JPS63215734A - Epoxy resin prepreg for laminate - Google Patents

Epoxy resin prepreg for laminate

Info

Publication number
JPS63215734A
JPS63215734A JP4820887A JP4820887A JPS63215734A JP S63215734 A JPS63215734 A JP S63215734A JP 4820887 A JP4820887 A JP 4820887A JP 4820887 A JP4820887 A JP 4820887A JP S63215734 A JPS63215734 A JP S63215734A
Authority
JP
Japan
Prior art keywords
resin
prepreg
weight
epoxy resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4820887A
Other languages
Japanese (ja)
Inventor
Yasuo Furuhashi
古橋 靖夫
Yasushi Yamamoto
泰 山本
Yoshihiro Maruyama
丸山 佳宏
Hiroyuki Nakajima
博行 中島
Fumiyuki Miyamoto
宮本 文行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4820887A priority Critical patent/JPS63215734A/en
Publication of JPS63215734A publication Critical patent/JPS63215734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title prepreg freed of intercircuit voids and blur of the terminal of a product, excellent in storage stability and capable of multistage and multilayer molding, by drying bases impregnated with a specified varnish. CONSTITUTION:A varnish is obtained by mixing 100pts.wt. epoxy resin with 1-3pts.wt. dicyandiamide, 1-6pts.wt. (alkyl)phenol novolak resin of a free monomer content <=0.5% of the formula [wherein R is H or CmH2m+1 (wherein m is 1-9), and the average degree of polymerization (degree of polymerization = n+1) of 3-10] and 0.1-0.5pt.wt. 3-(chlorophenyl)-1,1-dimethylurea as a curing catalyst and dissolving the mixture in an organic solvent (e.g., methyl Cellosolve). Bases such as cloth, mat, paper or the like of glass fiber, quartz fiber or the like are impregnated with this varnish and dried to bring the resin to B-stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板等に使用される成形性に優れ
た積層板用エポキシ樹脂プリプレグに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an epoxy resin prepreg for laminates that has excellent moldability and is used for printed wiring boards and the like.

〔従来の技術〕[Conventional technology]

近年コンピュータ、無線応用機器、工業計測機器、医療
機器等の産業用機器の発展は目覚しく、それらに使用さ
れるプリント配線板は高密度配線が行われるようになり
、ドリル加工性、耐熱性、寸法安定性の向上を目的とし
た改良がなされている。一方プリント配線板の製造工程
では、製品1枚当りの時間短縮による製造合理化が種々
検討され、中でも積層工程における時間短縮が検討され
In recent years, the development of industrial equipment such as computers, wireless application equipment, industrial measuring equipment, and medical equipment has been remarkable, and the printed wiring boards used for these have become highly densely wired, with improvements in drillability, heat resistance, and size. Improvements have been made to improve stability. On the other hand, in the manufacturing process of printed wiring boards, various methods of streamlining production by shortening the time per product have been studied, and in particular, shortening the time in the lamination process has been studied.

多段、多数枚プレス成形が行われている。Multi-stage, multi-sheet press molding is performed.

プリント配線板用の積層板は、一般的には次のようにし
て製造されている。すなわち第1図に示すように、回路
加工した内層板(1)の両側に接着用のプリプレグ(2
)および片面接着処理した銅箔(3)を配置した構成品
(4)を、第2図に示すように、多数組の鏡面板(5)
間にはさんで積み重ね、クッション材(6)を使用して
プレス熱盤(7)間に仕込み。
Laminated boards for printed wiring boards are generally manufactured as follows. That is, as shown in Fig. 1, adhesive prepregs (2
) and a component (4) with single-sided adhesive treated copper foil (3), as shown in Fig.
Stack them in between, and use the cushioning material (6) to place them between the press heat plates (7).

加熱、加圧を行って製造している。Manufactured by heating and pressurizing.

