JPS63217311A - Dispersion-shift fiber and its production - Google Patents

Dispersion-shift fiber and its production

Info

Publication number
JPS63217311A
JPS63217311A JP62050276A JP5027687A JPS63217311A JP S63217311 A JPS63217311 A JP S63217311A JP 62050276 A JP62050276 A JP 62050276A JP 5027687 A JP5027687 A JP 5027687A JP S63217311 A JPS63217311 A JP S63217311A
Authority
JP
Japan
Prior art keywords
glass body
core
sio2
inner core
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62050276A
Other languages
Japanese (ja)
Other versions
JPH0820574B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Hiroshi Suganuma
寛 菅沼
Gotaro Tanaka
豪太郎 田中
Masayuki Shigematsu
昌行 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62050276A priority Critical patent/JPH0820574B2/en
Priority to KR1019870005307A priority patent/KR900003449B1/en
Priority to US07/060,176 priority patent/US4822399A/en
Priority to CA000539353A priority patent/CA1294438C/en
Priority to EP87108453A priority patent/EP0249230B1/en
Priority to AU74131/87A priority patent/AU592875B2/en
Priority to DE8787108453T priority patent/DE3762609D1/en
Publication of JPS63217311A publication Critical patent/JPS63217311A/en
Publication of JPH0820574B2 publication Critical patent/JPH0820574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the title shift fiber with a low transmission loss by providing the inside core of Ge-SiO2, the outside core of F-SiO2, and the clad of F-SiO2 to form a stepped refractive index distribution. CONSTITUTION:Fine glass particles are deposited on the tip of a starting quartz rod 3.2 while rotating the rod to form the porous glass body 3.3 for the inside core of Ge2SiO2, F is added into the SiO2 by the same method to form the porous glass body 4.2 for the outside core, a hole is then bored at the center, and the inside glass body 4.1 is inserted into the hole, heated, and contracted. The SiO2 similarly formed is added with F, and the composite of the inside and outside cores is inserted into the center hole of the clad, heated, and contracted to a specified size. Since F is added in this way, the loss deteriorating factor in the UV region is reduced, and the transmission loss of the stepped dispersion-shift fiber can be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通信用石英系光ファイバの構造及びその製造
方法に関するものであり、特に波長1.5μm帯に零分
散波長を7フトさせたシングルモードファイバ(以下「
分散Vフトファイバ」と呼称する)の構造とそのプリフ
ォームの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the structure of a silica-based optical fiber for communications and a method for manufacturing the same, and in particular, to a silica-based optical fiber for communication, in which the zero dispersion wavelength is increased by 7 feet in the wavelength band of 1.5 μm. Single mode fiber (hereinafter referred to as “
The present invention relates to the structure of a "dispersed V-ft fiber" and a method for manufacturing its preform.

〔従来の技術〕[Conventional technology]

石英系光ファイバにおいてその最低損失波長領域である
1、5μm帯に零分散波長をシフトさせた分散シフト・
ファイバは、長距離かつ大伝送容量の光通信伝送路とし
て夾用化が進んでいる。分散シフト・ファイバの中でも
、第1図(a)に示すような階段型屈折率分布を有する
ものは単純なステップ型屈折率分布を有する分散シフト
ファイバに比べ曲げ損失が小さくなり、実用上の利点が
大きく開発検討が進められている。
Dispersion shift, which shifts the zero dispersion wavelength to the 1.5 μm band, which is the lowest loss wavelength region in silica-based optical fibers.
Fibers are increasingly being used as long-distance, high-capacity optical communication transmission lines. Among dispersion-shifted fibers, those with a stepped refractive index distribution as shown in Figure 1(a) have a practical advantage because they have lower bending loss than dispersion-shifted fibers with a simple stepped refractive index distribution. A major development study is underway.

(#考文献1 : rデイスバージョンーシフテツド 
コンヴエツクスーインデツクス Vングルーモード フ
ァイパース」N、クワキ他、エレクトロニクス レター
ズ 1985年12月5日、21 、NO,25/26
、p、1186−1187)。第1図(a)に示した階
段型屈折率分布では、中央部の屈折率の最も高い部分1
.1(内側コアと称する)と該内側コア1.1を囲む内
側コアより低い屈折率を有する部分1.2(外側コアと
称する)、さらに該外側コア1.2を取り囲む最も屈折
率の低いクラッド部1.3から屈折率分布構造が形成さ
れている。
(#Reference 1: rdisversion-shifted
"Convex Index V-Glue Mode Fipers" N, Kwaki et al., Electronics Letters December 5, 1985, 21, NO, 25/26
, p. 1186-1187). In the stepped refractive index distribution shown in Fig. 1(a), the central part 1 has the highest refractive index.
.. 1 (referred to as the inner core), a portion 1.2 (referred to as the outer core) surrounding the inner core 1.1 and having a lower refractive index than the inner core, and a cladding having the lowest refractive index surrounding the outer core 1.2. A refractive index distribution structure is formed from portion 1.3.

