JPS63215050A - Manufacture of dielectric isolation substrate - Google Patents

Manufacture of dielectric isolation substrate

Info

Publication number
JPS63215050A
JPS63215050A JP4758987A JP4758987A JPS63215050A JP S63215050 A JPS63215050 A JP S63215050A JP 4758987 A JP4758987 A JP 4758987A JP 4758987 A JP4758987 A JP 4758987A JP S63215050 A JPS63215050 A JP S63215050A
Authority
JP
Japan
Prior art keywords
polycrystal
dielectric
substrate
dielectric film
dielectric isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4758987A
Other languages
Japanese (ja)
Inventor
Itaru Suzuki
至 鈴木
Masao Tsuruoka
鶴岡 征男
Toshio Uruno
宇留野 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP4758987A priority Critical patent/JPS63215050A/en
Publication of JPS63215050A publication Critical patent/JPS63215050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To improve the yield of a dielectric isolation substrate, by forming a polycrystal semiconductor layer containing no oxygen on the dielectric film of a single crystal semiconductor substrate which has trenches and is covered with a dielectric film, and then forming a polycrystal semiconductor layer containing oxygen. CONSTITUTION:After V-shaped isolation trenches are formed on one main surface of an Si single crystal plate 1, an SiO2 film 3 as a dielectric film is formed on the whole surface. The crystal plate 1 is mounted on a vapor phase reaction equipment, and a mixed gas is supplied to grow a first Si polycrystal 41. The isolation trenches 2 are filled with the polycrystal 41. A polycrystal Si containing oxygen is grown in desired thickness. A second Si polycrystal 42 is formed. In the Si polycrystal 42, sintering is obstructed by the effect of adding carbon dioxide gas. In the crystal layer 41, sintering is progressed and a lump polycrystal layer is formed. A dielectric isolation substrate is obtained with excellent yield, thereby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体分離基板の製造方法に係り、特に湾曲
の小さい誘電体分離基板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a dielectric isolation substrate, and particularly to a method of manufacturing a dielectric isolation substrate with small curvature.

〔従来の技術〕[Conventional technology]

誘電体分離基板は、ICの回路構成技術の1つで、接合
分離法では得られない高耐圧、高周波特性を有する。
A dielectric isolation substrate is one of the IC circuit construction techniques, and has high breakdown voltage and high frequency characteristics that cannot be obtained with the junction isolation method.

第2図により従来の誘電体分離基板の製造法を説明する
。第2図(a)において、1はSi単結晶板で、この一
主面に所要の数および形状の分離溝2をエツチングなど
により形成してあり、この分離溝2を形成した面にSi
O2膜などの誘電体膜13を被着形成する。次に(b)
の如く、誘電体膜13上に気相成長反応等によりSi多
結晶層4を成長させる。その後Si単結晶板1の表面を
研磨除去して(0)の如き誘電体分離基板5を製造する
A conventional method for manufacturing a dielectric isolation substrate will be explained with reference to FIG. In FIG. 2(a), reference numeral 1 is a Si single crystal plate, on one main surface of which separation grooves 2 of a required number and shape are formed by etching, etc., and on the surface on which these separation grooves 2 are formed,
A dielectric film 13 such as an O2 film is deposited. Then (b)
As shown in FIG. 1, a Si polycrystalline layer 4 is grown on the dielectric film 13 by a vapor phase growth reaction or the like. Thereafter, the surface of the Si single crystal plate 1 is removed by polishing to produce a dielectric isolation substrate 5 as shown in (0).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

Si単結晶板1上に誘電体膜13を介してSi多結晶層
4を形成した、所謂多層構体は、それぞれの層の熱膨張
係数が等しくないので、多結晶層4を形成した高温から
室温に冷却する際、それぞれの熱収縮量の差によって湾
曲が生ずる。Si単結晶とSi多結晶とでは熱膨張係数
は後者の方が大なため、Si多結晶側を凹とした湾曲を
形成する。この湾曲は、後に施されるIC製造工程に少
なからず妨害を及ぼすので、解消せねばならない。
The so-called multilayer structure in which a Si polycrystalline layer 4 is formed on a Si single-crystalline plate 1 via a dielectric film 13 has unequal thermal expansion coefficients for each layer. During cooling, curvature occurs due to the difference in the amount of thermal contraction. Since the thermal expansion coefficient of the Si single crystal and the Si polycrystal is larger, a curve is formed with the Si polycrystal side being concave. This curvature has to be eliminated, since it interferes with the subsequent IC manufacturing process.