積層板を製造する場合、一般に加熱は室温よ°す160
〜180℃に昇温しで、所定温度になるまで低圧(例4
kgf/cJ)で保持し、その後高圧(例40kgf/
a#)をかけて成形する。低圧保持時間は最適樹脂流れ
を確保する意味で、非常に重要なファクターとなる。こ
れが最適時間より短すぎると、プリプレグ(2)の樹脂
粘度が低いうちに高圧がかかるため、樹脂の流れすぎに
よる端部かすれ、層間厚み不良が発生する。また長すぎ
ると、プリプレグ(2)の樹脂粘度が高くなった時点で
高圧がかけられるため、均一な樹脂流れが起きずに、回
路間にボイドが発生する。
When manufacturing laminates, heating is generally done at room temperature or 160°C.
Raise the temperature to ~180℃ and apply low pressure (Example 4) until the specified temperature is reached.
kgf/cJ) and then high pressure (e.g. 40 kgf/cJ).
a#) and mold. Low pressure holding time is a very important factor in ensuring optimal resin flow. If this time is too short than the optimum time, high pressure will be applied while the resin viscosity of the prepreg (2) is low, resulting in edges being blurred and poor interlayer thickness due to excessive resin flow. Moreover, if it is too long, high pressure will be applied when the resin viscosity of the prepreg (2) becomes high, so that uniform resin flow will not occur and voids will occur between the circuits.

これらの不都合をなくすため、低圧保持時間は昇温速度
ならびにプリプレグ(2)の樹脂流れ特性により決定さ
れる。
In order to eliminate these disadvantages, the low pressure holding time is determined by the temperature increase rate and the resin flow characteristics of the prepreg (2).

内層板(1)の両側に、プリプレグ(2)を介して外層
の銅箔(3)を配置した構成品(4)をプレス熱盤(7
)間に4組仕込む役向4枚押しの場合、熱盤(7)側仕
込み製品(1,4枚目の製品)と中央部仕込み製品(2
,3枚目の製品)の昇温速度に大きな差はない。しかし
製品1枚当りの製造時間短縮のため、プレス熱盤(7)
間に8〜10組を仕込んで多数枚成形を行う場合、大き
な昇温のずれが生じる。
A component (4) in which outer layer copper foil (3) is placed on both sides of an inner layer board (1) via a prepreg (2) is pressed onto a hot plate (7).
) In the case of a 4-piece press, with 4 sets placed between
, 3rd product)) There is no big difference in the heating rate. However, in order to shorten the manufacturing time per product, press heating plate (7)
When molding a large number of sheets by preparing 8 to 10 sets in between, a large deviation in temperature rise occurs.

このため従来の樹脂流れ特性を有するプリプレグ(2)
を用いて多数枚成形を行うと、所定の低圧保持時間にお
ける熱盤(7)側製品と、中央部製品の樹脂粘度が大き
く違うため、前者には流れ不足による回路間ボイド、後
者には流れすぎによる製品端部かずれが発生する傾向が
ある。
Therefore, prepreg (2) with conventional resin flow characteristics
When molding a large number of sheets using a , the resin viscosity of the product on the hot platen (7) side and the product on the center part at a predetermined low pressure holding time is greatly different, so the former has voids between circuits due to insufficient flow, and the latter has voids due to flow. There is a tendency for the edges of the product to shift due to rinsing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のプリント配線板等の積層板用プリプレグのエポキ
シ樹脂の硬化剤としては、安価でプリプレグとしての保
存安定性の良いジシアンジアミド/アミン触媒系が用い
られてきた。この場合アミン触媒が少なすぎると成形時
、樹脂の流れすぎによる端部かすれ、耐熱低下が起こり
、多すぎると流動性低下によるボイドが発生して多層成
形は難かしいが、アミン触媒量を調節して硬化性、流動
性の調整を行っている。しかし現実にはプリプレグの製
造における乾燥時に、アミン触媒が飛散したり、トリー
タ乾燥条件が少しでも変化すると、アミン触媒の反応性
が高いため、Bステージ化の程度が異なり、多数枚成形
に適した安定した性能のプリプレグを得ることが困難で
ある。
As a curing agent for epoxy resin in conventional prepregs for laminated boards such as printed wiring boards, dicyandiamide/amine catalyst systems have been used because they are inexpensive and have good storage stability as prepregs. In this case, if the amine catalyst is too small, the resin will flow too much during molding, causing edges to become blurred and heat resistance to deteriorate; if it is too large, voids will occur due to reduced fluidity, making multilayer molding difficult, but the amount of amine catalyst can be adjusted. The curing properties and fluidity are adjusted using However, in reality, if the amine catalyst scatters during drying during prepreg production, or if the treater drying conditions change even slightly, the degree of B-staging will differ due to the high reactivity of the amine catalyst, making it difficult to make it suitable for multi-sheet molding. It is difficult to obtain prepregs with stable performance.