このような階段型屈折率分布を有する分散シフト・ファ
イバについて、その屈折率分布を形成するガラス組成と
して、内側コアがGeO2−SiO2、外側コアが81
0!、 クラッド部がF−SiO2からなるものが提案
されている(参考文献2 : rディス、バージョン−
シフチットファイバーズ ウィズ )〜オリン アッデ
ッドクラツヂイング バイ ザ ベイバー フェイズ 
アク・Vアル デポジッV:!ン メソッド」、H,ヨ
コタ他、テクニカル ダイジェスト オントビ力p ミ
ーティング オン オデデイカμファイバー コミユニ
ケイVgン(アトランタ、1986)ペーパーWF2)
。光ファイバの屈折率分布は、S10.ガラスにGe0
1 を屈折率増加成分として添加することによって得ら
れるのが最も一般的である。しかしながらGeO2添加
量を多くすると、ガラスのレイリー散乱が増加して伝送
損失が高くなる、或いはGeO2→GeOの還元に基づ
くと考えられる紫外域での電子4移吸収が増加し、その
影響が使用波長域である1、5μ凱帯にまで及びやはり
伝送損失が高くなる。そこで上記組成では、クラッド部
にFを添加しクラッド部の屈折率を下げ、内側コアのみ
にGe01を添加し、()eol m論量を下げ、伝送
損失の低減を図ろうとしている。これまで本発明者等は
、この考えに基づき、第2図に示すような内側コア2−
1がGaol −5i02、外側コアz2がSin、、
 クフー/ド部z3がF−SiO.であって、図示の屈
折率分布と組成を有する公衆りフトファイバを試作し、
波長1.55μ汎における伝送損失を(L 25 dB
/km まで低減することができている。なお第2図中
a、b%Cは各部分の直径を表し、aは5μm、bは9
μm1Cは125μmである。(参考文献s : rt
sμm帯分散シフトリング〜モードファイバの伝送特性
」重松、全会、田中、田中、渡辺、鈴木1、電子通信学
会技術研究報告 0QR86−9?)。
Regarding the dispersion-shifted fiber having such a stepped refractive index distribution, the glass composition forming the refractive index distribution is GeO2-SiO2 for the inner core and 81% for the outer core.
0! , one in which the cladding part is made of F-SiO2 has been proposed (Reference 2: rdis, version -
Shifted Fibers With) ~ Orin Added Crutzing By The Baber Phase
Aku V Al Deposit V:! H, Yokota et al., Technical Digest Ontobi Rikip Meeting on Odedeika μ Fiber Komiyuni Kei Vgn (Atlanta, 1986) Paper WF2)
. The refractive index distribution of the optical fiber is S10. Ge0 on glass
The most common method is to add 1 as a refractive index increasing component. However, when the amount of GeO2 added is increased, Rayleigh scattering of the glass increases, resulting in higher transmission loss, or electron 4-transfer absorption in the ultraviolet region, which is thought to be based on the reduction of GeO2→GeO, increases, and this effect affects the wavelength used. The transmission loss also increases as the transmission loss reaches the 1.5μ band. Therefore, in the above composition, F is added to the cladding part to lower the refractive index of the cladding part, and Ge01 is added only to the inner core to lower the ()eol m stoichiometry and reduce the transmission loss. Based on this idea, the present inventors have so far developed an inner core 2-
1 is Gaol-5i02, outer core z2 is Sin,
Kufu/de part z3 is F-SiO. A public drift fiber having the refractive index distribution and composition shown in the figure was prototyped,
Transmission loss at wavelength 1.55μ is (L 25 dB
/km2. In addition, a, b%C in Fig. 2 represents the diameter of each part, a is 5 μm, b is 9
μm1C is 125 μm. (References: rt
sμm Band Dispersion Shift Ring - Transmission Characteristics of Mode Fiber" Shigematsu, Zenkai, Tanaka, Tanaka, Watanabe, Suzuki 1, Institute of Electronics and Communication Engineers Technical Research Report 0QR86-9? ).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、内側コアがGeO2−8101、外側コ
アが8102、クラッド部がF−810,からなる階段
型屈折率分布を有する分散シフトファイバにおいては、
波長1.55μmにおいてα23dB/kn)の伝送損
失は得られているがさらに低損失化を図ることが困難で
あった。
As mentioned above, in a dispersion-shifted fiber with a stepped refractive index distribution consisting of an inner core of GeO2-8101, an outer core of 8102, and a cladding of F-810,
Although a transmission loss of α23 dB/kn) was obtained at a wavelength of 1.55 μm, it was difficult to further reduce the loss.

本発明は、さらなる伝送損失の低減を可能とする新規な
構造の分散シフトファイバ及びその製造方法を提供しよ
うとするものである。
The present invention aims to provide a dispersion-shifted fiber with a novel structure that enables further reduction in transmission loss, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は内側コアがGe−8in、1.外側コアがF−
SiO2、クラツド部がF’−810,からなっておシ
階段状屈折率分布を有することを特徴とする分散シフト
ファイバを提供する。
The present invention has an inner core of Ge-8in, 1. Outer core is F-
The present invention provides a dispersion-shifted fiber comprising SiO2 with a cladding portion of F'-810 and having a step-like refractive index distribution.

