JPS63217620A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPS63217620A
JPS63217620A JP62050090A JP5009087A JPS63217620A JP S63217620 A JPS63217620 A JP S63217620A JP 62050090 A JP62050090 A JP 62050090A JP 5009087 A JP5009087 A JP 5009087A JP S63217620 A JPS63217620 A JP S63217620A
Authority
JP
Japan
Prior art keywords
substrate
plasma
processed
film
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62050090A
Other languages
Japanese (ja)
Other versions
JPH0556855B2 (en
Inventor
Takuya Fukuda
福田 琢也
Yasuhiro Mochizuki
康弘 望月
Naohiro Monma
直弘 門馬
Shigeru Takahashi
茂 高橋
Noboru Suzuki
登 鈴木
Tadashi Sonobe
園部 正
Atsushi Chiba
淳 千葉
Kazuo Suzuki
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP62050090A priority Critical patent/JPS63217620A/en
Priority to EP88100672A priority patent/EP0275965B1/en
Priority to US07/145,371 priority patent/US4876983A/en
Priority to DE3853890T priority patent/DE3853890T2/en
Priority to KR1019880000369A priority patent/KR960015609B1/en
Publication of JPS63217620A publication Critical patent/JPS63217620A/en
Publication of JPH0556855B2 publication Critical patent/JPH0556855B2/ja
Priority to US08/131,519 priority patent/US5433788A/en
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the efficiency of plasma processing by a method wherein a substrate to be processed is located at the maximum distance not exceeding 150 mm from electron cyclotron resonance points (ECR points) to be the maximum producing points of plasma active species. CONSTITUTION:The title plasma processor is composed of a plasma producing chamber 4, a microwaveguide 7, magnetic field coils for ECR 9, 13, a processing chamber 2, an exhaust port 12, reactive gas feeding nozzles 5, 11 and a substrate holding base 3. In such a constitution, the magnetic field distribution is subjected to monotonous decrease from a microwaveguide window 8 toward a substrate 1 to be processed in a region located at the distance not exceeding 150 mm from electron cyclotron resonance points. Through these procedures, the film deposition speed can be accelerated to increase the throughput in the microwave plasma processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理方法及び装置に係り、特に、電
子サイクロトロン共鳴(ECR)を利用したプラズマC
VDの高効率化、堆積膜質の高品質化、低温プロセス化
及び低ダメージ化を図る上に好適なプラズマ処理装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing method and apparatus, and particularly to a plasma processing method and apparatus using electron cyclotron resonance (ECR).
The present invention relates to a plasma processing apparatus suitable for achieving high efficiency of VD, high quality of deposited film, low temperature process, and low damage.

〔従来の技術〕[Conventional technology]

従来の有磁場マイクロ波プラズマ処理方法及び装置は、
特開昭56−155535号公報に記載のように。
The conventional magnetic field microwave plasma processing method and apparatus are:
As described in JP-A-56-155535.

プラズマ生成室内においてプラズマ活性種を生じさせ、
その活性種を発散磁界等で活性種生成効率最大領域から
充分前れた位置に設置された被処理基板1こプラズマ流
をあてて処理するものであった。
Generate plasma active species in a plasma generation chamber,
The active species are processed by applying a plasma stream to a substrate placed sufficiently in front of the region of maximum active species production efficiency using a divergent magnetic field or the like.

このプラズマ処理方法において、さらに高効率化を図っ
た方法として、特開昭57−79621号公報に記載の
ように、基板処理室外側に磁石を配し、プラズマ流径を
絞ってプラズマ密度を高めた方法がある。また、特開昭
59−3018号公報に記載されているように、ミラー
磁場によりプラズマ流の拡散を抑制して、被処理基板付
近のプラズマ密度を高めて、処理効率の増大化を図った
方法がある。
In this plasma processing method, as described in Japanese Patent Application Laid-Open No. 57-79621, a magnet is placed outside the substrate processing chamber to narrow the plasma flow diameter and increase the plasma density. There is a method. Furthermore, as described in Japanese Patent Application Laid-Open No. 59-3018, a method of increasing processing efficiency by suppressing the diffusion of plasma flow using a mirror magnetic field and increasing the plasma density near the substrate to be processed. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、プラズマ活性種の寿命、あるいは、活
性値が被処理基板に達するまでの失活塵等の点について
配慮がされておらず、必ずしもプラズマ処理の高効率化
が達成されていない。また、被処理膜質の特性、例えば
堆積膜の緻密性、結晶性2組成等が良好ではない等の問
題があった。本発明の目的は、上記不都合を改善するこ
とにある。
The above-mentioned conventional techniques do not take into account the lifespan of plasma active species or the amount of deactivated dust until the activation value reaches the substrate to be processed, and therefore high efficiency of plasma processing is not necessarily achieved. Further, there were problems in that the properties of the film to be processed, such as the denseness of the deposited film, the crystallinity, and the like, were not good. An object of the present invention is to improve the above-mentioned disadvantages.