その改良として、特公昭45−32731号公報に記載
のように、多結晶成長の原料ガスであるH2とSIH,
X、(Xは通常ハロゲン元素、n及びmはO〜4の数値
)との混合物に不純物を添加し、多結晶Siの微粒子を
変性結晶構造とする技術がある。しかし、製造条件や反
応装置の変動等により、その効果は必ずしも完全でなく
、歩留りに影響を与えるほどの湾曲高さとなることもあ
った。本発明は、以上の欠点を克服するためになされた
もので、本発明の目的とするところは、多結晶成長工程
における誘電体分離基板5の湾曲をより一層低減、且つ
安定化することが可能で、結果的に基板湾曲がなく、製
品歩留りを大幅に向上できる誘電体分離基板の製造法を
提供することにある。
As an improvement, as described in Japanese Patent Publication No. 45-32731, H2 and SIH, which are raw material gases for polycrystal growth,
There is a technique in which impurities are added to a mixture of X, (X is usually a halogen element, and n and m are numerical values of O to 4) to give polycrystalline Si fine particles a modified crystal structure. However, due to variations in manufacturing conditions and reactor equipment, the effect is not always perfect, and the height of the curvature may sometimes be such that it affects the yield. The present invention has been made to overcome the above drawbacks, and an object of the present invention is to further reduce and stabilize the curvature of the dielectric isolation substrate 5 during the polycrystalline growth process. Therefore, it is an object of the present invention to provide a method for manufacturing a dielectrically isolated substrate that results in no substrate curvature and can greatly improve product yield.

〔問題点を解決するための手段〕[Means for solving problems]

発明者は、分離溝2の湾曲に対する影響を知るため、S
i単結晶板1の一生面上における分離溝2の有無につい
て湾曲高さを実験比較したところ。
In order to know the influence on the curvature of the separation groove 2, the inventor
i Experimental comparison of curvature height with and without separation grooves 2 on the whole surface of single crystal plate 1.

分離溝2のない場合は分離溝2を有する場合の約60%
の湾曲高さとなることをつきとめ、分離溝2の存在が誘
電体分離基板5の湾曲に影響しているとの認識を得た。
Approximately 60% of the case without separation groove 2 compared to the case with separation groove 2
It was found that the height of the curvature was , and it was recognized that the presence of the isolation groove 2 influenced the curvature of the dielectric isolation substrate 5.

第3図は分離溝2内のSi多結晶の組織構造を示す断面
模型図であるが、Si多結晶層4内の多条の線は断面で
あることを示すハツチングではなく繊維状多結晶の繊維
方向を示している。分離溝2内のSi多結晶4aは、分
離溝壁面とほぼ垂直に成長していた。これらの事から、
分離溝2内のSi多結晶4aは分離溝壁面を索引する力
が強いことが考えられた。そこで、分離溝2内のSi多
結晶4aが繊維状にならないように不純物を添加しない
ように形成し、第4図のようにSi多結晶4を形成した
。図において、14は、多結晶粒が塊状に成長した大粒
形Si多結晶層で、分離溝2内が大粒形Si多結晶層1
4で満される厚さに形成したものである。かかる構造に
よれば、第3図示のものの約75%の湾曲高となった。
FIG. 3 is a cross-sectional model diagram showing the structure of the Si polycrystal in the separation groove 2, but the multiple lines in the Si polycrystalline layer 4 are not hatched to indicate a cross section, but are fibrous polycrystalline. Indicates fiber direction. The Si polycrystal 4a in the separation groove 2 had grown almost perpendicular to the wall surface of the separation groove. From these things,
It was considered that the Si polycrystal 4a in the separation groove 2 had a strong indexing force against the wall surface of the separation groove. Therefore, in order to prevent the Si polycrystal 4a in the isolation groove 2 from becoming fibrous, impurities were not added to form the Si polycrystal 4 as shown in FIG. In the figure, reference numeral 14 denotes a large-grain Si polycrystalline layer in which polycrystalline grains have grown in a lump, and the inside of the separation groove 2 is a large-grain Si polycrystalline layer 1.
4. According to this structure, the bending height was approximately 75% of that shown in the third figure.

これは分離溝2内のSi多結晶が塊状であるため、繊維
状に比べ、分離・溝壁を索引する力の伝達が弱いものと
考えられる。本発明は、以上述べた知見にもとづいてな
されたもので、Si多結晶を塊状にするためには、不純
物を添加しない気相成長を行い、次いでSi多結晶が繊
維状にするようにしたことを特徴としている。
This is considered to be because the Si polycrystal in the separation groove 2 is in the form of a lump, so that the force that indexes the separation/groove wall is transmitted weaker than in the case of a fibrous form. The present invention has been made based on the above-mentioned knowledge, and in order to form Si polycrystals into lumps, vapor phase growth is performed without adding impurities, and then the Si polycrystals are made into fibers. It is characterized by

〔作用〕[Effect]

分離溝2内のSi多結晶を塊状にすると、熱収縮時の力
が分離溝壁に作用しにくくなり誘電体分離基板の湾曲高
さが小となる。
When the Si polycrystal in the separation groove 2 is made into a lump, the force during thermal contraction is less likely to act on the separation groove wall, and the curved height of the dielectric separation substrate is reduced.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図に従って詳細に説明する
。まず第1図(a)に示すように、Si単結晶板1を出
発材料として選択エツチング等の方法で一生面上に深さ
50μmのV形の分離溝2を形成した後、誘電体膜とし
て1.5μm厚の5iOz膜3を熱酸化法により全面に
形成する。
An embodiment of the present invention will be described in detail below with reference to FIG. First, as shown in FIG. 1(a), a V-shaped separation groove 2 with a depth of 50 μm is formed on a single surface using a method such as selective etching using a Si single crystal plate 1 as a starting material, and then a dielectric film is formed. A 5iOz film 3 having a thickness of 1.5 μm is formed over the entire surface by thermal oxidation.

次いでこのSi単結晶板1を気相反応装置(図示せず)
に一主面側を上方に向けて装着し、温度1000”0〜
1200℃の下で水素と三塩化シラン蒸気の混合ガスを
供給し、約10〜15分間の処理により(b)に示すよ
うに第1のSi多結晶41を成長させる。この時分離溝
2上のSi多結晶41aは、その両側より、表面高は低
いが、その高さは分離溝2の岸2aの高さより高いこと
が必要で、斯くすることにより、分離溝2内は第1のS
i多結晶41によって満たされる。次に引続いて、上記
反応ガス中に炭酸ガスを三塩化シラン蒸気の流量の5%
の流量で添加し、酸素を含む多結晶Siを所要の厚さに
成長させると(c)に示すように第2の多結晶5i42
が形成される。この間の気相成長により、多結晶Si粒
は焼結が起き、隣接する粒同志が次々に統合し合い塊状
の多結晶Siになるが第2の多結晶5i42は炭酸ガス
添加の効果により焼結が阻害され、一方第一のSi多結
晶層41は焼結が起き、塊状の多結晶層となる。所要の
気相反応を終了後、三塩化シラン、炭酸ガスの流入を止
め1反応装置の温度を下げ工程を終了し、多結晶付きS
i板15を得る。この冷却過程で多結晶付きSi板15
の各々の部分は、各々の熱膨張係数に従って収縮するが
、分離溝2内の塊状の多結晶Siが分離溝2の壁を索引
する力が弱いので分離溝2の存在によるウェハ湾曲が軽
減され、多結晶付きSi板15の湾曲は小さい。
Next, this Si single crystal plate 1 was placed in a gas phase reactor (not shown).
Attach the machine with one main surface facing upward, and keep the temperature at 1000" 0~
A mixed gas of hydrogen and trichlorosilane vapor is supplied at 1200° C., and the process is performed for about 10 to 15 minutes to grow the first Si polycrystal 41 as shown in FIG. At this time, the surface height of the Si polycrystal 41a on the separation groove 2 is lower than that on both sides, but the height needs to be higher than the height of the bank 2a of the separation groove 2. Inside is the first S
It is filled with i-polycrystal 41. Subsequently, carbon dioxide gas is introduced into the reaction gas at a rate of 5% of the flow rate of the trichlorosilane vapor.
When polycrystalline Si containing oxygen is grown to the required thickness, the second polycrystalline 5i42 is grown as shown in (c).
is formed. Due to the vapor phase growth during this period, sintering occurs in the polycrystalline Si grains, and adjacent grains merge one after another to form a block of polycrystalline Si, but the second polycrystalline 5i42 is sintered due to the effect of carbon dioxide addition. On the other hand, the first Si polycrystalline layer 41 undergoes sintering and becomes a lumpy polycrystalline layer. After completing the required gas phase reaction, the inflow of trichlorosilane and carbon dioxide gas is stopped, the temperature of the reactor is lowered, and the process is completed.
An i-board 15 is obtained. During this cooling process, the polycrystalline Si plate 15
Each part contracts according to its respective coefficient of thermal expansion, but since the force of the bulk polycrystalline Si in the separation groove 2 to index the walls of the separation groove 2 is weak, wafer curvature due to the presence of the separation groove 2 is reduced. , the curvature of the polycrystalline Si plate 15 is small.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、分離溝による湾曲を排除するた
め、誘電体分離基板を歩留り良く製造できる。
As described above, according to the present invention, since the curvature caused by the isolation groove is eliminated, a dielectric isolation substrate can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の一実施例を示す誘電体
分離基板の断面図、第2図(a)〜(c)は技術分野を
説明する誘電体分離基板の断面図、第3図は従来法によ
って得られた誘電体分離基板を示す断面図、第4図は本
発明の原理を示す誘電体分離基板の断面図である。 1・・・半導体単結晶板、2・・・溝、3・・・誘電体
膜、筋1図 (α) (C) 皐2図 (bン (0)。 第3図 不生図 ?
FIGS. 1(a) to (c) are cross-sectional views of a dielectric separation substrate showing one embodiment of the present invention, and FIGS. 2(a) to (c) are cross-sectional views of a dielectric separation substrate illustrating the technical field. 3 is a sectional view showing a dielectric isolation substrate obtained by a conventional method, and FIG. 4 is a sectional view of a dielectric isolation substrate illustrating the principle of the present invention. 1...Semiconductor single crystal plate, 2...Groove, 3...Dielectric film, line Figure 1 (α) (C) Figure 2 (bn (0)). Figure 3: Insei diagram?

Claims (1)

【特許請求の範囲】[Claims] 1、一主面に溝を有し、少なくとも該主面表面が誘電体
膜で覆われている単結晶半導体板の誘電体膜上に、該溝
が酸素を含有しない多結晶半導体で満たされるように酸
素を含有しない多結晶半導体層を形成し、然る後、酸素
を含有する多結晶半導体層を形成することを特徴とする
誘電体分離基板の製造法。
1. On a dielectric film of a single crystal semiconductor board having a groove on one principal surface and at least the surface of the principal surface being covered with a dielectric film, the groove is filled with a polycrystalline semiconductor that does not contain oxygen. 1. A method for manufacturing a dielectric isolation substrate, comprising: first forming a polycrystalline semiconductor layer that does not contain oxygen, and then forming a polycrystalline semiconductor layer containing oxygen.
JP4758987A 1987-03-04 1987-03-04 Manufacture of dielectric isolation substrate Pending JPS63215050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4758987A JPS63215050A (en) 1987-03-04 1987-03-04 Manufacture of dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4758987A JPS63215050A (en) 1987-03-04 1987-03-04 Manufacture of dielectric isolation substrate

Publications (1)

Publication Number Publication Date
JPS63215050A true JPS63215050A (en) 1988-09-07

Family

ID=12779438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4758987A Pending JPS63215050A (en) 1987-03-04 1987-03-04 Manufacture of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPS63215050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576241A (en) * 1994-05-31 1996-11-19 Fuji Electric Co., Ltd. Method of separating semiconductor wafer with dielectrics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576241A (en) * 1994-05-31 1996-11-19 Fuji Electric Co., Ltd. Method of separating semiconductor wafer with dielectrics

Similar Documents

Publication Publication Date Title
US4742020A (en) Multilayering process for stress accommodation in deposited polysilicon
JP5218047B2 (en) Method for producing gallium nitride crystal and gallium nitride wafer
US4079506A (en) Method of preparing a dielectric-isolated substrate for semiconductor integrated circuitries
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
CN105575770A (en) Substrate with silicon carbide film, method for producing substrate with silicon carbide film, and semiconductor device
JPS63215050A (en) Manufacture of dielectric isolation substrate
JPS60138915A (en) Furnace core tube of silicon carbide
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPS60257541A (en) Production of semiconductor device
JPS63219138A (en) Manufacture of dielectric isolation substrate
JPH08236458A (en) Manufacture of semiconductor substrate
JPS5840820A (en) Formation of silicon single crystal film
JPS60193324A (en) Manufacture of semiconductor substrate
JPS62229930A (en) Epitaxial growth method
JP3160361B2 (en) Manufacturing method of SOI substrate
JPS61264720A (en) Manufacture of polycrystalline silicon
JP2554336B2 (en) Method for manufacturing dielectric isolation substrate
JPH02265242A (en) Manufacture of semiconductor device
KR101699794B1 (en) A Method of Manufacturing No Bending GaN Wafer, and A Wafer therefore
CN115821385A (en) Polycrystalline silicon rod for cutting silicon core and preparation method thereof
JPH05152180A (en) Semiconductor device and its manufacture
JP4414249B2 (en) Manufacturing method of artificial quartz
JP2932544B2 (en) Manufacturing method of dielectric isolation substrate
JPH0653209A (en) Manufacture of semiconductor device
JPS62196850A (en) Manufacture of sos substrate