さらに、本発明はGe01−5i02  からなる内側
コア用ガラス体を、F−810,からなるパイプ状の外
側コア用ガラス体中に挿入して加熱一体化することによ
り、内側コアと外側コアからなる複合体CI)を形成す
る工程と、該複合体(f)をF−810,からなるパイ
プ状のクラッド部用ガフ1体の中空部内に挿入して加熱
一体化することによυ、内側コア、外側コアコア及びク
ラッド部からなる複合体(II)を形成する工程とを有
することを特徴とする内側コアがGe−8iO1、外側
コアがF−SiO2、クラツド部がF−SiO2からな
り階段状屈折率分布を有する分散シフトファイバの製造
方法を提供する。
Furthermore, the present invention is capable of inserting an inner core glass body made of Ge01-5i02 into a pipe-shaped outer core glass body made of F-810, and heating and integrating the glass body made of F-810. The inner core is formed by inserting the composite (f) into the hollow part of a pipe-shaped cladding gaff made of F-810 and heating and integrating it. , forming a composite body (II) consisting of an outer core and a cladding part, characterized in that the inner core is made of Ge-8iO1, the outer core is made of F-SiO2, and the cladding part is made of F-SiO2 and has a stepped refraction. A method of manufacturing a dispersion-shifted fiber having a modulus distribution is provided.

まず、本発明の基となった考え方から説明する。第2図
に示した従来のファイバ構造において、さらなる低損失
化が困難であった理由、すなわち、伝送損失劣化要因と
しては、次のことが考えられる。■内側コアに含有され
るGaolのためにレイリー散乱損失が高くなったシ、
或いは線引等の高温加熱過程において、通常4価のGe
が還元されて2価の状態に変化して、これが紫外域に吸
収を有する電子遷移の吸収中心番 となり、波長1.5μm帯にまでその影響が及ぶこと、
■GeO2を含有する内側コアとFを含有するクラッド
部に挟まれp810.からなる外側コアの部分は、他の
部分に比して線引等の高温加熱過程における粘性が高く
なり、線引時にかかる張力が外側コアの部分に集中して
外側コアの部分に欠陥を生じ、やはヤ紫外域での吸収の
原因となることなどである。
First, the concept on which the present invention is based will be explained. In the conventional fiber structure shown in FIG. 2, the reason why it is difficult to further reduce the loss, that is, the cause of transmission loss deterioration can be considered as follows. ■Rayleigh scattering loss is high due to Gaol contained in the inner core.
Or, in a high-temperature heating process such as wire drawing, usually tetravalent Ge is
is reduced and changed to a divalent state, which becomes the absorption center for electronic transitions that have absorption in the ultraviolet region, and its influence extends to the wavelength band of 1.5 μm.
■ Sandwiched between the inner core containing GeO2 and the cladding containing F, p810. The outer core part, which is made up of , and may cause absorption in the ultraviolet region.

上記のような考察に基づき、本発明のととくFを外側コ
アに添加することがより一層の低損失化にとって有効で
あることが考えられる。即ち上記伝送損失劣化要因■に
対しては、外側コアにFを添加し、その屈折率を下げる
ことKより内側コアの屈折率を上げるための内側コアへ
のGe01添加量をさらに低減できるので、その結果、
Ge01 に起因するレイリー散乱損失及び紫外域での
吸収損失の影響を低減できると考えられる。
Based on the above considerations, it is considered that adding F to the outer core of the present invention is effective for further reducing loss. That is, for the above-mentioned transmission loss deterioration factor (2), adding F to the outer core to lower its refractive index can further reduce the amount of Ge01 added to the inner core to increase the refractive index of the inner core. the result,
It is believed that the effects of Rayleigh scattering loss and absorption loss in the ultraviolet region caused by Ge01 can be reduced.

また伝送損失劣化要因■に対しては、外側コアにFを添
加してその粘性を下げ、内側コア及びクラッド部に近づ
けることにより、低減可能と考えられる。
It is also believed that the transmission loss deterioration factor (2) can be reduced by adding F to the outer core to lower its viscosity and bring it closer to the inner core and cladding.

但し、外側コア部とクラッド部の屈折率差を所要分だけ
保つためには、外側コアにFを添加した場合、クラッド
部へのF添加量を増してクラッド部の屈折率をより下げ
ておく必要がある。
However, in order to maintain the required refractive index difference between the outer core and the cladding, when F is added to the outer core, the amount of F added to the cladding should be increased to lower the refractive index of the cladding. There is a need.

尚本発明の構造を有する分散シフトファイバの製造方法
については実施例にて詳述する。
A method for manufacturing a dispersion-shifted fiber having the structure of the present invention will be described in detail in Examples.

〔実施例〕〔Example〕

実施例 1)内側コア用ガラス体の作製 第3図に示す構成にてGeo、 −5i02  からな
る内側コア用多孔質ガラス体をVAD法にて合成した。
Example 1) Preparation of glass body for inner core A porous glass body for inner core consisting of Geo, -5i02 having the structure shown in FIG. 3 was synthesized by VAD method.

第3図において五1はガラス微粒子合成用バーナーであ
り、該バーナーA I K 5iCt。
In FIG. 3, numeral 51 is a burner for synthesizing glass particles, and the burner is A I K 5iCt.

530 cc/分、GaCl2 5 S cc/分、A
r1.5t/分、H,L5t/分、0,7.5t/分を
供給して火炎中でガラス微粒子を合成して出発石英棒五
2の先端にガラス微粒子を堆積せしめるとともに出発石
英棒五2を上方に回転させつつ引上げていくことにより
軸方向に多孔質ガラス体五3を形成した。なお五4は排
気管である。
530 cc/min, GaCl2 5 S cc/min, A
R1.5 t/min, H, L5 t/min, and 0.7.5 t/min are supplied to synthesize glass particles in a flame and deposit the glass particles on the tip of the starting quartz rod 52. A porous glass body 53 was formed in the axial direction by pulling up the glass body 2 while rotating it upward. Note that 54 is an exhaust pipe.

これにより得られた内側コア用多孔質ガラス体は外径9
0■φ、長さ500m、重量6rJDf/であった。
The porous glass body for the inner core thus obtained has an outer diameter of 9
It had a diameter of 0.0 mm, a length of 500 m, and a weight of 6 rJDf/.

該多孔質ガラス体をHe:C4=100 : 6の雰囲
気中で1050℃に加熱して脱水処理を施したのち、H
eloQ%O雰囲気中で1600℃に加熱し透明ガラス
化した。透明ガラス化後の外径は35■φ、長さは20
0■であった。
The porous glass body was heated to 1050°C in an atmosphere of He:C4=100:6 to perform dehydration treatment, and then
It was heated to 1600° C. in an eloQ%O atmosphere to form transparent glass. The outer diameter after transparent vitrification is 35■φ, and the length is 20mm.
It was 0■.

この内側コア用透明ガラス母材を電気抵抗炉で約180
0℃〜1900’Cに加熱して1o■φの径まで延伸し
たのち、400−の長さに分割した。この際の加熱源と
して酸・水素火炎などのOH分を発生するものを用いる
とガラス母材中KOH基が拡散浸透し、伝送損失劣化の
原因となるので、電気抵抗炉などのOH成分を発生しな
い熱源を用いる必要がある。
This transparent glass base material for the inner core was heated to approximately 180 mm in an electric resistance furnace.
After heating to 0° C. to 1900° C. and stretching to a diameter of 10 mm, the film was divided into 400 mm lengths. If a heating source that generates OH components, such as an acid or hydrogen flame, is used as a heating source, the KOH groups in the glass base material will diffuse and permeate, causing deterioration in transmission loss. It is necessary to use a heat source that does not

2)外側コア用ガラス体の作製 第3図に示す構成にて810.のみからなる外側コア用
多孔質ガラス体をVAD法にて合成した。ガラス微粒子
合成用バーナー五1には51c4150 G cc/分
、Ar12t/分、H230t/分、0,55t/分を
供給して外径110amφ、長さ600■、重量110
0gの外側コア用多孔質ガラス体を形成した。
2) Preparation of glass body for outer core 810. A porous glass body for the outer core was synthesized using the VAD method. Burner 51 for glass particle synthesis is supplied with 51c4150 G cc/min, Ar 12t/min, H230t/min, and 0.55t/min, and has an outer diameter of 110 amφ, a length of 600 mm, and a weight of 110 mm.
A 0 g porous glass body for the outer core was formed.

該外側コア用多孔質ガラス体をHe:Cl3  wlo
o:5の雰囲気中で1050℃に加熱して脱水処理を施
したのち、He:SiF4 = 100 : 3の雰囲
気中で1250℃に加熱してF添加処理したのち、He
:SiF、  ” 1000 : So雰囲気中で16
00℃に加熱し透明ガラス化を行った。
The porous glass body for the outer core is made of He:Cl3 wlo
After dehydration treatment by heating to 1050°C in an atmosphere of He:SiF4 = 100:3, heating to 1250°C in an atmosphere of He:SiF4 = 100:3 to perform F addition treatment.
:SiF, ”1000: 16 in So atmosphere
It was heated to 00°C to make it transparent and vitrified.

透明ガラス化後の外径は45■φ、長さは280露であ
シ、Fが均一に約06重IIkチ含有されていた。
After being made into transparent vitrification, the outer diameter was 45 mm, the length was 280 mm, and F was evenly contained in about 06 times IIk times.

この外側コア用透明ガラス母材の中心に超音波穿孔機を
用いて15m+φの穴をあけパイプ状としたのち酸水素
火炎による加熱により、外径508φ、内径10■φに
なるように延伸したのち長さ500mに分割した。さら
に内部にSF6を流しつつ外部より加熱し、内径が13
mになるまで内壁面のエツチング平滑化処理を行った。
A hole of 15 m + φ was made in the center of the transparent glass base material for the outer core using an ultrasonic drilling machine to form a pipe shape, and then heated with an oxyhydrogen flame and stretched to have an outer diameter of 508 φ and an inner diameter of 10 mm. It was divided into 500m lengths. Furthermore, while flowing SF6 inside, it is heated from the outside, and the inner diameter is 13.
The inner wall surface was etched and smoothed until it reached m.