一方ジシアンジアミドの代りに、フェノールノボラック
樹脂もしくはアルキルフェノールノボラック樹脂を硬化
剤とするプリプレグも知られている。しかしこの場合、
そのプリプレグの保存安定性が悪いという問題点があっ
た。
On the other hand, prepregs using a phenol novolak resin or an alkylphenol novolac resin as a curing agent instead of dicyandiamide are also known. But in this case,
There was a problem that the prepreg had poor storage stability.

本発明は上記問題点を解決するためのもので、保存安定
性が良く、積層工程における時間短縮のための多段、多
数枚プレスが容易にできるような成形硬化性、流動性を
もち、かつ安定した性能を与える積層板用エポキシ樹脂
プリプレグを得ることを目的とする。
The present invention is intended to solve the above problems, and has good storage stability, mold hardening properties and fluidity that allow easy multi-stage and multi-sheet pressing to shorten the time in the lamination process, and stable The purpose of this study is to obtain an epoxy resin prepreg for laminates that provides the desired performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の積層板用エポキシ樹脂プリプレグは。 The epoxy resin prepreg for laminates of the present invention is:

エポキシ樹脂100重量部に対して、ジシアンジアミド
1〜3重量部、フェノールノボラック樹脂またはアルキ
ルフェノールノボラック樹脂1〜6重量部、および硬化
触媒として3−(クロルフェニル)−1,1−ジメチル
尿素0.1〜0.5重量部を有機溶剤に溶解したワニス
を基材に含浸させ、乾燥してなるものである。
For 100 parts by weight of epoxy resin, 1 to 3 parts by weight of dicyandiamide, 1 to 6 parts by weight of phenol novolak resin or alkylphenol novolak resin, and 0.1 to 3-(chlorphenyl)-1,1-dimethylurea as a curing catalyst. The base material is impregnated with 0.5 parts by weight of varnish dissolved in an organic solvent and dried.

本発明において用いるエポキシ樹脂は、エポキシ基を分
子当り平均2個以上有する化合物であり、特に限定され
ないが、具体的にはビスフェノール系エポキシ樹脂、ハ
ロゲン化ビスフェノール系エポキシ樹脂、フェノールノ
ボラック系エポキシ樹脂、ハロゲン化フェノールノボラ
ック系エポキシ樹脂、アルキルフェノールノボラック系
エポキシ樹脂、ポリフェノール系エポキシ樹脂、ポリグ
リコール系エポキシ樹脂、脂環系エポキシ樹脂等がある
。これらの樹脂を単独使用してもよく、また2種以上の
併用も可能である。
The epoxy resin used in the present invention is a compound having an average of two or more epoxy groups per molecule, and examples thereof include, but are not limited to, bisphenol-based epoxy resins, halogenated bisphenol-based epoxy resins, phenol novolac-based epoxy resins, and halogenated epoxy resins. Examples include chemical phenol novolak epoxy resins, alkylphenol novolak epoxy resins, polyphenol epoxy resins, polyglycol epoxy resins, and alicyclic epoxy resins. These resins may be used alone or in combination of two or more.

