JPS63217648A - Heat dissipation structure of heating element - Google Patents

Heat dissipation structure of heating element

Info

Publication number
JPS63217648A
JPS63217648A JP62049986A JP4998687A JPS63217648A JP S63217648 A JPS63217648 A JP S63217648A JP 62049986 A JP62049986 A JP 62049986A JP 4998687 A JP4998687 A JP 4998687A JP S63217648 A JPS63217648 A JP S63217648A
Authority
JP
Japan
Prior art keywords
heat
heat dissipation
adhesive
solder
dissipation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62049986A
Other languages
Japanese (ja)
Other versions
JPH0834273B2 (en
Inventor
Hiroyo Fujino
藤野 裕代
Minoru Takahashi
実 高橋
Kiyoshi Kanai
金井 紀洋士
Hideyuki Hashimoto
秀之 橋本
Masayuki Ozawa
小沢 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62049986A priority Critical patent/JPH0834273B2/en
Publication of JPS63217648A publication Critical patent/JPS63217648A/en
Publication of JPH0834273B2 publication Critical patent/JPH0834273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve an adhesive agent in its heat conduction for the prevention of heat generating parts from heat-caused deterioration by a method wherein a material excellent in heat conductivity is added to the adhesive agent participating in the heat-dissipation structure. CONSTITUTION:Silicone adhesive agents 5 and 14 replace solder between the heat-dissipation elements 2-4 and heat-dissipation fins 6 and between a thickfilm substrate 9 mounted with parts 7 and 8 and the heat-dissipation fins 6. To improve heat conductivity, aluminum nitride (AlN) or silicon carbide (SiC) powder, which is a material equipped with an excellent insulating feature and high heat conductivity, is added to the silicone adhesive agents 5 and 14. In this way, an excellent heat-dissipation capability is attained, and cooling is effectively accomplished of heat-generating parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発熱体の放熱構造に係り、特に発熱性を有する
電子部品等に好適な放熱構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat dissipation structure for a heat generating element, and particularly to a heat dissipation structure suitable for electronic components etc. that generate heat.

〔従来の技術〕[Conventional technology]

従来よりパワートランジスタ等の発熱を伴う電子部品は
、ヒートシンク要素(放熱部材)を介して放熱用基板(
例えば放熱フィン)に搭載され。
Traditionally, electronic components that generate heat, such as power transistors, are connected to a heat dissipation board (
For example, it is mounted on a heat dissipation fin).

このような放熱構造を呈して電子部品等で生じた熱が外
部に放熱され部品の健全性が保たれている。
With such a heat dissipation structure, heat generated by electronic components and the like is radiated to the outside, thereby maintaining the integrity of the components.

このような放熱構造において、ヒートシンク要素を放熱
用基板に接合する場合には、従来は、はんだ等のろう材
が用いられていたが、近年においては、はんだ付けより
も作業性が良く、しかもはんだ接合よりも耐熱衝撃性の
良好なシリコン接着剤等が使用される傾向にある。なお
、この種の発熱体の放熱構造に関する従来技術としては
、例えば特開昭60−73055号公報に開示されたも
のがある。
In such a heat dissipation structure, when joining the heat sink element to the heat dissipation board, a brazing material such as solder has traditionally been used, but in recent years, it has become easier to work with than soldering, and There is a tendency to use silicone adhesives, etc., which have better thermal shock resistance than bonding. In addition, as a conventional technique regarding the heat dissipation structure of this type of heating element, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 60-73055.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、近年、自動車搭載部品、特にエンジンルーム
内に装着される部品は、車両のFF化、エアロダイナミ
クス化に伴い、温度等の使用環境や使用条件が年々厳し
くなってきており、装置の高信頼性を確保するためには
、発熱要素を含む電子部品の放熱構造の改良が望まれて
いる。このような要求がある反面、上述の如く発熱体の
放熱構造に接着剤を使用する場合には、接着剤自身の熱
伝導性がさ程良好でないために、放熱性能が犠牲になり
、厳しい温度環境条件に充分対応できない事態が懸念さ
れる。
By the way, in recent years, the environment and conditions for use of automotive parts, especially those installed in the engine room, have become more severe year by year due to the adoption of front-wheel drive and aerodynamics in vehicles, and the reliability of the equipment has become increasingly severe. In order to ensure performance, it is desired to improve the heat dissipation structure of electronic components including heat generating elements. On the other hand, when using adhesives for the heat dissipation structure of heating elements as mentioned above, the heat dissipation performance is sacrificed because the adhesive itself does not have very good thermal conductivity, and it cannot be used at severe temperatures. There are concerns that the situation may not be able to adequately respond to environmental conditions.

本発明は、以上の点に鑑みてなされたものであり、その
目的とするところは、発熱体の放熱構造の一要素となる
接着剤を改良して、放熱性に優れ発熱を伴う部品の熱劣
化を有効に防止することのできる放熱構造を提供するこ
とにある。
The present invention has been made in view of the above points, and its purpose is to improve the adhesive, which is an element of the heat dissipation structure of the heating element, and to improve the heat dissipation properties of parts that generate heat. An object of the present invention is to provide a heat dissipation structure that can effectively prevent deterioration.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、放熱部材同士を接着して、放熱構造の要素
となる接着剤中に、熱伝導率の高い素材を混合すること
で達成される。
The above object is achieved by adhering the heat dissipating members to each other and mixing a material with high thermal conductivity into the adhesive that serves as an element of the heat dissipation structure.

〔作用〕[Effect]

発熱体の放熱構造の一要素である接着剤に、例えば窒化
アルミニウムや炭化シリコン等の熱伝導率の高い素材を
適宜割合で混合することにより、接着剤中の熱伝導率を
向上させることが可能になる。従って、放熱部材間の熱
伝導性ひいては放熱構造全体の放熱性能を大幅に向上さ
せ、発熱体の熱劣化を防止して信頼性を高めることがで
きる。
By mixing a material with high thermal conductivity, such as aluminum nitride or silicon carbide, in an appropriate proportion to the adhesive, which is an element of the heat dissipation structure of the heating element, it is possible to improve the thermal conductivity of the adhesive. become. Therefore, the thermal conductivity between the heat dissipating members and the heat dissipating performance of the entire heat dissipating structure can be greatly improved, thermal deterioration of the heating element can be prevented, and reliability can be improved.

また、接着剤と熱伝導素材との混合率を変えることによ
り、熱伝導率を任意に設定できるため、温度条件の厳し
さやコストを考慮して最適な放熱構造を構成することが
できる。
Furthermore, by changing the mixing ratio of the adhesive and the thermally conductive material, the thermal conductivity can be set arbitrarily, so it is possible to configure an optimal heat dissipation structure in consideration of the severity of temperature conditions and cost.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第2図に基づき説明す
る。
An embodiment of the present invention will be described based on FIGS. 1 and 2.

第1図は車両のエンジンルーム内に装着される点火装置
の断面図であり1図中、1は発熱源となるパワートラン
ジスタ(以下、トランジスタと略する)、2は金属板よ
りなるヒートシンク要素、3はアルミナCAQz○3)
よりなる絶縁板、4は金属板よりなるヒートシンク要素
、5はシリコン接着剤、6はアルミニウム製の放熱フィ
ンである。
Fig. 1 is a cross-sectional view of an ignition device installed in the engine room of a vehicle. In Fig. 1, 1 is a power transistor (hereinafter abbreviated as transistor) which is a heat source, 2 is a heat sink element made of a metal plate, 3 is alumina CAQz○3)
4 is a heat sink element made of a metal plate, 5 is a silicone adhesive, and 6 is a heat radiation fin made of aluminum.

トランジスタ1とヒートシンク要素2、ヒートシンク要
素2と絶縁板3、絶縁板3とヒートシンク4要素との間
の接合は、はんだ等の接合部材を用いて接合され、更に
ヒートシンク要素4と放熱フィン6とがシリコン接着剤
5を介して接着され、このようにしてヒートシンク要素
2.絶縁板3゜ヒートシンク要素4.シリコン接着剤5
及び放熱フィン6により、トランジスタ1の放熱手段(
ヒートシンク)を構成している。
The transistor 1 and the heat sink element 2, the heat sink element 2 and the insulating plate 3, and the insulating plate 3 and the heat sink 4 element are bonded using a bonding member such as solder, and the heat sink element 4 and the heat sink fin 6 are bonded together using a bonding member such as solder. The heat sink element 2. Insulating plate 3° heat sink element 4. silicone adhesive 5
and the heat dissipation fins 6, the heat dissipation means of the transistor 1 (
heat sink).

9はアルミナよりなる厚膜基板で、厚膜基板9上に半導
体、チップコンデンサ、ジャンパーリード等のマウント
部品8がはんだ接合されて、制御回路を構成している。
Reference numeral 9 denotes a thick film substrate made of alumina, and mount components 8 such as semiconductors, chip capacitors, jumper leads, etc. are soldered onto the thick film substrate 9 to form a control circuit.

11はアルミワイヤで、トランジスタ1の電極と、厚膜
基板9上のアルミクラッド部材7とを超音波ワイヤボン
ディングにより接続している。12は樹脂ケース13に
インサート成形された複数の外部端子で、外部端子12
の一端にもアルミクラッド部材7′がはんだ付けされて
おり、このアルミクラッド部材7′及び厚膜基板9上の
アルミクラッド部材7との夫ぞれが、アルミワイヤ11
により超音波ワイヤボンディング接続されている。厚膜
基板9は、放熱フィン6上の支持部1oに接着剤14を
介して接着されて−いる。
An aluminum wire 11 connects the electrode of the transistor 1 and the aluminum cladding member 7 on the thick film substrate 9 by ultrasonic wire bonding. Reference numeral 12 denotes a plurality of external terminals insert-molded in the resin case 13, and the external terminals 12
An aluminum clad member 7' is also soldered to one end, and each of this aluminum clad member 7' and the aluminum clad member 7 on the thick film substrate 9 is connected to the aluminum wire 11.
The connection is made by ultrasonic wire bonding. The thick film substrate 9 is bonded to the support portion 1o on the radiation fin 6 via an adhesive 14.

15は樹脂ケース13のカバーで、カバー15゜樹脂ケ
ース13.放熱フィン6は、夫ぞれ接着剤16.17を
介して接合されている。
15 is a cover of the resin case 13, and the cover 15° is the cover of the resin case 13. The radiation fins 6 are bonded to each other via adhesives 16 and 17, respectively.

以上の構成において、特にトランジスタ1の放熱部材2
〜4の積層体と放熱フィン6との間、及びマウント部品
7,8を搭載した厚膜基板9と放熱フィン6との間は、
今まではんだ接合されていた箇所であったが、本実施例
でははんだに代えてシリコン接着剤5及び14を使用し
ている。接着剤を使用する理由は、「発明が解決しよう
とする問題点」でも既述したように、接合作業工程数の
削減化2部品液合作業性及び絶縁性の向上化等が挙げら
れる6反面、接着剤は熱伝導性が悪いため。
In the above configuration, especially the heat dissipating member 2 of the transistor 1
~ 4 between the laminate and the heat dissipation fin 6, and between the thick film substrate 9 on which the mounting parts 7 and 8 are mounted and the heat dissipation fin 6,
Up until now, these parts have been joined by solder, but in this embodiment, silicone adhesives 5 and 14 are used instead of solder. As already mentioned in ``Problems to be Solved by the Invention'', the reasons for using adhesives include reducing the number of bonding steps, improving the ease of assembling two parts, and improving insulation properties6. , because adhesives have poor thermal conductivity.

本実施例では、接着剤5及び14中に、絶縁性を有し熱
伝導率の高い素材である窒化アルミニウム(A Q N
)や、炭化シリコン(S i C)等の粉末を混合して
いる。このAQN、SiCの粒径は、接着剤層の厚みを
100μm程度に管理する必要があるため50μm以下
にする必要がある。また。
In this embodiment, the adhesives 5 and 14 contain aluminum nitride (A Q N
), silicon carbide (S i C), and other powders. The particle size of this AQN and SiC needs to be 50 μm or less because the thickness of the adhesive layer needs to be controlled to about 100 μm. Also.

ARN、SiC等の粉末を接着剤中に混合させる場合に
は、これらの成分を混線機で充分に混練して、高熱伝導
性の素材である粉末粒子表面をシリコン接着剤でコーテ
ィングするもので、このようにすれば、接着剤層と放熱
部材との界面及び接着剤中の高熱伝導素材粒子同士を充
分に結合することができるので、接着強度を良好に保つ
ことができる。
When mixing powders such as ARN and SiC into adhesives, these ingredients are sufficiently kneaded in a mixer and the surfaces of the powder particles, which are highly thermally conductive materials, are coated with silicone adhesive. In this way, the interface between the adhesive layer and the heat dissipating member and the highly thermally conductive material particles in the adhesive can be sufficiently bonded to each other, so that good adhesive strength can be maintained.

第2図に、シリコン接着剤中の熱伝導素材の混合率(体
積)と熱伝導率の関係を示す。なお、第2図は、高熱伝
導素材としてSiC,Al2Nを使用し、これらの素材
をシリコン接着剤中に混合した場合に、(1)式に基づ
き熱伝導率を求めたものである。
FIG. 2 shows the relationship between the mixing ratio (volume) of the thermally conductive material in the silicone adhesive and the thermal conductivity. In addition, FIG. 2 shows the thermal conductivity determined based on equation (1) when SiC and Al2N are used as highly thermally conductive materials and these materials are mixed into a silicone adhesive.

熱伝導率=((高熱伝導素材SiC,AQNの熱伝導率
)X(高熱伝導素材の混合率))+((シリコン接着剤
の熱伝導率)X(シリコン接着剤の混合率))    
             ・・・(1)しかして、第
2図の点Pに示すように、従来のシリコン接着剤のみで
は、I W / m kの熱伝導率であるのに対し、3
0%の混合率でAQNは31W/mk、SiCは57W
/mkと大巾に熱伝導率が向上する。また、接着剤中の
熱伝導素材の混合率を高めることにより、熱伝導率を任
意に設定できるため、環境温度の厳しさに応じ、或いは
コストを考慮して、最適な混合率を選択することが可能
となる。
Thermal conductivity = ((thermal conductivity of high thermal conductive materials SiC, AQN) x (mixing ratio of high thermal conductive materials)) + ((thermal conductivity of silicon adhesive) x (mixing ratio of silicon adhesive))
...(1) However, as shown at point P in Figure 2, conventional silicone adhesive alone has a thermal conductivity of I W / m k, whereas it has a thermal conductivity of 3
At 0% mixing ratio, AQN is 31W/mk, SiC is 57W
/mk, the thermal conductivity is greatly improved. In addition, by increasing the mixing ratio of thermally conductive materials in the adhesive, the thermal conductivity can be set arbitrarily, so the optimal mixing ratio can be selected depending on the severity of the environmental temperature or considering cost. becomes possible.

本実施例によれば、発熱体の放熱構造の一要素として使
用される接着剤の熱伝導率を大巾に向上することができ
る。また、混合率により任意の熱伝導率に設定できるた
め、コストを考慮して、環境温度に応じて、最適な放熱
性接着剤を使用できる効果がある。
According to this embodiment, the thermal conductivity of the adhesive used as an element of the heat dissipation structure of the heating element can be greatly improved. Further, since the thermal conductivity can be set to any desired value by adjusting the mixing ratio, it is possible to use the most suitable heat dissipating adhesive depending on the environmental temperature while taking cost into consideration.

また、本実施例では、シリコン接着剤に電気的絶縁性を
有する窒化アルミニウム、炭化シリコンを混在させるこ
とにより、放熱構造の電気絶縁性をも確保することがで
きる。
Further, in this embodiment, by mixing aluminum nitride and silicon carbide, which have electrical insulating properties, in the silicon adhesive, it is possible to ensure the electrical insulating properties of the heat dissipation structure.

第3図は本発明の第2実施例を示すもので、既述した第
1実施例と同一符号は同−或いは共通する要素を示すも
のである。本実施例は、放熱フィン6上のトランジスタ
1.放熱要素2〜4等の積層体を搭載すべき箇所に、こ
れらの積層体を支持して接着剤層5の厚みを均一に確保
する突起2゜を適宜間隔で配設したものである。このよ
うな接着剤層5の厚みを一定に確保するのは、接着力を
高めると共に、接着剤の厚みに不均一さが生じ厚み不足
の箇所が生じると耐熱応力性(耐熱衝撃性)が低下する
ので、これを防止するためであり、このような突起20
を設けることにより繰返しの熱応力(熱サイクル)が加
わっても耐熱WI撃を向上させ接着強度の向上化を図り
得る。
FIG. 3 shows a second embodiment of the present invention, in which the same reference numerals as in the first embodiment described above indicate the same or common elements. In this embodiment, transistors 1. Protrusions 2° for supporting the laminates and ensuring a uniform thickness of the adhesive layer 5 are arranged at appropriate intervals at locations where the laminates such as the heat dissipating elements 2 to 4 are to be mounted. Maintaining a constant thickness of the adhesive layer 5 increases the adhesive strength, and also reduces heat stress resistance (thermal shock resistance) if the thickness of the adhesive is uneven and there are areas where the thickness is insufficient. Therefore, this is to prevent this, and such protrusions 20
By providing this, even if repeated thermal stress (thermal cycles) is applied, the heat resistance WI shock can be improved and the adhesive strength can be improved.

第4図は、本発明の第3実施例を示すもので。FIG. 4 shows a third embodiment of the present invention.

既述した第1.第2の実施例と同一符号は同−或いは共
通する要素を示すものである。
The first mentioned above. The same reference numerals as in the second embodiment indicate the same or common elements.

第4図において、6′は銅ベースが構成されるヒートシ
ンクベース、9′はセラミック基板で、セラミック基板
9′上に薄膜回路が形成されると共に、半導体チップ、
チップコンデンサ等のマウント部品8がはんだ接続され
て混成集積回路を構造している。そして、本実施例では
、セラミック基板(以下、厚膜基板とする)9′を銅ベ
ース6′上にシリコン接着剤14′を介して接合してい
るものであり、この接着剤14′中に前記第1実施例と
同様の窒化アルミニウム、炭化シリコン等の絶縁性を有
する熱伝導素材(粉末)を少なくとも1種類混在させる
ことにより、接着剤14′の熱伝導率ひいては放熱構造
全体の放熱性を向上させている。
In FIG. 4, 6' is a heat sink base composed of a copper base, 9' is a ceramic substrate, and a thin film circuit is formed on the ceramic substrate 9', and a semiconductor chip,
Mount components 8 such as chip capacitors are connected by solder to form a hybrid integrated circuit. In this embodiment, a ceramic substrate (hereinafter referred to as a thick film substrate) 9' is bonded onto a copper base 6' via a silicone adhesive 14', and this adhesive 14' contains By mixing at least one kind of thermally conductive material (powder) having an insulating property such as aluminum nitride or silicon carbide as in the first embodiment, the thermal conductivity of the adhesive 14' and the heat dissipation performance of the entire heat dissipation structure can be improved. Improving.

また、本実施例では、ヒートシンクのベース6′上に、
パワートランジスタ1をヒートシンク要素2,3(符号
2は、例えばモリブデンシートで、3はアルミナよりな
る絶縁板)を介して搭載するが、このトランジスタ1及
びヒートシンク要素2,3よりなる積層体を、第1.第
2実施例とは異なり、接着剤を用いずはんだ部材21に
よりベース6′上に接合している。このようなはんだ部
材21を用いてヒートシンク要素3とヒートシンクベー
ス6′とを接合する場合には、「発明が解決しようとす
る問題点」でも述べたように、耐熱WI撃性の向上化を
図ることが望まれるが、本実施例では、第2実施例と同
様の突起20をベース6′上に配設して、はんだ21の
適度の厚みを均一に確保することにより耐熱[!性の向
上化を図つている。
In addition, in this embodiment, on the base 6' of the heat sink,
The power transistor 1 is mounted via heat sink elements 2 and 3 (numeral 2 is a molybdenum sheet, for example, and 3 is an insulating plate made of alumina). 1. Unlike the second embodiment, it is bonded to the base 6' by a solder member 21 without using an adhesive. When bonding the heat sink element 3 and the heat sink base 6' using such a solder member 21, as described in "Problems to be Solved by the Invention", the heat resistance to WI shock is improved. However, in this embodiment, heat resistance [! We are trying to improve sexual performance.

ここで、突起20を設けた効果を、第5図ないし第7図
に基づき従来例と比較しながら説明する。
Here, the effect of providing the protrusion 20 will be explained while comparing with the conventional example based on FIGS. 5 to 7.

従来のはんだ接合の場合、第6図に示すようにヒートシ
ンク要素3とヒートシンクベース6′との接合面が平坦
であるため、両者をはんだ接合21した場合に、トラン
ジスタ1等の部品の自重によりヒートシンク要素3が傾
き、はんだ20の厚みを均一化することが困難であった
。ところで、はんだ厚みと剪断ひずみの関係は、第5図
(同図は、はんだ厚みに対する剪断ひずみ量及び熱抵抗
の関係を示す)に示すようにはんだが厚い程、剪断ひず
みは小さくなる。従って、はんだ20の均一化を図れず
、厚み不足の箇所が生じた場合には、この部分に繰り返
し熱応力が印加されると、剪断ひずみが大きいため、比
較的低サイクルではんだ接続部にクラックが発生する。
In the case of conventional soldering, the joining surfaces of the heat sink element 3 and the heat sink base 6' are flat as shown in FIG. The element 3 was tilted, making it difficult to make the thickness of the solder 20 uniform. By the way, the relationship between solder thickness and shear strain is as shown in FIG. 5 (which shows the relationship between the amount of shear strain and thermal resistance with respect to solder thickness), the thicker the solder, the smaller the shear strain. Therefore, if the solder 20 cannot be made uniform and the thickness is insufficient in some areas, repeated application of thermal stress to these areas will result in large shear strains, causing cracks in the solder connections at relatively low cycles. occurs.

そのため、熱伝導が低下し放熱性能が低下するおそれが
ある。以上からすれば、はんだ20をある程度厚くする
ことにより、剪断ひずみを下げて、耐熱衝撃ひいてはは
んだ接合寿命を向上させることが望まれる。
Therefore, there is a possibility that heat conduction may be reduced and heat dissipation performance may be reduced. In view of the above, it is desirable to increase the thickness of the solder 20 to a certain extent to reduce shear strain and improve thermal shock resistance and thus the solder joint life.

一方、はんだ厚みと熱抵抗の関係は、第5図に示すよう
にはんだの厚みが増えると熱抵抗も高くなる。つまり、
はんだのようなろう材の接合部には気泡であるボイドが
発生する。このボイド量は。
On the other hand, regarding the relationship between solder thickness and thermal resistance, as shown in FIG. 5, as the solder thickness increases, the thermal resistance also increases. In other words,
Voids, which are air bubbles, occur at the joints of brazing materials such as solder. This amount of void is.

はんだ量、即ちはんだ厚みが増えるほど、ボイド量も多
くなる。つまり、熱抵抗が大きくなる。従って、剪断ひ
ずみの小さいところとボイド発生量の少ないところとの
均衡のとれた点で、はんだ20の厚みを設定する必要が
ある。
As the amount of solder, that is, the thickness of the solder increases, the amount of voids also increases. In other words, the thermal resistance increases. Therefore, it is necessary to set the thickness of the solder 20 at a point that is balanced between areas where shear strain is small and areas where the amount of void generation is small.

本実施例では、以上の点を配慮してヒートシンクベース
1に、トランジスタ1からヒートシンク3までの自重を
保ちつつ、はんだ20の厚みを均一化する突起20を配
設したもので、また、突起部20の高さを第4図の特性
線に基づき0.15〜0.25 mにすれば、はんだ厚
が理想的な厚さで均一に確保でき、従って、はんだ接合
部の寿命を向上させ、更に、熱抵抗も増大することがな
い。
In this embodiment, taking the above points into consideration, the heat sink base 1 is provided with protrusions 20 that make the thickness of the solder 20 uniform while maintaining its own weight from the transistor 1 to the heat sink 3. If the height of 20 is set to 0.15 to 0.25 m based on the characteristic line in Figure 4, the solder thickness can be maintained at an ideal and uniform thickness, thus improving the life of the solder joint. Furthermore, thermal resistance does not increase.

第7図は、突起20付ヒートシンクと従来のはんだ接合
による熱サイクルに対する耐熱疲労性と熱抵抗変化の比
較を示す。その結果、ヒートシンクに突起を設けたこと
によりはんだ厚みを均一に確保できるので、繰り返し熱
応力により生ずるはんだ接続部のひずみを小さくでき長
寿命化が図れる。
FIG. 7 shows a comparison of thermal fatigue resistance and thermal resistance change with respect to thermal cycles between a heat sink with projections 20 and a conventional solder joint. As a result, by providing the protrusions on the heat sink, it is possible to ensure a uniform solder thickness, so that the strain in the solder joints caused by repeated thermal stress can be reduced and the service life can be extended.

なお、このような突起2oの効果は、はんだに代えて接
着剤を使用した場合もいいえる。
Note that the effect of the protrusions 2o as described above also applies when adhesive is used instead of solder.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、放熱構造の要素となる接
着剤中に熱伝導率の高い素材を混合することにより、接
着剤の熱伝導性を高め、ひいては、発熱体の放熱構造の
放熱性能を向上させることができ、発熱を伴う部品の熱
劣化を有効に防止することができる。
As described above, according to the present invention, by mixing a material with high thermal conductivity into the adhesive that is an element of the heat dissipation structure, the heat conductivity of the adhesive is increased, and in turn, the heat dissipation of the heat dissipation structure of the heating element is improved. Performance can be improved and thermal deterioration of components that generate heat can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例を示す縦断面図、第2図
は、上記実施例に使用する接着剤中の熱伝導素材の混合
率と熱伝導率との関係を表わす特性線図、第3図は、本
発明の第2実施例を示す部分断面図、第4図は、本発明
の第3実施例を示す部分断面図、第5図は、はんだ厚み
と剪断ひずみ及び熱抵抗の関係を表わす特性図、第6図
は、従来の放熱構造を表わす部分断面図、第7図は、上
記第3実施例の突起付ヒートシンク及び従来のはんだ接
合部の耐熱疲労性及び熱抵抗の関係を表わす特性図であ
る。 1・・・発熱体(パワートランジスタ)、4.6・・・
放熱部材、5,14・・・接着剤。 (ほか1名)゛、□゛ 高20 高3日 率4図 率S日 (!んだ厚み(mu) 第6図 ヒート寸イフル(〜)
FIG. 1 is a longitudinal cross-sectional view showing the first embodiment of the present invention, and FIG. 2 is a characteristic line showing the relationship between the mixing ratio of the thermally conductive material in the adhesive used in the above embodiment and the thermal conductivity. 3 is a partial sectional view showing a second embodiment of the present invention, FIG. 4 is a partial sectional view showing a third embodiment of the present invention, and FIG. 5 is a partial sectional view showing a third embodiment of the present invention. FIG. 6 is a partial sectional view showing the conventional heat dissipation structure; FIG. 7 is the thermal fatigue resistance and thermal resistance of the heat sink with projections of the third embodiment and the conventional solder joint. FIG. 1... Heating element (power transistor), 4.6...
Heat dissipation member, 5, 14...adhesive. (1 other person) ゛、□゛High school 20 High school 3 day rate 4 figure rate S day (! Thickness (mu) Figure 6 Heat size Iful (~)

Claims (1)

【特許請求の範囲】 1、発熱体の放熱部材同士を接着して放熱構造の一部を
構成している接着剤中に、熱伝導率の高い素材を混合し
てなることを特徴とする発熱体の放熱構造。 2、特許請求の範囲第1項において、前記熱伝導率の高
い素材は、窒化アルミニウム又は炭化シリコンの少なく
とも一つよりなることを特徴とする発熱体の放熱構造。
[Scope of Claims] 1. A heat generating device characterized in that a material with high thermal conductivity is mixed into an adhesive that forms part of a heat dissipating structure by bonding heat dissipating members of a heating element together. Body heat dissipation structure. 2. The heat radiation structure of a heating element according to claim 1, wherein the material with high thermal conductivity is made of at least one of aluminum nitride and silicon carbide.
JP62049986A 1987-03-06 1987-03-06 Heat dissipation structure of heating element Expired - Lifetime JPH0834273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049986A JPH0834273B2 (en) 1987-03-06 1987-03-06 Heat dissipation structure of heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049986A JPH0834273B2 (en) 1987-03-06 1987-03-06 Heat dissipation structure of heating element

Publications (2)

Publication Number Publication Date
JPS63217648A true JPS63217648A (en) 1988-09-09
JPH0834273B2 JPH0834273B2 (en) 1996-03-29

Family

ID=12846339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049986A Expired - Lifetime JPH0834273B2 (en) 1987-03-06 1987-03-06 Heat dissipation structure of heating element

Country Status (1)

Country Link
JP (1) JPH0834273B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162756A (en) * 1990-10-26 1992-06-08 Toshiba Corp Semiconductor module
KR20010054412A (en) * 1999-12-06 2001-07-02 박종섭 R,F, Remote Unit with shelf
WO2015024860A1 (en) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh Laser diode with cooling along even the side surfaces
CN105900189A (en) * 2014-01-08 2016-08-24 三菱综合材料株式会社 Resistor and production method for resistor
WO2019220483A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Ignition coil device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164550A (en) * 1982-02-19 1982-10-09 Hitachi Ltd Electric device with improved heat radiating property
JPS61156754A (en) * 1984-12-27 1986-07-16 Matsushita Electric Ind Co Ltd High thermal conductive metal base printed substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164550A (en) * 1982-02-19 1982-10-09 Hitachi Ltd Electric device with improved heat radiating property
JPS61156754A (en) * 1984-12-27 1986-07-16 Matsushita Electric Ind Co Ltd High thermal conductive metal base printed substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162756A (en) * 1990-10-26 1992-06-08 Toshiba Corp Semiconductor module
KR20010054412A (en) * 1999-12-06 2001-07-02 박종섭 R,F, Remote Unit with shelf
WO2015024860A1 (en) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh Laser diode with cooling along even the side surfaces
US9559491B2 (en) 2013-08-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser diode with cooling along even the side surfaces
CN105900189A (en) * 2014-01-08 2016-08-24 三菱综合材料株式会社 Resistor and production method for resistor
EP3093856A4 (en) * 2014-01-08 2017-09-13 Mitsubishi Materials Corporation Resistor and production method for resistor
US10037837B2 (en) 2014-01-08 2018-07-31 Mitsubishi Materials Corporation Resistor and method for manufacturing resistor
WO2019220483A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Ignition coil device for internal combustion engine
CN112088247A (en) * 2018-05-14 2020-12-15 三菱电机株式会社 Ignition coil device for internal combustion engine
CN112088247B (en) * 2018-05-14 2022-02-22 三菱电机株式会社 Ignition coil device for internal combustion engine
US11901116B2 (en) 2018-05-14 2024-02-13 Mitsubishi Electric Corporation Internal-combustion-engine ignition coil apparatus

Also Published As

Publication number Publication date
JPH0834273B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4810563A (en) Thermally conductive, electrically insulative laminate
JP2002203942A (en) Power semiconductor module
JPH0261539B2 (en)
JP3603354B2 (en) Hybrid integrated circuit device
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP2001135758A (en) Heat-radiating structure for power module
JPS63217648A (en) Heat dissipation structure of heating element
JP3801576B2 (en) Cooling method of module structure
JP2004327711A (en) Semiconductor module
JP2003092383A (en) Power semiconductor device and its heat sink
JP2001007281A (en) Power semiconductor module
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JP2004247514A (en) Semiconductor element housing package, and semiconductor device
JPH0578956B2 (en)
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JP2003068954A (en) Package for housing semiconductor element
JPH11238962A (en) Manufacture of semiconductor device and the semiconductor device
JPS63249357A (en) Semiconductor device
JP4309522B2 (en) Bonding structure of ceramic substrate and metal radiator
JP3779106B2 (en) Module structure
JPH10135405A (en) Wiring board module
JP3170004B2 (en) Ceramic circuit board
JP2619155B2 (en) Hybrid integrated circuit device
JP2000196270A (en) Mounting structure for ceramic substrate