具体的には、活性種の失活塵を考慮してプラズマ処理の
高効率化をはかったプラズマ処理装置を提供することに
ある。
Specifically, it is an object of the present invention to provide a plasma processing apparatus that increases the efficiency of plasma processing by taking into account deactivation dust of active species.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、被処理基板の位置をプラズマ活性種の最大
生成点となる電子サイクロトロン共鳴点(ECR点)か
ら最大でも150+m以下にすることにより達成される
The above object is achieved by locating the substrate to be processed at a maximum of 150+ m or less from the electron cyclotron resonance point (ECR point), which is the maximum generation point of plasma active species.

ECR点と被処理基板との距離の調節は、プラズマ生成
室の磁束密度を高くし、また高精度に制御することで達
成される。
Adjustment of the distance between the ECR point and the substrate to be processed is achieved by increasing the magnetic flux density of the plasma generation chamber and controlling it with high precision.

〔作用〕[Effect]

マイクロ波プラズマ放電により反応ガスは活性化される
。特に、ECR点近傍で最も効率よく活性化される。生
成した活性種は、その後、エネルギー散逸により活性を
失ったり、他端子との衝突による粒子間相互作用による
失活も起こる。従って、被処理基板をECR点に近づけ
ることにより、プラズマ活性種を活性度の高い状態が維
持された状態にて基板に到達させることが出来る。この
ため、プラズマ処理の高効率化がなされる。また。
The reactant gas is activated by a microwave plasma discharge. In particular, it is activated most efficiently near the ECR point. The generated active species subsequently loses activity due to energy dissipation, or deactivation occurs due to interparticle interaction due to collision with other terminals. Therefore, by bringing the substrate to be processed close to the ECR point, the plasma active species can reach the substrate while maintaining a high degree of activity. Therefore, plasma processing can be performed with high efficiency. Also.

プラズマ処理特性、例えば、基板上に膜を堆積させる際
に、堆積させる分子あるいは原子の電子エネルギ結合原
子間振動力2同転及び並進エネルギが高い程、プラズマ
中では集合体とならずに単一粒子である確率が高いため
、堆積された膜質は熱化学反応組成に近いものが得られ
る。更に、基板に付着した堆積活性種は上記運動エネル
ギが高いため、予め基板上に形成された分子層に、エネ
ルギが最小となる配列、配向位置まで、再配列及び再配
向運動する確率が高い。このため、得られた膜質の緻密
性や結晶性は高くなる。また、化学組成比も熱化学反応
により形成された膜に近くなる。
Plasma processing characteristics, for example, when depositing a film on a substrate, the higher the electron energy coupling interatomic vibrational force 2 of the molecules or atoms to be deposited, the higher the rotational and translational energies, the more the molecules or atoms that are deposited do not form aggregations but form single particles. Since there is a high probability that the particles are particles, the quality of the deposited film is close to that of a thermochemical reaction composition. Furthermore, since the deposited active species attached to the substrate have high kinetic energy, there is a high probability that they will rearrange and reorient in the molecular layer previously formed on the substrate to the alignment and orientation position where the energy is minimum. Therefore, the denseness and crystallinity of the obtained film quality become high. Furthermore, the chemical composition ratio is close to that of a film formed by a thermochemical reaction.