3)内側コア用ガラス体と外側コア用ガラス体の一体化 1)で作製した内側コア用透明ガラス体(直径10mφ
、長さ400■)を、2)で作製したパイプ状の外側コ
ア用透明ガラス体(外径30■φ、内径101111φ
、長さ300箇)の中に挿入した後、第4図に示すよう
な構成でガラス旋盤を用いて加熱一体化を行った。第4
図において、4.1は、内側コア用透明ガラス体、4.
2は外側コア用透明ガラス体であり、4.3は加熱用の
酸・水素バーナーである。4.4は支持用ダミー石英管
であり、外側コア用透明ガラス体4.2の両端に接続さ
れて図示されていない旋盤のチャックに固定される。チ
ャックを回転させつつ、酸・水素バーナー4.5を外側
コア用透明ガフス体4.2の片端よシ移動させて外側コ
ア用透明ガラス体4.2を加熱収縮させていくことによ
って、内側コア用透明ガラス体4.1と外側コア用透明
ガラス体4.2の一体化を行う。この際内側コア用ガラ
ス体4.1と外側コア用ガラス体4.2の隔間をCt、
等の脱水作用のあるガスを含む雰囲気にしておくことが
、内側コアと外側コアの界面へのOH基混入防止のため
に好ましい。このようにして得られた内側コアと外側コ
アからなるコア用複合ガラス体の屈折率分布を第5図に
示す。5.1は内側コア、!lL2は外側コアである。
3) Integration of the glass body for the inner core and the glass body for the outer core The transparent glass body for the inner core produced in 1) (diameter 10 mφ)
, length 400 mm), and the pipe-shaped transparent glass body for the outer core (outer diameter 30 mm φ, inner diameter 101111 φ) prepared in 2).
, 300 pieces in length), and then heated and integrated using a glass lathe with a configuration as shown in FIG. Fourth
In the figure, 4.1 is a transparent glass body for the inner core;
2 is a transparent glass body for the outer core, and 4.3 is an acid/hydrogen burner for heating. 4.4 is a dummy quartz tube for support, which is connected to both ends of the transparent glass body 4.2 for the outer core and fixed to a chuck of a lathe (not shown). While rotating the chuck, the acid/hydrogen burner 4.5 is moved from one end of the transparent gaff member 4.2 for the outer core to heat and shrink the transparent glass member 4.2 for the outer core, thereby removing the inner core. The transparent glass body 4.1 for the outer core and the transparent glass body 4.2 for the outer core are integrated. At this time, the distance between the glass body 4.1 for the inner core and the glass body 4.2 for the outer core is Ct,
It is preferable to create an atmosphere containing a gas having a dehydrating effect such as the like, in order to prevent OH groups from being mixed into the interface between the inner core and the outer core. FIG. 5 shows the refractive index distribution of the core composite glass body composed of the inner core and the outer core thus obtained. 5.1 is the inner core,! lL2 is the outer core.

得られたコア用複合ガラス体は第5図のdが10箇、t
すなわち外径が26m、長さが250−であった。次に
本コア用複合ガラス体の外周部は酸水素火炎によって加
熱されており、oH基によって汚染されている。そこで
外周部を機械的に外径25■φになるまで、5T削し、
OH基汚染層を除去したのち、このコア用複合ガラス体
を電気抵抗炉加熱により五8露φにまで延伸したのち4
50−の長さに分割した。
The obtained composite glass body for core has 10 points d in FIG. 5 and t
That is, the outer diameter was 26 m and the length was 250 mm. Next, the outer periphery of the core composite glass body is heated by an oxyhydrogen flame and is contaminated with oH groups. Therefore, we mechanically cut the outer circumference by 5T until the outer diameter was 25mmφ.
After removing the OH group contamination layer, this core composite glass body was stretched to a diameter of 58 mm by heating in an electric resistance furnace.
It was divided into 50-length pieces.

これをコア用複合ガラス体(1)とする。This is designated as a core composite glass body (1).

4)クツラド用ガラス体の作製 2)にて得た外側コア用多孔質ガラス体と同様の多孔質
ガラス体をHe:CA、−100: 5の雰囲気中で1
050℃に加熱して脱水処理を施したのち、He:Si
F4−100 : 4の雰囲気中で1250℃に加熱し
F添加処理し、しかるのちにHe:SiF4−100 
: 4の雰囲気中で有されていた。
4) Preparation of glass body for cuturad A porous glass body similar to the porous glass body for outer core obtained in 2) was heated in an atmosphere of He:CA, -100:5.
After heating to 050°C and dehydrating, He:Si
F4-100: Heated to 1250°C in an atmosphere of 4, subjected to F addition treatment, and then heated to He:SiF4-100.
: It was held in an atmosphere of 4.

この透明ガラス体の中心に超音波穿孔機を用いて8■φ
の穴をあけパイプ状としたのち、酸・水素火炎による加
熱により、外径22.5■φ、内径4Wφになるまで延
伸したのち、長さ50〇−に分割した。さらに内部にS
F6を流しつつ外部より加熱して内径が7IIIllφ
になるまで内壁面のエツチング平滑化処理を行った。
Using an ultrasonic perforator, the center of this transparent glass body is 8■φ
After making a hole in the shape of a pipe, it was stretched by heating with an acid/hydrogen flame until it had an outer diameter of 22.5 mm and an inner diameter of 4 W, and then was divided into 500 mm lengths. Furthermore, S inside
By heating from the outside while flowing F6, the inner diameter becomes 7IIIllφ.
The inner wall surface was etched and smoothed until it became .

5)コア用複合ガラス体CI)とクラッド用ガラス体の
一体化 3)で作製したコア用ガラス体(I)をリテ作製したパ
イプ状りフッド用ガッス体の中空部内に挿入したのち、
3)で行ったものと同様の方法で加熱一体化処理を行っ
た。得られた内側コアと外側コアさらにクツラド部から
なる複合体0の屈折率分布構造を第1図(1))に示す
。第1図(b)においてでは1.65m、gは五8■、
hは1&5smである。
5) Integration of the core composite glass body CI) and the cladding glass body After inserting the core glass body (I) produced in 3) into the hollow part of the pipe-shaped hood gas body produced by Lite,
The heating and integration treatment was performed in the same manner as in 3). The refractive index distribution structure of the obtained composite body 0 consisting of the inner core, outer core, and cuturad part is shown in FIG. 1 (1)). In Figure 1(b), it is 1.65m, g is 58■,
h is 1&5sm.

6)ファイバ化 5)で得られた複合体■を酸・水素火炎を用いて15■
φに延伸したのち第6図に示す構成で複合体回外周部上
に5iO1のみからなる多孔質ガラス体を形成した。第
6図において&1はガラス倣粒子合成用バーナー、&2
は複合体(6)であり、&3はダミー石英棒である。ガ
ラス倣粒子合成用バーナー& I KSiC64180
0cc/分、Ar12t/分、H235t/分、o23
5t/分を供給して火炎中でガラス微粒子を発生させて
、複合体@&2の上端部分にガラス微粒子を堆積せしめ
るとともに、ダミー石英棒&3を介して複合体@&2を
回転させつつ上方に引上げていくことにより軸方向に多
孔質ガラス体部&4を形成した。この多孔質ガラス体部
6.4に4)での脱水、弗素添加、透明化と同様の加熱
処理を施し透明ガラス化した。なおこの透明ガラス体の
外径は55■であり、透明ガラス化時、多孔質ガラス部
の収縮力により複合体(社)は約21+wφにまでに太
くなった。この透明ガラス体を外径25m+にまで延伸
したのち、外径125μmに線引した。
6) Fiberization The composite obtained in 5) was processed using an acid/hydrogen flame for 15 days.
After stretching to φ, a porous glass body made only of 5iO1 was formed on the supinated peripheral portion of the composite with the configuration shown in FIG. In Fig. 6, &1 is a burner for synthesizing glass imitation particles, &2
is the composite (6) and &3 is a dummy quartz rod. Burner & I KSiC64180 for glass imitation particle synthesis
0cc/min, Ar12t/min, H235t/min, o23
5 t/min is supplied to generate glass particles in the flame, depositing the glass particles on the upper end of the composite @&2, and pull the composite @&2 upwards through the dummy quartz rod &3 while rotating it. By doing so, a porous glass body portion &4 was formed in the axial direction. This porous glass body portion 6.4 was subjected to the same heat treatment as in 4) for dehydration, addition of fluorine, and transparency to make it transparent vitrified. The outer diameter of this transparent glass body was 55 mm, and when it was made into transparent glass, the shrinkage force of the porous glass part caused the composite body (manufactured by Co., Ltd.) to thicken to about 21+wφ. This transparent glass body was stretched to an outer diameter of 25 m+, and then drawn to an outer diameter of 125 μm.

7)特性 第7図に 6)で得られた本発明の階段状屈折率分布を
有する分散シフトファイバの伝送損失スペクトルを実線
で示す。波長1,55μmで0、202 dB/にのま
で低損失化が図られている。
7) Characteristics In FIG. 7, the transmission loss spectrum of the dispersion shifted fiber having the stepped refractive index distribution of the present invention obtained in 6) is shown by a solid line. The loss has been reduced to 0.202 dB/ at a wavelength of 1.55 μm.

また比較例として第2図に示した構造を有するファイバ
の伝送損失スペクトルを第6図に破線で示す。1.55
4 mでα25 dB/km  と比較的低損失ではあ
るが、短波長領域にいくにつれ、両者の伝送損失の差が
広がっている。このことは本発明により前述したような
紫外域での損失劣化要因が低減できており、その結果、
1.55amにおいて0.25 dB/kmから(]、
 202 dB/km+へという伝送損失低下が実現で
きていることを示している。
Further, as a comparative example, the transmission loss spectrum of a fiber having the structure shown in FIG. 2 is shown by a broken line in FIG. 1.55
Although the loss is relatively low at α25 dB/km at 4 m, the difference in transmission loss between the two widens as the wavelength range gets shorter. This is because the present invention can reduce the loss deterioration factors in the ultraviolet region as described above, and as a result,
From 0.25 dB/km at 1.55 am (],
This shows that the transmission loss has been reduced to 202 dB/km+.

尚本実施例では、ファイバ外径とコア径の比率を所定値
に合わせるため内側コア、外側コア、クラッド部の複合
体0の外周部にさらにクラッド部と同組成のF−3i○
2ガラスを合成する方法を示しているが、本発明はこの
ような方法に限定されるものではない。例えば厚肉のパ
イプ状りヲツド用透明ガラス体を用いることにより、複
合体(ロ)のみでそのまま線引ファイバ化する方法等も
本発明の一応用例として考えられる。
In this example, in order to adjust the ratio of the fiber outer diameter to the core diameter to a predetermined value, F-3i○ having the same composition as the cladding part is further added to the outer periphery of the composite body 0 of the inner core, outer core, and cladding part.
Although a method for synthesizing two glasses is shown, the present invention is not limited to such a method. For example, by using a thick-walled transparent glass body for a pipe-like wire, a method in which only the composite (b) is directly made into a drawn fiber can be considered as an example of application of the present invention.

また、外側のクラッド部を合成する方法としては、第6
図で示したよりな構成に限定されるものではなく、例え
ば第9図に示すように複合体@a2を水平方向或いは垂
直方向にセットして、複合体@&2とバーナ&1とを相
対的に左右上下に移動させる方法を用いてもよい。第9
図のa3はダミー石英棒である。
In addition, as a method for synthesizing the outer cladding part, the sixth
The structure is not limited to the one shown in the figure, but for example, as shown in FIG. A method of moving it up and down may also be used. 9th
A3 in the figure is a dummy quartz rod.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように外側コアにFを添加する
ことによりGeO2に起因するレイリー散乱、Ge○、
及び内側コア、外側コア、クラッド部間の粘度差に起因
する紫外域に吸収を有する伝送損失劣化要因を低減でき
るので、階段型分散シフトファイバの低損失化に効果が
ある。
As explained above, by adding F to the outer core, the present invention can reduce Rayleigh scattering caused by GeO2, Ge○,
In addition, it is possible to reduce the transmission loss deterioration factor that has absorption in the ultraviolet region due to the viscosity difference between the inner core, outer core, and cladding, and is therefore effective in reducing the loss of the stepped dispersion-shifted fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係わる階段型屈折率分布の説明
図、第1図(b)は本発明の内側1コア、外側1コアと
クラッド部からなる複合体0の屈折率分布構造を示す図
、第2図は従来の屈折率分布の偽造例を示す図である。 第3図ないし第6図は本発明のファイバを製造する実施
態様の説明図であって、第3図は内側コア用多孔質ガラ
ス体の作成方法の説明図、第4図は内側コア用透明ガラ
ス体とパイプ状外側コア用透明ガラス体の加熱一体化方
法の説明図、第5図は内側コアと外側コアの複合体(I
)の屈折率分布構造例を示す図、第6図は複合体0の外
周部に多孔質ガラス体を堆積させる方法の説明図である
。 第7図は本発明ファイバと従来ファイバの伝送損失スペ
クトA/の比較を示す図、第8図は本発明において複合
体0の外周部に多孔質ガラス体を堆積させる別の方法の
説明図である。
FIG. 1(a) is an explanatory diagram of a stepped refractive index distribution according to the present invention, and FIG. 1(b) is a refractive index distribution structure of a composite body 0 consisting of one inner core, one outer core, and a cladding part according to the present invention. FIG. 2 is a diagram showing an example of a conventional forgery of a refractive index distribution. 3 to 6 are explanatory diagrams of an embodiment for manufacturing the fiber of the present invention, in which FIG. 3 is an explanatory diagram of a method for producing a porous glass body for the inner core, and FIG. 4 is an explanatory diagram of a method for producing a porous glass body for the inner core. An explanatory diagram of the method of heating and integrating the glass body and the transparent glass body for the pipe-shaped outer core, FIG.
) is a diagram showing an example of the refractive index distribution structure, and FIG. 6 is an explanatory diagram of a method for depositing a porous glass body on the outer peripheral part of the composite body 0. Fig. 7 is a diagram showing a comparison of the transmission loss spectrum A/ of the fiber of the present invention and a conventional fiber, and Fig. 8 is an explanatory diagram of another method of depositing a porous glass body on the outer periphery of the composite body 0 in the present invention. be.

Claims (2)

【特許請求の範囲】[Claims] (1)内側コアがGe−SiO_2、外側コアがF−S
iO_2、クラツド部がF−SiO_2からなつており
階段状屈折率分布を有することを特徴とする分散シフト
フアイバ。
(1) Inner core is Ge-SiO_2, outer core is F-S
iO_2, a dispersion-shifted fiber characterized in that its cladding part is made of F-SiO_2 and has a stepped refractive index distribution.
(2)GeO_2−SiO_2からなる内側コア用ガラ
ス体を、F−SiO_2からなるパイプ状の外側コア用
ガラス体中に挿入して加熱一体化することにより、内側
コアと外側コアからなる複合体( I )を形成する工程
と、該複合体( I )をF−SiO_2からなるパイプ
状のクラツド部用ガラス体の中空部内に挿入して加熱一
体化することにより、内側コア、外側コア及びクラツド
部 からなる複合体(II)を形成する工程とを有することを
特徴とする内側コアがGe−SiO_2、外側コアがF
−SiO_2、クラツド部がF−SiO_2からなり階
段状屈折率分布を有する分散シフトフアイバの製造方法
(2) By inserting the glass body for the inner core made of GeO_2-SiO_2 into the pipe-shaped glass body for the outer core made of F-SiO_2 and heating them together, a composite body made of the inner core and the outer core ( The inner core, the outer core and the cladding part are formed by inserting the composite (I) into the hollow part of a pipe-shaped glass body for the cladding part made of F-SiO_2 and heating and integrating it. The inner core is Ge-SiO_2 and the outer core is F.
- A method for manufacturing a dispersion-shifted fiber having a step-like refractive index distribution, the cladding part of which is made of F--SiO_2.
JP62050276A 1986-06-11 1987-03-06 Dispersion shift fiber and manufacturing method thereof Expired - Fee Related JPH0820574B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62050276A JPH0820574B2 (en) 1987-03-06 1987-03-06 Dispersion shift fiber and manufacturing method thereof
KR1019870005307A KR900003449B1 (en) 1986-06-11 1987-05-28 Dispersion-shift fiber and its production
US07/060,176 US4822399A (en) 1986-06-11 1987-06-10 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
CA000539353A CA1294438C (en) 1986-06-11 1987-06-10 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
EP87108453A EP0249230B1 (en) 1986-06-11 1987-06-11 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
AU74131/87A AU592875B2 (en) 1986-06-11 1987-06-11 Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
DE8787108453T DE3762609D1 (en) 1986-06-11 1987-06-11 GLASS PREFORM FOR A DISPERSION-SHIFTED OPTICAL SINGLE-MODE FIBER AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050276A JPH0820574B2 (en) 1987-03-06 1987-03-06 Dispersion shift fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63217311A true JPS63217311A (en) 1988-09-09
JPH0820574B2 JPH0820574B2 (en) 1996-03-04

Family

ID=12854414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050276A Expired - Fee Related JPH0820574B2 (en) 1986-06-11 1987-03-06 Dispersion shift fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0820574B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732178A (en) * 1995-11-28 1998-03-24 Sumitomo Electric Industries, Ltd. Single-mode optical fiber
US5852701A (en) * 1996-02-08 1998-12-22 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
US6175680B1 (en) 1997-03-18 2001-01-16 The Furukawa Electric Co. Ltd. Dispersion shifted optical fiber
JP2003524798A (en) * 1999-09-29 2003-08-19 コーニング・インコーポレーテッド Low dispersion gradient waveguide fiber
US7561611B2 (en) * 2005-02-03 2009-07-14 Corning Incorporated Extended-lifetime elements for excimer lasers
CN105527675A (en) * 2014-10-21 2016-04-27 Ofs菲特尔有限责任公司 Low loss optical fiber and method of making the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732178A (en) * 1995-11-28 1998-03-24 Sumitomo Electric Industries, Ltd. Single-mode optical fiber
US5852701A (en) * 1996-02-08 1998-12-22 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
AU710444B2 (en) * 1996-02-08 1999-09-23 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
US6175680B1 (en) 1997-03-18 2001-01-16 The Furukawa Electric Co. Ltd. Dispersion shifted optical fiber
JP2003524798A (en) * 1999-09-29 2003-08-19 コーニング・インコーポレーテッド Low dispersion gradient waveguide fiber
US7561611B2 (en) * 2005-02-03 2009-07-14 Corning Incorporated Extended-lifetime elements for excimer lasers
CN105527675A (en) * 2014-10-21 2016-04-27 Ofs菲特尔有限责任公司 Low loss optical fiber and method of making the same
JP2016081067A (en) * 2014-10-21 2016-05-16 オーエフエス ファイテル,エルエルシー Low loss optical fiber and method of making the same

Also Published As

Publication number Publication date
JPH0820574B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
AU592875B2 (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
KR890001121B1 (en) Method for producing glass preform for single mode optical
US4846867A (en) Method for producing glass preform for optical fiber
KR100426385B1 (en) Optical fiber and how to make it
JP4093553B2 (en) Optical fiber preform, manufacturing method thereof, and optical fiber obtained by drawing the same
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
WO2010029734A1 (en) Process for producing optical-fiber base material
JPS63217311A (en) Dispersion-shift fiber and its production
JP3738510B2 (en) Optical fiber and manufacturing method thereof
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPS6131324A (en) Production of base material for optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS63222031A (en) Production of preform for optical fiber
JP2004307280A (en) Glass preform for optical fiber in which absorption due to hydroxide group is reduced and a method of manufacturing the same
JPS63222042A (en) Optical fiber preform and production thereof
JPS63147840A (en) Production of quartz glass material
JP2699231B2 (en) Radiation-resistant optical fiber, image fiber, and method of manufacturing the same
JP2657726B2 (en) Radiation-resistant optical fiber and image fiber
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber
JPS63285128A (en) Production of optical fiber preform
JPH0769667A (en) Optical amplification type fiber and production thereof
JPH0826763A (en) Optical fiber and its production
JPH05124831A (en) Production of optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees