model H'LC802 manufactured by Toyo Soda).

実施例2 実施例1と同一反応器にフェノール940gと49%グ
ルタルアルデヒド水溶液200g(a/b=10.2)
を仕込み、この反応液を100〜105℃、圧カフ00
mmHHに加熱。
Example 2 940 g of phenol and 200 g of 49% glutaraldehyde aqueous solution (a/b = 10.2) were placed in the same reactor as in Example 1.
This reaction solution was heated to 100-105°C with a pressure cuff of 00
Heat to mmHH.

減圧して反応系内の水89gを系外に留出させた0反応
液の水の濃度が1 、2fi量%になった時点で50%
p−)ルエンスルホン酸水溶液7.2gを滴下ロートか
ら徐々に添加し、縮合反応によって生成する水を連続的
に留去しながら、反応系の水の濃度を0.7〜1.2重
量%に保持し、100℃、3時間反応させた0反応後、
4%苛性ソーダ水溶液21gを添加して触媒を中和した
。引続き減圧下に反応系を180℃まで加熱しながら、
水と未反応フェノールを留去し、低分子化合物3重量%
、1,1,5.5−テトラキス(ヒドロキシフェニル)
ペンタン45i11%、及び高次縮合物52重量%から
なるポリフェノール類(軟化点138℃)396gを得
た。
89g of water in the reaction system was distilled out of the system by reducing the pressure.When the concentration of water in the reaction solution reached 1.2fi%, it was 50%.
p-) Gradually add 7.2 g of an aqueous solution of luenesulfonic acid from the dropping funnel, and while continuously distilling off the water produced by the condensation reaction, the concentration of water in the reaction system is adjusted to 0.7 to 1.2% by weight. After 0 reaction, which was maintained at 100°C for 3 hours,
21 g of 4% aqueous sodium hydroxide solution was added to neutralize the catalyst. While continuing to heat the reaction system to 180°C under reduced pressure,
Water and unreacted phenol were distilled off, resulting in 3% by weight of low molecular weight compounds.
, 1,1,5.5-tetrakis(hydroxyphenyl)
396 g of polyphenols (softening point: 138° C.) consisting of 11% pentane 45i and 52% by weight of higher order condensates was obtained.

比較例1 内容積2Mのフラスコにフェノール940g、40%グ
リオキザール水溶液230g(a/b−6,3)、及び
p−)ルエンスルホン!1.9gを仕込み、110℃で
6時間反応させた(反応系中の水の濃度を11〜16重
量%に保持した)。
Comparative Example 1 In a flask with an internal volume of 2M, 940 g of phenol, 230 g of a 40% glyoxal aqueous solution (a/b-6,3), and p-)luenesulfone! 1.9 g was charged and reacted at 110° C. for 6 hours (the concentration of water in the reaction system was maintained at 11 to 16% by weight).

反応後、実施例1と同様に処理し、低分子化合物36重
量%、1.1.2.2−テトラキス(ヒドロキシフェニ
ル)エタン48重量%、及び高次縮合物16重量%から
なるポリフェノール類(軟化点116℃)を得た。
After the reaction, it was treated in the same manner as in Example 1 to obtain polyphenols ( A softening point of 116° C.) was obtained.

比較例2 内容1a21のフラスコにフェノール940g、49%
グルタルアルデヒド水溶液200g(a/b=10.2
)、及びp−トルエンスルホン酸3.6gを仕込み、1
00℃で6時間反応させた(反応系中の水の濃度を86
8〜11.5重量%に保持した)0反応後、実施例2と
同様に処理し、低分子化合物41重量%、1.1.5.
5−テトラキス(ヒドロキシフェニル)ペンタン37重
量%、及び高次縮合物22重量%からなるポリフェノー
ルを得た。
Comparative Example 2 940g of phenol, 49% in a flask with contents 1a21
200g of glutaraldehyde aqueous solution (a/b=10.2
), and 3.6 g of p-toluenesulfonic acid, 1
The reaction was carried out at 00°C for 6 hours (the concentration of water in the reaction system was 86°C).
After the reaction (maintained at 8 to 11.5% by weight), the same treatment as in Example 2 was carried out, and the low molecular weight compound was 41% by weight, 1.1.5.
A polyphenol consisting of 37% by weight of 5-tetrakis(hydroxyphenyl)pentane and 22% by weight of a higher order condensate was obtained.