本発明におけるジシアンジアミドの配合量は、エポキシ
樹脂100重量部に対して1〜3重量部であり、1重量
部未満では硬化不良となり、3重斌部を越えるとプリプ
レグ表面にジシアンジアミドの結晶が析出しやすく1反
応が不均一になり、ブラウンスポット等が生じやすくな
るのでいずれも好ましくない。
The amount of dicyandiamide blended in the present invention is 1 to 3 parts by weight per 100 parts by weight of the epoxy resin. If it is less than 1 part by weight, curing will be poor, and if it exceeds 3 parts by weight, crystals of dicyandiamide will precipitate on the surface of the prepreg. Both are unfavorable because they tend to cause non-uniform reactions and brown spots.

本発明におけるフェノールノボラック樹脂またはアルキ
ルフェノールノボラック樹脂は、下記の一般式 〔但し、Rは水素またはC,、、H21,、+□(m=
1〜9)を示し、平均重合度(重合度=n+1)3〜1
0、遊離モノマー量0.5%以下である。〕 で表わされる樹脂である。平均重合度が10を越えると
エポキシ樹脂に対する反応が不均一となり、3より小さ
くなると硬化物の特性が低下するようになる。またアル
キルフェノールノボラック樹脂を使用する場合において
、フェノール核への置換アルキル基の炭素数が9を越え
ると置換基がバルキーになり過ぎ、アルキルフェノール
ノボラック樹脂の反応性が低下するので、上記の範囲が
好ましい。そしてその配合量は、エポキシ樹脂1(10
ffi斌部に対して1〜6重量部であり、これらの樹脂
はプリプレグに適当な溶融粘度を安定に与えるという役
割を持ち、1重量部未満ではその効果がなく、6重量部
を越えると、Bステージ化の際プリプレグの溶融粘度が
高くなりすぎ、成形性が悪くなるためいずれも好ましく
ない。
The phenol novolak resin or alkylphenol novolac resin in the present invention has the following general formula [where R is hydrogen or C, , H21,, +□ (m=
1 to 9), and the average degree of polymerization (degree of polymerization = n+1) is 3 to 1.
0, the amount of free monomer is 0.5% or less. ] It is a resin represented by If the average degree of polymerization exceeds 10, the reaction with the epoxy resin will become non-uniform, and if it is less than 3, the properties of the cured product will deteriorate. Further, when using an alkylphenol novolac resin, if the number of carbon atoms in the alkyl group substituted on the phenol nucleus exceeds 9, the substituent becomes too bulky and the reactivity of the alkylphenol novolak resin decreases, so the above range is preferable. The blending amount of the epoxy resin is 1 (10
The amount of these resins is 1 to 6 parts by weight based on the part of ffi, and these resins have the role of stably providing an appropriate melt viscosity to the prepreg, and if it is less than 1 part by weight, it has no effect, and if it exceeds 6 parts by weight, Both are unfavorable because the melt viscosity of the prepreg becomes too high during B-stage formation, resulting in poor moldability.

本発明における硬化触媒は3−(クロルフェニル)−1
,1−ジメチル尿素で、特に3−(p−クロルフェニル
)−1,1−ジメチル尿素が好ましい。その配合量はエ
ポキシ樹脂プリシレグが適当な成形性を持つ配合量で、
エポキシ樹脂100重量部に対してo、1〜0.5重量
部である。この硬化触媒の添加量が少ないとエポキシ樹
脂の硬化が不十分で、プリント配線板の耐熱性に問題が
あり、添加量が多いと多数枚成形を行った場合の昇温の
ずれの影響が大きくなったり、プリプレグの流動性が低
下し、いずれも好ましくない。
The curing catalyst in the present invention is 3-(chlorphenyl)-1
, 1-dimethylurea, and 3-(p-chlorophenyl)-1,1-dimethylurea is particularly preferred. The blending amount is such that the epoxy resin Prisireg has suitable moldability.
It is 1 to 0.5 parts by weight based on 100 parts by weight of the epoxy resin. If the amount of this curing catalyst added is small, the curing of the epoxy resin will be insufficient and there will be problems with the heat resistance of the printed wiring board, and if the amount added is too large, the effect of temperature rise deviation will be large when molding a large number of sheets. or the fluidity of the prepreg decreases, both of which are undesirable.