尚、磁場分布B(Z)(Zはプラズマ流方向を正とした
真空装置の中心軸座標)が単調減少でなければ、dB/
d Z>0となる位置にてマイクロ波の伝播が阻害され
、プラズマ活性種の生成効率が低下するため望ましくな
い。
In addition, if the magnetic field distribution B(Z) (Z is the coordinate of the central axis of the vacuum device with the plasma flow direction as positive) does not decrease monotonically, dB/
This is not desirable because the propagation of microwaves is inhibited at a position where dZ>0, and the efficiency of generating plasma active species decreases.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明のプラズマ処理装置の主要部の模式図
である。本装置は、プラズマ生成室4、マイクロ波導波
管7.(マイクロ波6の発振器は図省略)、ECR用磁
場コイル9及び13゜処理室2、排気口12(排気系は
図省略)、反応ガス供給ノズル5及び11(反応ガス供
給系は図省略)、基板支持台3より成る。プラズマ生成
室4は直径240(m)φ、長さ250(am)の透明
石英製で、円錐形の頂部がマイクロ波導入窓8となって
いる。ECR用磁場コイル9及び13は、プラズマ生成
室及び処理室の周囲に設置され、プラズマ生成室の最大
磁束密度は2.6 (KGauss)であり、それぞれ
3個及び2個に分割され個別に調整することにより磁束
密度を制御できる。処理室2は直径240(mm)φの
ステンレス鋼製で、中に設置された基板支持台3は直径
120(ms)φのアルミナ製でその位置はプラズマ流
方向(図面では左右)に可変である。第2図はマイクロ
波進行方向の磁束密度の分布の例を示す、ECR磁場コ
イル9及び13を調整することにより、各種の分布を作
ること及び基板支持台3の位置を設定することにより基
板とECR点との距離を制御できる。
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. FIG. 1 is a schematic diagram of the main parts of the plasma processing apparatus of the present invention. This device includes a plasma generation chamber 4, a microwave waveguide 7. (The oscillator of the microwave 6 is omitted from the illustration), ECR magnetic field coil 9 and 13° processing chamber 2, exhaust port 12 (the exhaust system is omitted from the illustration), reaction gas supply nozzles 5 and 11 (the reaction gas supply system is omitted from the illustration) , a substrate support stand 3. The plasma generation chamber 4 is made of transparent quartz and has a diameter of 240 (m) φ and a length of 250 (am), and has a conical top serving as a microwave introduction window 8 . The magnetic field coils 9 and 13 for ECR are installed around the plasma generation chamber and the processing chamber, and the maximum magnetic flux density of the plasma generation chamber is 2.6 (K Gauss), and they are divided into three and two pieces, respectively, and adjusted individually. By doing so, the magnetic flux density can be controlled. The processing chamber 2 is made of stainless steel with a diameter of 240 (mm) φ, and the substrate support stand 3 installed inside is made of alumina and has a diameter of 120 (ms) φ, and its position can be varied in the plasma flow direction (left and right in the drawing). be. FIG. 2 shows an example of the distribution of magnetic flux density in the direction of microwave propagation. By adjusting the ECR magnetic field coils 9 and 13, various distributions can be created and by setting the position of the substrate support 3, the substrate can be The distance to the ECR point can be controlled.

実施例1 被処理基板1としてシリコンウェハ(直径10100(
+) φ)を用い、シリコン酸化膜を形成した。プラズ
マ生成室4内に第1のガス導入管5を通して酸素を40
 Cm Q /ff1in )導入し、2.45(GH
z3のマイクロ波6を導波管7により伝播させてマイク
ロ波導入窓8を通してプラズマ生成室に導入する。さら
に、プラズマ生成容器の外側に設置された同軸型の静磁
場発生コイル9及び13により875 (Gauss)
以上の磁場を発生させてプラズマ流10を生成させ第2
のガス導入管11よりモノシラン(SiHa)を6 (
m Q /win)導入し、処理室2内の圧力は排気系
により1(mTorrlにした。上記静磁場発生コイル
9及び13に流す電流値を調整することにより、磁束密
度分布を制御しあるいは基板支持台位置を調整し。
Example 1 A silicon wafer (diameter 10100 (
+) φ) was used to form a silicon oxide film. 40 ml of oxygen is introduced into the plasma generation chamber 4 through the first gas introduction pipe 5.
Cm Q /ff1in) and 2.45(GH
The microwave 6 of z3 is propagated by the waveguide 7 and introduced into the plasma generation chamber through the microwave introduction window 8. Furthermore, 875 (Gauss)
A second magnetic field is generated to generate the plasma flow 10.
Monosilane (SiHa) was introduced from the gas introduction pipe 11 of 6 (
m Q /win) was introduced, and the pressure inside the processing chamber 2 was set to 1 (mTorrl) by the exhaust system. By adjusting the current value flowing through the static magnetic field generating coils 9 and 13, the magnetic flux density distribution was controlled or the substrate Adjust the support stand position.

