JPS63216933A - Method for filtering molten aluminum - Google Patents

Method for filtering molten aluminum

Info

Publication number
JPS63216933A
JPS63216933A JP62047807A JP4780787A JPS63216933A JP S63216933 A JPS63216933 A JP S63216933A JP 62047807 A JP62047807 A JP 62047807A JP 4780787 A JP4780787 A JP 4780787A JP S63216933 A JPS63216933 A JP S63216933A
Authority
JP
Japan
Prior art keywords
filtration
filter
inclusions
aluminum
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62047807A
Other languages
Japanese (ja)
Other versions
JPH0422977B2 (en
Inventor
Shogo Mochizuki
省吾 望月
Kyoji Sato
佐藤 京司
Kazusada Sumiyama
住山 一貞
Mamoru Takahashi
衛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP62047807A priority Critical patent/JPS63216933A/en
Publication of JPS63216933A publication Critical patent/JPS63216933A/en
Publication of JPH0422977B2 publication Critical patent/JPH0422977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To catch even inclusions of fine grain diameter and to remove the above in high removal efficiency, by subjecting molten Al or Al alloy to pressure filtration at a specific rate of filtration by using a filter with a specific fine pore diameter. CONSTITUTION:Molten Al or Al alloy held at about 720 deg.C is subjected to pressure filtration by using a filter with an average pore diameter of 10-50mum, preferably about 10-30mum, so that filtration rate in a filtering part is regulated to 0.05-0.8cm/sec, preferably about 0.05-0.3cm/sec. As the above filter, the one prepared by using, as aggregate, a ceramic material composed principally of Al2O3, SiC, or Si3N4 is suitably used. By this method, even the inclusions having a fine grain diameter as small as <=about 2mum as a simple-grain diameter can be caught and a high inclusion-removing efficiency can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルミニウムまたはアルミニウム合金(以下
、両者を併せて単にアルミニウムという)溶湯中に含ま
れる介在物の濾過方法に関するものある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for filtering inclusions contained in molten aluminum or aluminum alloy (hereinafter both are simply referred to as aluminum).

従来の技術 近年、アルミニウム製品の高品質化の要求に伴い、鋳塊
の溶解鋳造における溶湯処理の品質管理、特に溶湯中の
介在物の管理については、その重要性が強く認識されて
きている。この背景には、電子機器などの先端技術分野
へのアルミニウム材料の適用範囲が拡大されてきたこと
と、磁気ディスク材、スパッターターゲット材、ボンデ
ィングワイヤー、箔地に代表されるように、製品の薄肉
化および表面の加工精度などが著しく進んできたことが
ある。従って、従来では全く問題視されなかった微小介
在物や晶出物の大きさが、製品欠陥に直接結び付くよう
になり、磁気ディスクメディアの性能欠陥、スパッター
性能の劣化、伸線破断等のトラブルとして現れるので、
高品質素材への要求は一段と厳しいものとなってきてい
る。
BACKGROUND OF THE INVENTION In recent years, with the demand for higher quality aluminum products, the importance of quality control of molten metal processing in melting and casting of ingots, especially control of inclusions in the molten metal, has been strongly recognized. The background to this is that the scope of application of aluminum materials to advanced technology fields such as electronic equipment has expanded, and the use of thin-walled products as typified by magnetic disk materials, sputter target materials, bonding wires, and foil materials There have been significant advances in surface processing accuracy and surface processing accuracy. Therefore, the size of minute inclusions and crystallized substances, which were not seen as a problem in the past, are now directly linked to product defects, resulting in problems such as performance defects in magnetic disk media, deterioration of sputtering performance, and wire breakage. Because it appears,
Requirements for high-quality materials are becoming even more stringent.

溶融アルミニウムを濾過する濾過機としては、フィルタ
ーに米国特許第3,524,548号又は特開昭52−
22,327号に提案されているようなセラミック製の
多孔質体を使用する例が多い。
As a filter for filtering molten aluminum, the filter is manufactured by U.S. Pat.
In many cases, ceramic porous bodies such as those proposed in No. 22,327 are used.

またその介在物除去性能に着目すると、従来の濾過機の
中では最も微細なものまで除去する。
Also, focusing on its ability to remove inclusions, it removes even the finest particles among conventional filters.

しかし、前記濾過機は、濾過機の入湯と出湯の湯面のレ
ベル差に基づくメタルヘッド差を利用して濾過する機構
であるので、フィルターの気孔径は通常200μm以上
であって、使用開始時の抵抗が高くなることから、これ
より細かい孔径とすることは不可能である。また、この
場合の′pi過状況を顕微鏡観察すると、非金属介在物
は凝集フロックとして存在し、フィルター孔にブリッジ
を形成し、そのケーキ層によって濾過が行われるため、
現実には孔径より遥かに細かな粒子まで捕捉されている
。しかし、介在物除去効率を高めるため濾過速度を最小
にして運転しても、その介在物除去効率は、溶湯不溶性
微細TiB2をアルミニウム溶湯の介在物として添加し
て濾過し、濾過された溶湯中の酸不溶性Tiを化学分析
して求めた結果、従来の濾過効率は第1図(B)に示す
ように50%以下であった。
However, since the above-mentioned filter uses a metal head difference based on the level difference between the hot water entering and exiting the filter, the pore size of the filter is usually 200 μm or more, and the pore size is usually 200 μm or more. It is impossible to make the pore diameter smaller than this because the resistance becomes high. In addition, when observing the 'pi filtration situation in this case under a microscope, the nonmetallic inclusions exist as aggregated flocs, forming bridges in the filter pores, and filtration is performed by the cake layer.
In reality, particles much smaller than the pore size are captured. However, even if the operation is performed with the filtration speed set to the minimum in order to increase the inclusion removal efficiency, the inclusion removal efficiency is limited by adding molten metal insoluble fine TiB2 as an inclusion to the molten aluminum and filtering it. As a result of chemical analysis of acid-insoluble Ti, the conventional filtration efficiency was 50% or less as shown in FIG. 1(B).

発明が解決しようとする問題点 本発明は、前記従来濾過機での介在物捕捉粒子よりさら
に微細な、従来方法では除去が困難であった細かな粒径
の介在物(単粒子径として2μm以下)をも捕捉し、高
い介在物除去効率を達成する紹過方法を提供するもので
ある。
Problems to be Solved by the Invention The present invention solves the problems of inclusions that are even finer than the inclusion-captured particles in the conventional filter, and which are difficult to remove with conventional methods (less than 2 μm in single particle diameter). ), and provides an introduction method that achieves high inclusion removal efficiency.

問題点を解決するための手段 かくして、本発明によれば、アルミニウムまたはアルミ
ニウム合金を濾過する方法において、平均気孔径が10
〜50μmであるフィルターを使用し、フィルター部で
の濾過速度が0.05〜0゜8 c++/secとなる
ように加圧濾過することを特徴とするアルミニウム溶湯
の濾過方法が提供される。
Means for Solving the Problems Thus, according to the invention, in a method for filtering aluminum or aluminum alloys, an average pore size of 10
A method for filtering molten aluminum is provided, which uses a filter having a diameter of 50 μm and performs pressure filtration at a filtration rate of 0.05 to 0°8 c++/sec.

即ち、従来の溶湯の重力濾過の代わりに、・逼かに微細
平均孔径のフィルターを用いて加圧濾過することにより
、微細介在物の除去を行なうものである。
That is, instead of the conventional gravity filtration of molten metal, fine inclusions are removed by pressure filtration using a filter with a very fine average pore size.

本発明における濾過の機構は濾過後のフィルターを観察
した結果、フィルター表面に介在物をトラップする表面
濾過主体の濾過機構である。
As a result of observing the filter after filtration, the filtration mechanism in the present invention is a filtration mechanism mainly based on surface filtration that traps inclusions on the filter surface.

発明者らは、アルミニウム溶湯にTiB2ハードナーを
添加し、溶湯中のTiB2微細粒子を介在物の指標とし
、平均孔径の異なるフィルターを用い、溶湯の加圧濾過
速度とTih除去率の関係を調べ、第1図曲線(A)の
如き関係を得た。この結果等を考慮し、フィルターの平
均気孔径は、10−50μm、好ましくは10〜30μ
mの範囲であって、10μm未満では濾過抵抗が大とな
り現実的に使用不適当で、また50μmを超える場合は
微小介在物が漏出し易く介在物の除去効率が低下する。
The inventors added TiB2 hardener to molten aluminum, used TiB2 fine particles in the molten metal as an indicator of inclusions, used filters with different average pore sizes, and investigated the relationship between the pressure filtration rate of the molten metal and the Tih removal rate. A relationship as shown in curve (A) in Figure 1 was obtained. Considering this result etc., the average pore diameter of the filter is 10-50 μm, preferably 10-30 μm.
If the diameter is less than 10 μm, the filtration resistance becomes large and it is practically unsuitable for use, and if it exceeds 50 μm, minute inclusions tend to leak out and the removal efficiency of the inclusions decreases.

このような気孔径を有するフィルターを使用し、アルゴ
ンガス等の不活性ガスの加圧下で溶湯が通過する実用最
小濾過速度範囲で濾過することにより微小介在物をトラ
ップするプレコート層が絶層に形成され、微小介在物の
除去効果を著しく改善することができる。濾過速度とし
ては、0.05〜0゜8 cm/sec、好ましくは、
0.05〜0.3 cm/secの範囲で、0 、05
 cm/sec未満では、濾過時間が長くなり実用的で
なく、また、加圧圧力を増し、濾過速度が0・8 cm
/secを超えると形成されたプレコート層が破れる恐
れがあり、微小介在物の除去効率が低下し好ましくなく
、上記範囲の濾過速度となるよう加圧圧力を調整する。
By using a filter with such a pore size and performing filtration at the minimum practical filtration speed range that allows the molten metal to pass under the pressure of an inert gas such as argon gas, a layer of precoat that traps minute inclusions is formed. The removal effect of micro inclusions can be significantly improved. The filtration rate is 0.05 to 0°8 cm/sec, preferably
In the range of 0.05 to 0.3 cm/sec, 0,05
If it is less than cm/sec, the filtration time will be longer and it is not practical, and the pressurization pressure will be increased and the filtration speed will be 0.8 cm.
If it exceeds /sec, the formed precoat layer may be torn, and the removal efficiency of minute inclusions will decrease, which is undesirable, and the pressurizing pressure is adjusted so that the filtration rate falls within the above range.

なお、フィルターとしては、Al2O3,SiC,Si
3N4等を主成分とするセラミック材を骨材としたもの
が好適に使用される。
In addition, as a filter, Al2O3, SiC, Si
A ceramic material whose main component is 3N4 or the like as an aggregate is preferably used.

更にアルミニウムーマグネシウム合金系へTihを添加
した溶湯の場合、より良好な介在物除去効率を得たが、
これはMgOあるいはスピネルとTiB+の凝集フロッ
ク化が促進されるためと解釈される。
Furthermore, in the case of a molten metal containing Tih added to an aluminum-magnesium alloy system, better inclusion removal efficiency was obtained;
This is interpreted to be because the aggregation of MgO or spinel and TiB+ into flocs is promoted.

ここに示した濾過圧及び濾過速度はアルニウム及びアル
ミニウム合金地金を通常の溶製法で前処理した溶湯につ
い、ての値であり、特殊な溶湯(例えば介在物を大量に
含むもの)は、この限りでない。
The filtration pressure and filtration rate shown here are values for molten aluminum and aluminum alloy ingots pretreated by normal melting methods.Special molten metals (for example, those containing a large amount of inclusions) are There is no limit.

本発明の後述する実施例で使用したアルミニウム溶湯濾
過装置の概念図を第2図の縦断面図に示す。るつぼ(2
)は装置本体く1)内に配置され、電熱コイルク3)に
よりるつぼ内に投入した供試材を溶融して、約720℃
の温度に保持する。本装置例では濾過後の溶湯をアルゴ
ンガス等の不活性ガスを供給し、ルツボ同様電熱コイル
で加熱した樋(7)を介して次の装置に供給するもので
あるが、濾過溶湯を直接黒鉛るつぼ等に不活性ガス雰囲
気下で受は取ることもてきる。
A conceptual diagram of a molten aluminum filtration device used in the later-described examples of the present invention is shown in the vertical cross-sectional view of FIG. Crucible (2
) is placed inside the main body of the apparatus (1), and melts the test material put into the crucible using an electric heating coil (3) to a temperature of about 720°C.
temperature. In this example, the molten metal after filtration is supplied with an inert gas such as argon gas, and is supplied to the next device via a gutter (7) heated by an electric heating coil like the crucible. The sample can also be taken in a crucible or the like under an inert gas atmosphere.

濾過処理に際しては、加圧蓋(4)を閉じて導管(5)
からアルゴンガス等の加圧気体をるつぼ(7)の溶湯上
面空間に導き、この加圧により溶湯をるつぼ底部に設け
た所定のフィルター(6)に通し、前記樋を介して黒鉛
るつぼで受は取り、冷却固化するものである。
During the filtration process, close the pressure lid (4) and open the conduit (5).
A pressurized gas such as argon gas is introduced into the space above the molten metal in the crucible (7), and this pressurization causes the molten metal to pass through a predetermined filter (6) provided at the bottom of the crucible. It is then cooled and solidified.

本濾過装置に関しては、るつぼ内のメタルレベル検出、
または濾過メタル量を計量し、アルゴンガス等による加
圧を停止して、再び注湯し、加圧するように、操作を全
て自動化することも可能である。また、装置本体(1)
及びるつぼ(2)をフィルター部(6)で二分割し、フ
ィルターの交換を容易にすることもできる。
Regarding this filtration device, metal level detection in the crucible,
Alternatively, it is also possible to automate the entire operation, such as measuring the amount of filtered metal, stopping pressurization with argon gas, etc., pouring the hot water again, and applying pressure. In addition, the device body (1)
It is also possible to divide the crucible (2) into two by the filter section (6) to facilitate filter replacement.

実施例 以下、実施例により本発明をさらに具体的に説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 99 、997$A I C: T i 82 バー 
トナー(5XTi+1$8+残AI)をo、i%添加し
た地金20kgを730℃で、第2図に示す濾過装置の
上部るつぼ内でアルゴン雰囲気中で溶解した。溶解後、
C12ガスで脱ガス処理し、710±5℃で、1.0時
間鎮静した。続いて直径100mm、厚さ15mm、平
均気孔径21 B ntのアルミナを骨材としたアイコ
ー(株)製フィルターを使用し、濾過圧1 、0 kg
7cm2(yJ!過速度0.]6CFll/5ec)で
アルゴンガスにより加圧濾過した。濾過溶湯な樋下流に
設けた黒鉛るつぼにアルゴンガス雰囲気下で受は取り冷
却固化した。酸不溶性Tiを化学分析した結果、濾過前
はs<ppm、濾過後は1.0ppmで介在物除去効率
88.1%が得られた。
Example 1 99, 997$ AIC: T i 82 bar
20 kg of ingot to which o.i% of toner (5XTi+1$8+remaining AI) was added was melted at 730° C. in an argon atmosphere in an upper crucible of a filtration apparatus shown in FIG. After dissolving,
It was degassed with C12 gas and kept at 710±5°C for 1.0 hour. Subsequently, a filter manufactured by Aiko Co., Ltd. with alumina aggregate having a diameter of 100 mm, a thickness of 15 mm, and an average pore diameter of 21 B nt was used, and a filtration pressure of 1.0 kg was used.
It was filtered under pressure with argon gas at 7 cm2 (yJ!overrate 0.]6CFll/5ec). The filtered molten metal was placed in a graphite crucible placed downstream of the gutter under an argon gas atmosphere, and cooled and solidified. As a result of chemical analysis of acid-insoluble Ti, an inclusion removal efficiency of 88.1% was obtained with s<ppm before filtration and 1.0 ppm after filtration.

Tihハードナーに使用したTi[hの粒度分布は測定
の結果、次の第1表に示すとおりて、2μm未満が98
.7%を占めており、本発明濾過方法では2μm以下の
微細介在物を大部分除去していることが判る。
The particle size distribution of Ti[h used in the Tih hardener was measured as shown in Table 1 below.
.. It is clear that the filtration method of the present invention removes most of the fine inclusions of 2 μm or less.

第  l  衷 また、上記と同様の操作を濾過圧2 、0 kg/cm
2(濾過速度0 、24 cm/5ec)で実施した場
合の酸不溶性TIは濾過前7.5ppmに対し、濾過後
1.3ppmであり、介在物除去効率は82.7%であ
った。
In addition, the same operation as above was carried out at a filtration pressure of 2,0 kg/cm.
2 (filtration rate 0, 24 cm/5 ec), the acid-insoluble TI was 7.5 ppm before filtration and 1.3 ppm after filtration, and the inclusion removal efficiency was 82.7%.

実施例 2 実施例1と同様の濾過操作を平均気孔径45μmのフィ
ルターで行なった。濾過圧0 、2 kg/cm2(濾
過速度0 、12 cm/5ee)で酸不溶性Tiは目
通前7 、7 ppm、 ig過後後3、6 ppmで
あり、介在物除去前7.7ppm、 濾過後3 、6 
TIPIIIであり、介在物除去効率は53.3%であ
った。
Example 2 The same filtration operation as in Example 1 was performed using a filter with an average pore diameter of 45 μm. At filtration pressures of 0 and 2 kg/cm2 (filtration speeds of 0 and 12 cm/5ee), acid-insoluble Ti was 7.7 ppm before passing through, 3.6 ppm after ig filtration, 7.7 ppm before inclusion removal, and 7.7 ppm after filtration. back 3, 6
TIP III, and the inclusion removal efficiency was 53.3%.

実施例 3 99.9%AIニTiB2バーFす(5XTi+0.1
7B+残AI)を0.6%添加した溶製10tを東京高
級濾材(株)製のセラミック製多孔質体のポーラス・チ
ューブフィルターで濾過後、DC鋳造した。
Example 3 99.9% AI Ni TiB2 bar F (5XTi+0.1
10 tons of ingots to which 0.6% of 7B+residual AI) had been added were filtered through a porous tube filter made of a ceramic porous material manufactured by Tokyo Kyokugyu Firozai Co., Ltd., and then DC cast.

スラブサンプル10kgを実施例1と同様、アルゴン雰
囲気下、720℃±5℃で溶製し、21μmフィルター
を使用し、濾過圧1.0kg/cm2(FJ過速度0 
、09 cn+/5ec)で加圧濾過した。酸不溶性T
iは濾過前3.6ppR+、 1過後0 、1 ppn
+であり、介在物除去効率は97.2%が得られた。
In the same manner as in Example 1, 10 kg of a slab sample was melted at 720°C ± 5°C under an argon atmosphere, using a 21 μm filter, and with a filtration pressure of 1.0 kg/cm2 (FJ overrate 0
, 09 cn+/5ec). acid insoluble T
i is 3.6 ppR+ before filtration, 0 after 1 filtration, 1 ppn
+, and the inclusion removal efficiency was 97.2%.

実施例 4 AI−4%Mg合金(Mg 4.06χ、 Si O,
005%、 Fe O,001Z、 Cu O,001
3χ)ニTiB2ハードナー (5$Ti+lX8+残
AI)を0.1%添加した地金10kgを、実施例Iと
同様アルゴン雰囲気下、710±5℃で溶製し、平均気
孔径45μmのフィルターでアルゴン加圧下で濾過圧(
濾過速度)を所定範囲内で種々変更し濾過した。結果を
第2表に示す。
Example 4 AI-4%Mg alloy (Mg 4.06χ, SiO,
005%, FeO,001Z, CuO,001
3χ) NiTiB2 hardener (5$Ti+lX8+residual AI) 10kg of metal to which 0.1% was added was melted at 710±5°C in an argon atmosphere as in Example I, and heated with argon through a filter with an average pore size of 45μm. Filtration pressure under pressure (
Filtration was carried out by varying the filtration rate) within a predetermined range. The results are shown in Table 2.

第2表から判るように、高い介在物除去効率が示される
As can be seen from Table 2, high inclusion removal efficiency is shown.

第2表 発明の効果 本発明によれば、アルミニ”y A溶湯の濾過に、従来
試みられなかった微細気孔径のフィルターを用い加圧濾
過することにより、アルミニウム中の微細な介在物を高
い除去効率で除去することができ、本発明は高品位アル
ミニラ11材に対する要請に応える優れた工業的発明で
ある。
Table 2 Effects of the Invention According to the present invention, fine inclusions in aluminum can be removed to a high degree by applying pressure filtration to filtration of molten aluminum using a filter with a fine pore size, which has not been attempted in the past. The present invention is an excellent industrial invention that meets the demand for high-grade aluminum 11 material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム溶湯のl!過における濾材の平均
気孔径と介在物除去効果の関係を示す図面で、第2図は
本発明に使用した絶後装置の概略構造を示す縦断面図で
ある。 (1)・・・装置本体、(2)・・・るつぼ、(3)・
・・電熱コイル。 (4)・・・加圧蓋、(5)・・・不活性ガス導管、(
6)・・・フィルター、(7)・・・樋。
Figure 1 shows l! of molten aluminum. FIG. 2 is a diagram showing the relationship between the average pore diameter of a filter medium and the inclusion removal effect in filtration, and FIG. 2 is a vertical cross-sectional view showing the schematic structure of the terminating device used in the present invention. (1)...Device body, (2)...Crucible, (3)...
...Electric heating coil. (4)...Pressure lid, (5)...Inert gas conduit, (
6)...Filter, (7)...Gutter.

Claims (1)

【特許請求の範囲】 1、アルミニウムまたはアルミニウム合金を濾過する方
法において、平均気孔径が10〜50μmであるフィル
ターを使用し、フィルター部での濾過速度が0.05〜
0.8cm/secとなるように加圧濾過することを特
徴とするアルミニウム溶湯の濾過方法。 2、前記フィルターが、Al_2O_3、SiCまたは
Si_3N_4を主成分とするセラミック材を骨材とす
るものである特許請求の範囲第1項記載のアルミニウム
溶湯の濾過方法。
[Claims] 1. In a method for filtering aluminum or aluminum alloy, a filter having an average pore diameter of 10 to 50 μm is used, and the filtration rate in the filter portion is 0.05 to 50 μm.
A method for filtering molten aluminum, characterized by filtering under pressure at a rate of 0.8 cm/sec. 2. The method for filtering molten aluminum according to claim 1, wherein the filter has an aggregate made of a ceramic material containing Al_2O_3, SiC, or Si_3N_4 as a main component.
JP62047807A 1987-03-04 1987-03-04 Method for filtering molten aluminum Granted JPS63216933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047807A JPS63216933A (en) 1987-03-04 1987-03-04 Method for filtering molten aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047807A JPS63216933A (en) 1987-03-04 1987-03-04 Method for filtering molten aluminum

Publications (2)

Publication Number Publication Date
JPS63216933A true JPS63216933A (en) 1988-09-09
JPH0422977B2 JPH0422977B2 (en) 1992-04-21

Family

ID=12785636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047807A Granted JPS63216933A (en) 1987-03-04 1987-03-04 Method for filtering molten aluminum

Country Status (1)

Country Link
JP (1) JPS63216933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281738A (en) * 1990-03-30 1991-12-12 Ngk Insulators Ltd Filter material for metallic molten metal and method for filtering metallic molten metal by using the same
JP2003531289A (en) * 2000-04-14 2003-10-21 トーソー エスエムディー,インク. Sputter target for reducing particulate emission during sputtering and method of manufacturing the same
US7138084B2 (en) 2000-08-31 2006-11-21 Foseco International Limited Refractory articles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281738A (en) * 1990-03-30 1991-12-12 Ngk Insulators Ltd Filter material for metallic molten metal and method for filtering metallic molten metal by using the same
JP2003531289A (en) * 2000-04-14 2003-10-21 トーソー エスエムディー,インク. Sputter target for reducing particulate emission during sputtering and method of manufacturing the same
US7138084B2 (en) 2000-08-31 2006-11-21 Foseco International Limited Refractory articles
EP1282477B2 (en) 2000-08-31 2007-10-03 Foseco International Limited Refractory articles
US8158053B2 (en) 2000-08-31 2012-04-17 Foseco International Limited Refractory articles

Also Published As

Publication number Publication date
JPH0422977B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
Cáceres et al. The deformation and fracture behaviour of an Al Si Mg casting alloy
Ali et al. Physical refining of steel melts by filtration
JP2000514140A (en) Cast aluminum alloy for can material and process for producing the alloy
JPH0469501B2 (en)
JP2003505251A (en) Semi-solid thickening of metal alloy
EP0860507B1 (en) Ultra low sulfur superalloy castings and method of making
AU610156B2 (en) Aluminium alloy treatment
JPS62133037A (en) Alloy for grain refining and its manufacture
JPS63216933A (en) Method for filtering molten aluminum
US4564059A (en) Method for continuous casting of light-alloy ingots
JP3169226B2 (en) Filtration of molten material
US4872908A (en) Metal treatment
JPH05311261A (en) Filter medium for molten metal
Brant et al. Fumeless in-line degassing and cleaning of liquid aluminum
JPH08176810A (en) Production of aluminum-high melting point metal alloy ingot and target material
JPS62252658A (en) Production of high density ingot having fine isometric structure
Le Brun et al. Assessment of active filters for high quality aluminium cast products
JP2003500543A5 (en)
US4418028A (en) Filtration block for liquid metals and alloys, with a mechanical and physical-chemical effect
JPS6333167A (en) Dropping type casting method
Chen et al. Quantitative measurement of melt cleanliness in aluminum-silicon casting alloys
JP2614381B2 (en) Thin slab of Fe-Cu alloy
JPH0754065A (en) Refining method and recycling method for aluminum scrap
JPH0550194A (en) Tundish for continuously casting of steel
RU2022039C1 (en) Porous ceramic structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term