基材としてはガラス繊維1合成育機繊維、石英繊維、ア
ルミナ繊維等の布、マット、ペーパーなどがあげられ、
特に限定されない。
Examples of the base material include cloth, mat, paper, etc. such as glass fiber, synthetic fiber, quartz fiber, and alumina fiber.
Not particularly limited.

本発明の積層板用エポキシ材脂プリプレグは、上記各成
分を有機溶剤に溶解したワニスを上記基材に含浸させ、
乾燥させてBステージ化して製造される。このようなプ
リプレグにより積層板を製造する方法は従来のプリプレ
グと同様である。
The epoxy resin prepreg for laminates of the present invention is obtained by impregnating the base material with a varnish in which the above components are dissolved in an organic solvent.
It is manufactured by drying and turning it into a B stage. The method for manufacturing a laminate using such prepreg is the same as that for conventional prepreg.

〔作 用〕[For production]

本発明による積層板用エポキシ樹脂プリプレグにおいて
は、硬化剤としてジシアンジアミド、およびフェノール
ノボラック樹脂またはアルキルフェノールノボラック樹
脂、ならびに硬化触媒として3−(クロルフェニル)−
i、i−ジメチル尿素を適当量配合することにより、保
存安定性が良く、プリプレグのBステージ化が容易で、
多段、多数枚プレス成形時において適当な硬化性、溶融
粘度を持ち、成形性が向上する。
In the epoxy resin prepreg for laminates according to the present invention, dicyandiamide and a phenol novolac resin or an alkylphenol novolak resin are used as a curing agent, and 3-(chlorphenyl)- as a curing catalyst.
By blending an appropriate amount of i,i-dimethylurea, it has good storage stability, and it is easy to B-stage the prepreg.
It has suitable hardenability and melt viscosity and improves moldability during multi-stage, multi-sheet press molding.

〔実施例〕〔Example〕

以下本発明を実施例によって具体的に説明する。 The present invention will be explained in detail below using examples.

実施例1 ブロム化ビスフェノールA系エポキシ樹脂(油化シェル
社製、商品名、エピコート5046B−80、エポキシ
当量480.80%MEK溶液)112.5重量部、ブ
レゾールノボラック系エポキシ樹脂(ダウケミカル社製
、商品名、ECN−1273、エポキシ当量217) 
1o、0重量部、ジシアンジアミド2.0重量部、アル
キルフェノールノボラック樹脂(大日本インキ工業社製
、商品名、プライオーフェンVH−4170、分子量7
20、OH当量118) 3.0重量部、および3−(
p−クロルフェニル)−1,1−ジメチル尿素0.25
重量部をメチルセロソルブ48.0重量部に溶解してワ
ニスを得た。
Example 1 112.5 parts by weight of brominated bisphenol A-based epoxy resin (manufactured by Yuka Shell Co., Ltd., trade name, Epicoat 5046B-80, MEK solution with epoxy equivalent of 480.80%), Bresol novolac-based epoxy resin (Dow Chemical Company) (product name, ECN-1273, epoxy equivalent weight 217)
1 o, 0 parts by weight, dicyandiamide 2.0 parts by weight, alkylphenol novolak resin (manufactured by Dainippon Ink Industries, trade name, Pryophen VH-4170, molecular weight 7)
20, OH equivalent 118) 3.0 parts by weight, and 3-(
p-chlorophenyl)-1,1-dimethylurea 0.25
Parts by weight were dissolved in 48.0 parts by weight of methyl cellosolve to obtain a varnish.