ECR点と被処理基板間の距離を異ならせた。第3図(
a)、(b)は5iOz膜堆積速度と堆積速度の基板内
でのバラツキ、(c)、(d)は堆積膜のバッファエツ
チング(HFI容、NH4F6容の混合)液によるエツ
チング速度と基板内でのバラツキ、(e)、(f)は形
成された膜の光学屈折率と屈折率の基板内でのバラツキ
、(g)。
The distance between the ECR point and the substrate to be processed was varied. Figure 3 (
a) and (b) show the deposition rate of the 5iOz film and its variation within the substrate; (c) and (d) show the etching rate of the deposited film using a buffer etching solution (a mixture of HFI and NH4F6 contents) and the variation within the substrate. (e) and (f) are the variations in the optical refractive index of the formed film and the variations in the refractive index within the substrate (g).

(h)は形成された膜のオージェ分光から得られたS 
i / Oのモル比と基板内でのバラツキを、ECR点
と基板間距離dに対して図示したものである。なお、図
中破線は基板位置をプラズマ生成室内にした結果である
。堆積速度については、第3図(a)から距離dがO〜
150Cm〕あたりの領域で比較的速く、特にd二10
0 (as)付近から堆積速度が大きくなることがわか
る。また。
(h) is S obtained from Auger spectroscopy of the formed film.
The molar ratio of i/O and the variation within the substrate are illustrated with respect to the ECR point and the distance d between the substrates. Note that the broken line in the figure is the result of setting the substrate position within the plasma generation chamber. Regarding the deposition rate, from Fig. 3(a), the distance d is O ~
Relatively fast in the area around 150 cm], especially d210
It can be seen that the deposition rate increases from around 0 (as). Also.

第3図(b)から堆積速度のバラツキはdが0〜70(
mlで小さく、均一性が優れていることがわかる。第3
図(c)と(d)から、dが150〔■〕以内の所にエ
ツチング速度がおそい領域があり、この領域内で緻密性
の高い膜が得られていること、及びdが0〜70〔■〕
の領域において均一性が良好であることがわかる。第3
図Ce)と(f)から、dが0〜150(+m)内で熱
酸化膜に近い屈折率の膜が得られていること、dが0〜
70[m)において均一性が良好であることがわかる。
From Figure 3(b), the variation in deposition rate is d from 0 to 70 (
It can be seen that the volume is small in ml and the uniformity is excellent. Third
From Figures (c) and (d), it can be seen that there is a region where the etching rate is slow within d of 150 [■], and a highly dense film is obtained within this region, and that d is between 0 and 70. [■]
It can be seen that the uniformity is good in the region. Third
From Figures Ce) and (f), a film with a refractive index close to that of a thermal oxide film is obtained with d ranging from 0 to 150 (+m), and d ranging from 0 to 150 (+m).
It can be seen that the uniformity is good at 70 [m].

第3図(g)、(h)から、dが0以上である領域でS
i/0モル比が0.5 となり、均一性も良効であるこ
とがわかる。
From Fig. 3 (g) and (h), in the region where d is 0 or more, S
It can be seen that the i/0 molar ratio was 0.5, and the uniformity was also good.

尚、磁束密度分布を一定にし、基板支持台の位置を調整
して、処理室内でECR点と被処理基板間の距離dを変
えた場合には同じ結果が得られたが、基板位置をプラズ
マ生成室内に位置させた場合、すなわち基板が第1のガ
ス導入管と第2のガス導入管間に位置させた場合は、第
3図(a)〜(h)中で破線で示したように、基板位置
を処理室に位置させた場合と比較して、堆積速度の減少
や、分布が悪くなる等の値に差異はあるものの、これら
値のECR点と被処理基板間の距離の関係から見ると同
様の結果が得られていることがわかる。このことから、
マイクロ波プラズマ放電による膜堆積特性には、プラズ
マ活性種の最大生成領域、すなわち、装置内のECR面
と基板までの距離に大きく依存していることがわかる。
The same results were obtained when the magnetic flux density distribution was kept constant, the position of the substrate support was adjusted, and the distance d between the ECR point and the substrate to be processed was changed in the processing chamber, but the substrate position was When the substrate is located inside the generation chamber, that is, when the substrate is located between the first gas introduction pipe and the second gas introduction pipe, as shown by the broken lines in FIGS. 3(a) to (h), Compared to the case where the substrate is located in the processing chamber, there are differences in the values such as a decrease in the deposition rate and a worsening of the distribution, but based on the relationship between these values and the distance between the ECR point and the substrate to be processed. It can be seen that similar results are obtained. From this,
It can be seen that the film deposition characteristics by microwave plasma discharge are largely dependent on the maximum production area of plasma active species, that is, the distance between the ECR surface in the apparatus and the substrate.

さらに、活性種の寿命や不活性分子との衝突等の相互作
用による失活等の影響がない距離は平均自由行程以下で
あることがわかる6さらにdがO〜70(m)において
は成膜及び膜質均一性が優れ、これはモノシランの活性
種5iHz+等の脱活性寿命範囲と一致している。
Furthermore, it can be seen that the distance at which there is no influence of deactivation due to the lifetime of the active species or interactions such as collisions with inert molecules is less than the mean free path. 6 Furthermore, when d is O ~ 70 (m), film formation And the film quality uniformity is excellent, and this coincides with the deactivation life range of monosilane active species such as 5iHz+.

実施例2 上記装置にて、第1導入ガスとして窒素を40[m Q
 /win ]第2導入ガスとしてモノシラン(SiH
a)を6 (m Q /win )を流し、圧力を1 
[mTorr)で処理室内で5iaNa膜堆積させた。
Example 2 In the above apparatus, nitrogen was introduced as the first gas at 40 [mQ
/win ] Monosilane (SiH
a) at a flow rate of 6 (m Q /win) and a pressure of 1
The 5iaNa film was deposited in a processing chamber at [mTorr].

結果を第4図(a)〜(h)に示した。第3図の5iO
z膜堆積時と同様に、堆積速度、膜のエツチング速度、
屈折率、化学組成比、及びこれらの基板内でのバラツキ
はECR点と基板間距離dに大きく依存している。化学
組成比(Si/Nモル比)はdが0以上で一定であるが
、dが0〜150(m)で、膜のエツチング速度および
屈折率が熱チツ化膜と同じか又は近いものが得られ、か
つ堆積速度も大きい。基板内の膜の均一性については、
5ins膜の形成と同様、dがO〜70〔閣〕で比較的
良好である。
The results are shown in FIGS. 4(a) to (h). 5iO in Figure 3
As in the case of Z film deposition, the deposition rate, film etching rate,
The refractive index, chemical composition ratio, and variations within the substrate largely depend on the distance d between the ECR point and the substrate. The chemical composition ratio (Si/N molar ratio) is constant when d is 0 or more, but when d is 0 to 150 (m), the etching rate and refractive index of the film are the same as or close to that of the thermally formed film. and the deposition rate is high. Regarding the uniformity of the film within the substrate,
As with the formation of the 5ins film, d is relatively good at 0 to 70.

実施例3 上記装置にて、第1導入ガスを水素、第2導入ガスをモ
ノシラン(SiHa)として、基板温度を320℃とし
て多結晶Si膜を処理室内で堆積した。その結果、dが
0〜150(mlの距離において、第5図(a)、(b
)のように、堆積速度か大きく、かつX線回折から調べ
た多結晶シリコンの結晶粒径が大きく結晶性が優れてい
ることが判る。
Example 3 Using the above-described apparatus, a polycrystalline Si film was deposited in the processing chamber using hydrogen as the first introduced gas, monosilane (SiHa) as the second introduced gas, and a substrate temperature of 320°C. As a result, at a distance of d from 0 to 150 (ml), Figures 5(a) and (b)
), it can be seen that the deposition rate is high, the crystal grain size of polycrystalline silicon is large, and the crystallinity is excellent as determined by X-ray diffraction.

実施例4 上記装置にて、第1導入ガスを水素、第2導入ガスを六
フッ化タングステン(WFe)として、圧力0.311
ITorr TW膜を処理室内で堆積させた。
Example 4 In the above apparatus, the first introduced gas was hydrogen, the second introduced gas was tungsten hexafluoride (WFe), and the pressure was 0.311.
ITorr TW films were deposited in a processing chamber.

第6図(a)、(b)のように、dがO−150〔■〕
において、抵抗率が4.0μΩ/a11とバルクの抵抗
率と同様の低抵抗膜が効率良く形成された。
As shown in Figure 6 (a) and (b), d is O-150 [■]
In this method, a low resistance film having a resistivity of 4.0 μΩ/a11, which is similar to the bulk resistivity, was efficiently formed.

WFe活性種寿命における平均自由行程は、この圧力で
前記のSiH4と同程度であり、脱活性寿命範囲の膜特
性が優れていることが判った。
It was found that the mean free path in the lifetime of WFe active species was comparable to that of SiH4 described above at this pressure, and the film properties in the deactivation lifetime range were excellent.

実施例5 上記装置にて、第1導入ガスとして水素と窒素の混合ガ
スを、第2導入ガスとして三塩化アルミニウム(AuC
Qa)を窒素キャリアで供給し、処理室内で窒化アルミ
ニウム(AI2N)を堆積させた。堆積速度及び堆積膜
の破壊電圧を測定したところ、第7図(a)、(b)の
ように、dがO〜150(ffIl〕ニおイテ破壊電圧
が5〔Mv/口〕以上となる良効な絶縁材が効率良く得
られた。このときの界面準位密度はl Q 10 [、
−2]と良好であった。
Example 5 In the above apparatus, a mixed gas of hydrogen and nitrogen was used as the first introduced gas, and aluminum trichloride (AuC) was used as the second introduced gas.
Qa) was supplied with a nitrogen carrier, and aluminum nitride (AI2N) was deposited in the processing chamber. When the deposition rate and breakdown voltage of the deposited film were measured, as shown in Figures 7(a) and (b), when d was O~150 (ffIl), the breakdown voltage was 5 [Mv/mouth] or more. A good insulating material was efficiently obtained.The interface state density at this time was l Q 10 [,
-2], which was good.

実施例6 上記装置にて、第1導入ガスとして6フツ化イオウ(S
Fe)を導入し、圧力l (mTorr)にて多結晶シ
リコン及び酸化ケイ素をエツチングした。
Example 6 In the above apparatus, sulfur hexafluoride (S
Polycrystalline silicon and silicon oxide were etched at a pressure of l (mTorr).

多結晶シリコンのエツチング速度及び酸化ケイ素に対す
るエツチング選択比(Si/5iOz)は、第8図(a
)、(b)のようになった、dか0〜150(m)にお
いて、多結晶シリコンは高選択的に、効率良くエツチン
グされる。
The etching rate of polycrystalline silicon and the etching selectivity to silicon oxide (Si/5iOz) are shown in Figure 8(a).
) and (b), polycrystalline silicon is etched highly selectively and efficiently when d is 0 to 150 (m).

このようにこれらの実施例によれば、マイクロ波プラズ
マ処理効率及び堆積膜の特性は、ECR点と被処理基板
間距離d、すなわち、プラズマ活性種の寿命及び不活性
種との衝突等の相互作用による電子エネルギーの活性度
の失活度、あるいは、振動2回転、並進エネルギーの低
下度に大きく依存しテオリ、ソノ結果、dがO〜15o
CffII+〕内にすると堆積速度、膜質が良好となる
効果がある。
According to these examples, the microwave plasma processing efficiency and the characteristics of the deposited film depend on the distance d between the ECR point and the substrate to be processed, that is, the lifetime of the plasma active species and the interactions such as collisions with inactive species. It depends largely on the degree of deactivation of the activity of the electron energy due to the action, or the degree of decrease in the two rotations of vibration and the translational energy.
CffII+] has the effect of improving the deposition rate and film quality.