Claims (1)

【特許請求の範囲】 1)フェノール類(a)と、グリオキザール、グルタル
アルデヒドより選ばれたジアルデヒド類(b)とを酸触
媒の存在下に縮合反応によってポリフェノール類を製造
する方法において、反応系中の水の濃度を2重量%以下
に保持することを特徴とするポリフェノール類の製造法
。 2)フェノール類(a)とジアルデヒド類(b)とのモ
ル比(a/b)が4〜50であることを特徴とする特許
請求の範囲第1項記載のポリフェノール類の製造法。 3)反応温度が80〜140℃であることを特徴とする
特許請求の範囲第1項記載のポリフェノール類の製造法
[Claims] 1) A method for producing polyphenols by a condensation reaction of phenols (a) and dialdehydes (b) selected from glyoxal and glutaraldehyde in the presence of an acid catalyst, comprising: A method for producing polyphenols, which comprises maintaining the concentration of water at 2% by weight or less. 2) The method for producing polyphenols according to claim 1, wherein the molar ratio (a/b) of phenols (a) and dialdehydes (b) is 4 to 50. 3) The method for producing polyphenols according to claim 1, wherein the reaction temperature is 80 to 140°C.
JP5665587A 1987-03-13 1987-03-13 Method for producing polyphenols Expired - Lifetime JPH0762060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5665587A JPH0762060B2 (en) 1987-03-13 1987-03-13 Method for producing polyphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5665587A JPH0762060B2 (en) 1987-03-13 1987-03-13 Method for producing polyphenols

Publications (2)

Publication Number Publication Date
JPS63223020A true JPS63223020A (en) 1988-09-16
JPH0762060B2 JPH0762060B2 (en) 1995-07-05

Family

ID=13033390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5665587A Expired - Lifetime JPH0762060B2 (en) 1987-03-13 1987-03-13 Method for producing polyphenols

Country Status (1)

Country Link
JP (1) JPH0762060B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157165A (en) * 1990-11-26 1992-10-20 Mitsui Toatsu Chemicals, Inc. Method for preparing highly pure 1,1,2,2-tetrakis(4-hydroxy-3,5-dimethylphenyl)ethane
WO2000017243A1 (en) * 1998-09-22 2000-03-30 Borden Chemical, Inc. Phenol-novolacs with improved optical properties
JP2006273774A (en) * 2005-03-30 2006-10-12 Asahi Organic Chem Ind Co Ltd Method for producing tetrakis(hydroxyphenyl)alkane
CN111333796A (en) * 2020-04-01 2020-06-26 山东莱芜润达新材料有限公司 Preparation method of tetraphenol ethane phenolic resin
WO2020225884A1 (en) * 2019-05-08 2020-11-12 昭和電工マテリアルズ株式会社 Resin particle mixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157165A (en) * 1990-11-26 1992-10-20 Mitsui Toatsu Chemicals, Inc. Method for preparing highly pure 1,1,2,2-tetrakis(4-hydroxy-3,5-dimethylphenyl)ethane
US5304624A (en) * 1990-11-26 1994-04-19 Mitsui Toatsu Chemicals, Incorporated Epoxy resin derived from the highly pure compound and method for preparing the resin and composition
WO2000017243A1 (en) * 1998-09-22 2000-03-30 Borden Chemical, Inc. Phenol-novolacs with improved optical properties
EP1034193A4 (en) * 1998-09-22 2004-05-26 Borden Chem Inc Phenol-novolacs with improved optical properties
JP2006273774A (en) * 2005-03-30 2006-10-12 Asahi Organic Chem Ind Co Ltd Method for producing tetrakis(hydroxyphenyl)alkane
WO2020225884A1 (en) * 2019-05-08 2020-11-12 昭和電工マテリアルズ株式会社 Resin particle mixture
JPWO2020225884A1 (en) * 2019-05-08 2020-11-12
CN111333796A (en) * 2020-04-01 2020-06-26 山东莱芜润达新材料有限公司 Preparation method of tetraphenol ethane phenolic resin

Also Published As

Publication number Publication date
JPH0762060B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
TW200539928A (en) Method for removal of acetol from phenol
CA1226550A (en) Process for recovery of methacrylic acid
CN113024771B (en) Preparation method of epoxy resin with low total chlorine content
IL179929A (en) Method for producing (z -1 -phenyl-1- diethylaminocarbonyl- 2- aminomethyl cyclopropane hydrochloride
JPS63223020A (en) Production of polyphenols
CN112739675A (en) Method for recovering high-quality 3-methyl-but-3-en-1-ol
US5378791A (en) Phenolic resins
US4368298A (en) Process for producing novolak-type epoxy resin
JPS6053516A (en) High-purity phenolic resin and its preparation
US2475610A (en) Trioxepane and its polymers
CN112441973B (en) Preparation method of low primary amine TMQ
JP2897850B2 (en) Method for producing high-purity tetrakisphenolethane
US3763104A (en) Production of para substituted phenol formaldehyde resins using heterogeneous multi phase reaction medium
US1300451A (en) Method of preparing paracetaldehyde.
JPH089657B2 (en) Method for producing high-purity polyphenols
JP3880175B2 (en) Purification method of lactic acid
JP3104915B2 (en) Novolak resin manufacturing method
KR0171932B1 (en) Preparation process of novolac epoxy resin
JPH0324071A (en) Purification of cyclic acetal
CN118005891A (en) Preparation method of catechol novolac epoxy resin
US4851590A (en) Method of purifying 2,4-xylenol
US2824051A (en) Preparation of substantially anhydrous formaldehyde by a partial condensation process
RU2132329C1 (en) Method of trioxane synthesis
CN111470952A (en) Method for preparing high-purity m-cresol by selectively oxidizing m-p-mixed cresol
JPH02252716A (en) Production of polyphenol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term