このワニスを厚み0.18wm平織ガラス布(旭シェー
ベル社製、商品名、 762g−1050−AS460
処理)に含浸させた後、145℃5分間乾燥してプリプ
レグ(2)を得た。このプリプレグ(2)4枚の両面に
70μの銅1(3)(日鉱グールド・フォイル社製、商
品名、JTC−102)を重ね、 170℃90分間プ
レス成形して面面鋼張板を得、残銅約50%のモデルパ
ターンで回路加工を行い内層板(1)を得た。この内層
板(1)の両面にそれぞれ2枚のプリプレグ(2)およ
び18μ銅箔(3)を第1図に示すように配置して構成
品(4)とした。製品サイズを450mm X 450
mmとした上記構成品(4)を4組プレス熱盤(7)間
に仕込む膜内4枚押し、ならびに構成品(4)を8gプ
レス熱盤(7)間に仕込む役向8枚押しを行った。構成
品(4)は1II11厚鏡面板(5)間に仕込み、クッ
ション材(6)を第2図に示すように配置した。プレス
圧力は4kgf/a#の低圧保持時間を15分間とし、
その後40kgf/a#で90分間加圧して最高温度を
170℃とし、冷却は加圧状態のまま30分間行った。
This varnish was applied to a 0.18w thick plain-woven glass cloth (manufactured by Asahi Shavel Co., Ltd., trade name, 762g-1050-AS460).
Prepreg (2) was obtained by drying at 145° C. for 5 minutes. Copper 1 (3) of 70 μm (manufactured by Nikko Gould Foil Co., Ltd., trade name, JTC-102) was layered on both sides of the four sheets of prepreg (2), and press-formed at 170°C for 90 minutes to obtain a steel-clad plate. , circuit processing was performed using a model pattern with approximately 50% remaining copper to obtain an inner layer board (1). Two sheets of prepreg (2) and 18μ copper foil (3) were arranged on both sides of this inner layer board (1) as shown in FIG. 1 to obtain a component (4). Product size: 450mm x 450
The above-mentioned component (4) with a thickness of mm is placed between 4 sets of press hot plates (7), and 8 sheets of the component (4) are placed between 8 g of press hot plates (7). went. The component (4) was placed between the 1II11 thick mirror plates (5), and the cushioning material (6) was arranged as shown in FIG. The press pressure was 4 kgf/a# with a low pressure holding time of 15 minutes.
Thereafter, it was pressurized at 40 kgf/a# for 90 minutes to reach a maximum temperature of 170° C., and cooling was performed for 30 minutes while maintaining the pressurized state.

得られたプリプレグ(2)の特性ならびに多層板の特性
を表1に示す。成形性はプリント配線板の外側の銅箔(
3)をエツチング除去して、ボイド、かすれの有無を目
視判定した。
Table 1 shows the properties of the obtained prepreg (2) and the properties of the multilayer board. Formability is determined by the copper foil on the outside of the printed wiring board (
3) was removed by etching, and the presence or absence of voids and scratches was visually determined.

比較例1 アルキルフェノールノボラック樹脂を除き、3−(p−
クロルフェニル)−1,1−ジメチル尿素の代りにベン
ジルジメチルアミン0.25重量部を添加したほかは、
実施例1と同樹脂配合でワニスを作製し。
Comparative Example 1 Except for the alkylphenol novolak resin, 3-(p-
Except that 0.25 parts by weight of benzyldimethylamine was added instead of chlorphenyl-1,1-dimethylurea.
A varnish was prepared using the same resin formulation as in Example 1.

実施例1と同条件でプリプレグ(2)およびプリント配
線板を作製した。結果を表1に示す。
A prepreg (2) and a printed wiring board were produced under the same conditions as in Example 1. The results are shown in Table 1.