さらに、プラズマ活性種の寿命及び失活度の分布がある
ため堆積速度あるいは膜質の均一性を考慮すると、dが
0〜70(m)内で、これらも良好となる効果がある。
Furthermore, since there is a distribution of the lifetime and deactivation degree of plasma active species, when considering the deposition rate or uniformity of film quality, it is effective to improve these as well when d is within 0 to 70 (m).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ECR点と被処理材のきよりを150
−以下にしたので、マイクロ波プラズマ処理において、
膜堆積速度が向上し、その結果、スループットが向上す
る効果がある。また、成膜においては低温の被処理基板
上にも高温熱処理と同等の結晶性、緻密性の膜質が得ら
れる。
According to the present invention, the ECR point and the strength of the material to be treated are 150
-Since the following is done, in microwave plasma treatment,
This has the effect of increasing the film deposition rate and, as a result, improving throughput. Furthermore, in film formation, a film quality of crystallinity and density equivalent to that obtained by high-temperature heat treatment can be obtained even on a substrate to be processed at a low temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のマイクロ波プラズマ処理装置の断面図
、第2図はプラズマ生成室及び処理室の磁束密度分布の
例を示す図、第3図ないし第8図は本発明による実験デ
ータを示す図である。 1・・・被処理基板、2・・・処理室、3・・・プラズ
マ生成室、6・・・マイクロ波、8・・・マイクロ波導
入窓、9゜13・・・プラズマ生成用静磁場発生コイル
、5゜令10 第2虐 寮3(211 EC恒咽n鞘1リ  5CC10頂な−()も 4 口 恭5圀 E(F、e、に@Wj−/flD11htnm)   
EC駒t191dlrJFEflHLE(聴ε裏緩m話
維帥)   EC1lす、ε某板陶ごE祭Gり療α
FIG. 1 is a cross-sectional view of the microwave plasma processing apparatus of the present invention, FIG. 2 is a diagram showing an example of magnetic flux density distribution in the plasma generation chamber and the processing chamber, and FIGS. 3 to 8 show experimental data according to the present invention. FIG. DESCRIPTION OF SYMBOLS 1...Substrate to be processed, 2...Processing chamber, 3...Plasma generation chamber, 6...Microwave, 8...Microwave introduction window, 9゜13...Static magnetic field for plasma generation Generating coil, 5゜Rei 10 2nd torture room 3 (211 EC hengaryn sheath 1 ri 5CC10 top na-() also 4 mouth Kyo 5 Kyo E (F, e, @Wj-/flD11htnm)
EC piece t191dlrJFEflHLE (listening to the back of the story) EC1l, εcertain board pottery E festival G treatment α

Claims (1)

【特許請求の範囲】 1、磁場分布がマイクロ波導入窓から、被処理基板方向
に向つて弱くなる単調減少であるとともに、前記被処理
基板が電子サイクロトロン共鳴点から150mm以内に
位置する領域で処理されるよう構成したことを特徴とす
るプラズマ処理装置。 2、前記被処理基板がマイクロ波導入方向に位置を調整
可能であることを特徴とする特許請求の範囲第1項記載
のプラズマ処理装置。 3、磁場分布を調整することによつて電子サイクロトロ
ン共鳴点の位置を調整可能であることを特徴とする特許
請求の範囲第1項記載のプラズマ処理装置。
[Claims] 1. The magnetic field distribution monotonically decreases from the microwave introduction window toward the substrate to be processed, and the substrate to be processed is processed in a region located within 150 mm from the electron cyclotron resonance point. A plasma processing apparatus characterized in that it is configured to 2. The plasma processing apparatus according to claim 1, wherein the position of the substrate to be processed is adjustable in the microwave introduction direction. 3. The plasma processing apparatus according to claim 1, wherein the position of the electron cyclotron resonance point can be adjusted by adjusting the magnetic field distribution.
JP62050090A 1987-01-19 1987-03-06 Plasma processing device Granted JPS63217620A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62050090A JPS63217620A (en) 1987-03-06 1987-03-06 Plasma processing device
EP88100672A EP0275965B1 (en) 1987-01-19 1988-01-19 Plasma operation apparatus
US07/145,371 US4876983A (en) 1987-01-19 1988-01-19 Plasma operation apparatus
DE3853890T DE3853890T2 (en) 1987-01-19 1988-01-19 Device working with a plasma.
KR1019880000369A KR960015609B1 (en) 1987-01-19 1988-01-19 Plasma operation apparatus
US08/131,519 US5433788A (en) 1987-01-19 1993-10-04 Apparatus for plasma treatment using electron cyclotron resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050090A JPS63217620A (en) 1987-03-06 1987-03-06 Plasma processing device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP15835594A Division JPH07161700A (en) 1994-07-11 1994-07-11 Plasma treatment method
JP6158354A Division JP2703184B2 (en) 1994-07-11 1994-07-11 Plasma processing method

Publications (2)

Publication Number Publication Date
JPS63217620A true JPS63217620A (en) 1988-09-09
JPH0556855B2 JPH0556855B2 (en) 1993-08-20

Family

ID=12849345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050090A Granted JPS63217620A (en) 1987-01-19 1987-03-06 Plasma processing device

Country Status (1)

Country Link
JP (1) JPS63217620A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
JPH0362517A (en) * 1989-03-27 1991-03-18 Anelva Corp Microwave plasma processor
JPH03158471A (en) * 1989-11-15 1991-07-08 Hitachi Ltd Microwave plasma treating device
JPH0379421U (en) * 1989-12-01 1991-08-13
JPH03259517A (en) * 1990-03-08 1991-11-19 Nec Corp Ecr plasma etching method
JPH0425022A (en) * 1990-05-16 1992-01-28 Nec Corp Apparatus and method for microwave plasma etching
JPH04103783A (en) * 1990-08-22 1992-04-06 Nec Corp Microwave plasma etching device
JPH0653170A (en) * 1992-03-18 1994-02-25 Nec Corp Ecr plasma etcher
JPH08203693A (en) * 1995-08-28 1996-08-09 Semiconductor Energy Lab Co Ltd Thin film forming device
US6066568A (en) * 1997-05-14 2000-05-23 Tokyo Electron Limited Plasma treatment method and system
JP2000299312A (en) * 1991-04-04 2000-10-24 Hitachi Ltd Plasma treatment method and manufacture of semiconductor device
JP2000299311A (en) * 1991-04-04 2000-10-24 Hitachi Ltd Plasma processing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS59136130A (en) * 1983-01-24 1984-08-04 Hitachi Ltd Device for forming plasma film by microwave
JPS60134423A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Microwave plasma etching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS59136130A (en) * 1983-01-24 1984-08-04 Hitachi Ltd Device for forming plasma film by microwave
JPS60134423A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Microwave plasma etching device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
JPH0362517A (en) * 1989-03-27 1991-03-18 Anelva Corp Microwave plasma processor
JPH03158471A (en) * 1989-11-15 1991-07-08 Hitachi Ltd Microwave plasma treating device
JPH0379421U (en) * 1989-12-01 1991-08-13
JPH03259517A (en) * 1990-03-08 1991-11-19 Nec Corp Ecr plasma etching method
JPH0425022A (en) * 1990-05-16 1992-01-28 Nec Corp Apparatus and method for microwave plasma etching
JPH04103783A (en) * 1990-08-22 1992-04-06 Nec Corp Microwave plasma etching device
JP2000299311A (en) * 1991-04-04 2000-10-24 Hitachi Ltd Plasma processing system
JP2000299312A (en) * 1991-04-04 2000-10-24 Hitachi Ltd Plasma treatment method and manufacture of semiconductor device
JPH0653170A (en) * 1992-03-18 1994-02-25 Nec Corp Ecr plasma etcher
JPH08203693A (en) * 1995-08-28 1996-08-09 Semiconductor Energy Lab Co Ltd Thin film forming device
US6066568A (en) * 1997-05-14 2000-05-23 Tokyo Electron Limited Plasma treatment method and system

Also Published As

Publication number Publication date
JPH0556855B2 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US4876983A (en) Plasma operation apparatus
EP0584252B1 (en) A PROCESS FOR DEPOSITING A SIOx FILM HAVING REDUCED INTRINSIC STRESS AND/OR REDUCED HYDROGEN CONTENT
US20100055347A1 (en) Activated gas injector, film deposition apparatus, and film deposition method
JPH0635323B2 (en) Surface treatment method
JPS63217620A (en) Plasma processing device
EP0764969A2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JPS621565B2 (en)
JP2003059918A (en) Method and apparatus for plasma treatment and manufacturing method for semiconductor device
JPH06244175A (en) Method and device for manufacturing insulating film
JP3327618B2 (en) Plasma processing equipment
JPH02308536A (en) Ecr plasma apparatus and thin film forming system using the same
US5897711A (en) Method and apparatus for improving refractive index of dielectric films
JP2660244B2 (en) Surface treatment method
JPH0420985B2 (en)
JPH029787A (en) Plasma processing device
JP2703184B2 (en) Plasma processing method
JPH07161700A (en) Plasma treatment method
JP3071855B2 (en) Diamond film fabrication method
JP2895981B2 (en) Silicon oxide film forming method
JPS6039822A (en) Thin film forming device
JP3261514B2 (en) Insulation film forming equipment
JP3822059B2 (en) Method of warping deformation of silicon substrate
JPH0777202B2 (en) Plasma processing device
JPH06280028A (en) Plasma treatment method and device
JPS59177919A (en) Selective growth of thin film