比較例2 アルキルフェノールノボラック樹脂を除き、3−(p−
クロルフェニル)−1,1−ジメチル尿素の代りに2−
エチル−4−メチルイミダゾール0.24重量部を添加
したほかは、実施例1と同樹脂配合でワニスを作製し、
実施例1と同条件でプリプレグ(2)およびプリント配
線板を作製した。結果を表1に示す。
Comparative Example 2 Except for the alkylphenol novolac resin, 3-(p-
2-instead of chlorphenyl)-1,1-dimethylurea
A varnish was prepared using the same resin formulation as in Example 1, except that 0.24 parts by weight of ethyl-4-methylimidazole was added.
A prepreg (2) and a printed wiring board were produced under the same conditions as in Example 1. The results are shown in Table 1.

表1 1 0−・・良好  Δ・・・やや不良  X・・・不
良■10aw角5枚 170℃ 140kgf/a# 
 10分間■170℃熱盤 ■260℃ハンダフロート 表1から実施例1のプリプレグは、成形時の硬化性およ
び溶融粘度が適当であるため1段内8枚押し成形性が良
好であり、耐熱性に異常がないことがわかる。これに対
して比較例1のプリプレグは、同一乾燥条件では実施例
1に比べてゲル化時間が多少遅く、成形時の溶融粘度が
低いため、流れすぎによる端部かずれが発生し、接着強
度不足による耐熱性劣化が見られる。また比較例2のプ
リプレグは、硬化速度が速く、役向8枚押しの場合、熱
盤側製品は中央部製品よりも硬化が進んだ時点で高圧が
かけられるため、回路間にボイドが発生した。
Table 1 1 0-...Good Δ...Slightly poor X...Poor■ 10aw square 5 pieces 170℃ 140kgf/a#
10 minutes ■ 170℃ heating plate ■ 260℃ solder float From Table 1, the prepreg of Example 1 has appropriate hardenability and melt viscosity during molding, so it has good moldability by pressing 8 sheets in one stage, and has good heat resistance. It can be seen that there is no abnormality. On the other hand, the prepreg of Comparative Example 1 had a somewhat slower gelation time than Example 1 under the same drying conditions and had a lower melt viscosity during molding, which caused the edges to shift due to excessive flow, resulting in poor adhesive strength. Deterioration of heat resistance is observed due to shortage. In addition, the prepreg of Comparative Example 2 had a fast curing speed, and in the case of 8-sheet pressing, higher pressure was applied to the product on the hot platen side when the curing progressed more than the product on the center side, so voids were generated between the circuits. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、硬化剤としてジ
シアンジアミドおよびフェノールノボラック樹脂または
アルキルフェノールノボラック樹脂を配合し、硬化触媒
として3−(クロルフェニル)−1,1−ジメチル尿素
を配合したので、成形時の硬化性および溶融粘度が適当
な値となり、このため多段、多数枚成形が可能なプリプ
レグを得ることができる。
As explained above, according to the present invention, dicyandiamide and a phenol novolac resin or an alkylphenol novolak resin are blended as a curing agent, and 3-(chlorphenyl)-1,1-dimethylurea is blended as a curing catalyst. The curing properties and melt viscosity at the time of preparation become appropriate values, and therefore a prepreg that can be molded in multiple stages and in large numbers can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はプリント配線板の製造工程を示す
断面図である。 各図中、同一符号は同一部分を示し、(1)は内層板1
. (2)はプリプレグ、(3)は銅箔、(4)は構成
品、(5)は鏡面板、(6)はクッション材、(7)は
プレス熱盤である。
FIGS. 1 and 2 are cross-sectional views showing the manufacturing process of a printed wiring board. In each figure, the same reference numerals indicate the same parts, and (1) indicates the inner layer plate 1.
.. (2) is a prepreg, (3) is a copper foil, (4) is a component, (5) is a mirror plate, (6) is a cushioning material, and (7) is a press hot plate.

Claims (1)

【特許請求の範囲】[Claims] (1)エポキシ樹脂100重量部に対して、ジシアンジ
アミド1〜3重量部、フェノールノボラック樹脂または
アルキルフェノールノボラック樹脂1〜6重量部、およ
び硬化触媒として3−(クロルフェニル)−1,1−ジ
メチル尿素0.1〜0.5重量部を有機溶剤に溶解した
ワニスを基材に含浸させ、乾燥してなることを特徴とす
る積層板用エポキシ樹脂プリプレグ。
(1) For 100 parts by weight of epoxy resin, 1 to 3 parts by weight of dicyandiamide, 1 to 6 parts by weight of phenol novolak resin or alkylphenol novolak resin, and 0 parts of 3-(chlorophenyl)-1,1-dimethylurea as a curing catalyst. An epoxy resin prepreg for laminates, characterized in that it is obtained by impregnating a base material with a varnish in which 0.1 to 0.5 parts by weight is dissolved in an organic solvent and drying it.
JP4820887A 1987-03-03 1987-03-03 Epoxy resin prepreg for laminate Pending JPS63215734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4820887A JPS63215734A (en) 1987-03-03 1987-03-03 Epoxy resin prepreg for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4820887A JPS63215734A (en) 1987-03-03 1987-03-03 Epoxy resin prepreg for laminate

Publications (1)

Publication Number Publication Date
JPS63215734A true JPS63215734A (en) 1988-09-08

Family

ID=12796977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4820887A Pending JPS63215734A (en) 1987-03-03 1987-03-03 Epoxy resin prepreg for laminate

Country Status (1)

Country Link
JP (1) JPS63215734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231959B1 (en) * 1995-02-27 2001-05-15 Matsushita Electric Works, Ltd. Prepreg of epoxy resin, hardener, and organodialkyurea promotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231959B1 (en) * 1995-02-27 2001-05-15 Matsushita Electric Works, Ltd. Prepreg of epoxy resin, hardener, and organodialkyurea promotor

Similar Documents

Publication Publication Date Title
JP6065845B2 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate and printed wiring board using the same
JPH0468021A (en) Epoxy resin composition, cured epoxy resin, and copper-clad laminate
EP1108532B1 (en) Resin-coated metal foil
JPS63215734A (en) Epoxy resin prepreg for laminate
JP6203303B2 (en) Thermosetting resin composition, its production method and use
JP2842152B2 (en) Thermosetting resin composition, method for producing prepreg, and method for producing laminate
JP3724047B2 (en) Laminated board for printed wiring boards
JP4016782B2 (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, multilayer printed wiring board
JPS63215735A (en) Epoxy resin prepreg for laminate
JP2848241B2 (en) Epoxy resin composition for laminate and method for producing the same
JPS6338053B2 (en)
JPS63215733A (en) Epoxy resin prepreg for laminate
JP2000169605A (en) Prepreg sheet for laminated board and its production
JP3326862B2 (en) Manufacturing method of prepreg
JP3265871B2 (en) Epoxy resin composition for laminated board
JPH09316178A (en) Prepreg and copper-clad laminate prepared by using the same
JP2604846B2 (en) Manufacturing method of laminated board
JP2001181388A (en) Method of manufacturing phenol modified cyanate oligomer composition, phenol modified cyanate oligomer composition to be obtained by its method, and prepreg and metal clad laminated sheet using its composition
JPH075768B2 (en) Epoxy resin laminate
JP3409245B2 (en) Epoxy resin composition for copper clad laminate, copper clad laminate, multilayer laminate
JPH0818417B2 (en) Method for manufacturing epoxy copper clad laminate
JP2015129206A (en) Production method of thermosetting resin composition varnish, and prepreg, laminate, and wiring board using the varnish
JP2002053646A (en) Epoxy resin composition, prepreg and insulation board
JPH04356521A (en) Epoxy resin composition
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet