JPS61264720A - Manufacture of polycrystalline silicon - Google Patents

Manufacture of polycrystalline silicon

Info

Publication number
JPS61264720A
JPS61264720A JP10596385A JP10596385A JPS61264720A JP S61264720 A JPS61264720 A JP S61264720A JP 10596385 A JP10596385 A JP 10596385A JP 10596385 A JP10596385 A JP 10596385A JP S61264720 A JPS61264720 A JP S61264720A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
layer
silicon layer
gas
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10596385A
Other languages
Japanese (ja)
Inventor
Masahide Kayao
柏尾 真秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10596385A priority Critical patent/JPS61264720A/en
Publication of JPS61264720A publication Critical patent/JPS61264720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To obtain a uniform polycrystalline Si layer having the desired thickness and high reliability in a short time by forming the first polycrystalline Si layer at low temperature with SiH4 gas, and then forming the second polycrystalline Si layer on the first layer at high temperature with silane chloride gas. CONSTITUTION:An insulating film 12 is formed by a known oxidizing method on the main surface of a silicon substrate 11. SiH4 gas is supplied as stock gas on the film 12, thermally decomposed, for example at low temperature of 1,000 deg.C or lower, and the first polycrystalline silicon layer 13 (the seed crystal of the polycrystalline silicon) is grown. Then, the very thick second polycrystalline silicon layer 14 is subsequently grown at high temperature such as 1,100 deg.C or higher with silane chloride gas such as SiH2Cl2. At this time, a malfunction such as a region that the polycrystalline silicon is not grown at all or an air gap in the polycrystalline silicon layer does not occur due to the thin and uniform seed crystal effect of the layer 13 obtained by the growth of the initial SiH4 gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、常圧下で気相化学反応により多結晶シリコ
ンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing polycrystalline silicon by a gas phase chemical reaction under normal pressure.

(従来の技術) 気相化学反応による従来の多結晶シリコンの生成技術と
しては、常圧法と減圧法の2つに大きく分けられる。例
えばMOSデバイスにおけるゲート膜を多結晶シリコン
で製造する時などは減圧法が用いられるのが一般的であ
る。これは、減圧下でのガスの平均自由行程増大のため
、膜の均一性が向上することと、大量処理が可能となる
理由からである。しかしながら、減圧法は、常圧法に比
べて成長速度が約1桁小さいという欠点があり、非常に
厚い多結晶シリコン層(例えば誘電体分離基板の支持体
としての多結晶シリコン層で、3インチウェハーでは約
300μm)を生成する場合においては不向きである。
(Prior Art) Conventional techniques for producing polycrystalline silicon by gas phase chemical reactions can be broadly divided into two: normal pressure method and reduced pressure method. For example, when manufacturing a gate film in a MOS device using polycrystalline silicon, a reduced pressure method is generally used. This is because the mean free path of the gas increases under reduced pressure, which improves the uniformity of the film and enables mass processing. However, the reduced pressure method has the disadvantage that the growth rate is about an order of magnitude lower than that of the normal pressure method, and it requires a very thick polycrystalline silicon layer (e.g., a polycrystalline silicon layer as a support for a dielectric isolation substrate), which is difficult to achieve on a 3-inch wafer. It is not suitable for producing a diameter of about 300 μm).

したがって、厚い多結晶シリコン層を生成する工程では
、常圧法を用いている。
Therefore, the normal pressure method is used in the process of producing a thick polycrystalline silicon layer.

常圧法では、5ic14.5iHC1,、5iFt2C
j2゜などの塩化シランガスの水素還元法を用いるのが
一般的である。これは、非常に厚い多結晶シリコン層を
生成する工程においては、成長速度を速くする必要があ
るからである。
In the normal pressure method, 5ic14.5iHC1, 5iFt2C
It is common to use a hydrogen reduction method of chlorinated silane gas such as J2°. This is because the process of producing a very thick polycrystalline silicon layer requires a high growth rate.

(発明が解決しようとする問題点) しかしながら、第2図に示すようにシリコン基板1の主
表面にシリコン酸化膜などの絶縁膜2を形成し、しかる
後、その上に上記の常圧法で厚い多結晶シリコンIrl
3を形成すると、絶縁膜2上の全面に、核となる多結晶
シリコンの種結晶が均一に形成されないため、厚い多結
晶シリコン暦3が均一に成長せず、部分的に下地の絶縁
膜2が露出する箇所ができてしまう。このため、多結晶
シリコンが全く成長しない領域4や、多結晶シリコン中
に空F115が生じる結果となり、均一膜質の多結晶シ
リコン層3を得ることができなかった。
(Problems to be Solved by the Invention) However, as shown in FIG. 2, an insulating film 2 such as a silicon oxide film is formed on the main surface of a silicon substrate 1, and then a thick polycrystalline silicon irl
3, the polycrystalline silicon seed crystals serving as the nucleus are not uniformly formed over the entire surface of the insulating film 2, so the thick polycrystalline silicon grain 3 does not grow uniformly, and some parts of the underlying insulating film 2 are formed. There will be areas where the parts are exposed. As a result, a region 4 where no polycrystalline silicon grows or an empty F115 is generated in the polycrystalline silicon, making it impossible to obtain a polycrystalline silicon layer 3 of uniform film quality.

一方、常圧法であっても、低温でSI町ガスの熱分解を
用いる方法では上記のような現象は起こらないが、この
場合は、成長速度が遅いため、厚い多結晶シリコン基板
ン層するのには多大な時間を要してしまうという欠点が
あった。
On the other hand, even if it is a normal pressure method, the above phenomenon does not occur in a method that uses thermal decomposition of SI town gas at low temperature, but in this case, the growth rate is slow, so it is difficult to form a thick polycrystalline silicon substrate layer. had the disadvantage of requiring a large amount of time.

(問題点を解決するための手段) そこで、この発明では、まず、SiH4ガスを用いて低
温で導く第1の多結晶シリコンF!を形成し、次いで、
塩化シランガスを月いて高温で第2の多結晶シリコン層
を前記第1の多結晶シリコン層上に所望の厚さまで形成
する。
(Means for Solving the Problems) Therefore, in the present invention, first, a first polycrystalline silicon F! is introduced at a low temperature using SiH4 gas. form, then
A second polycrystalline silicon layer is formed on the first polycrystalline silicon layer to a desired thickness at high temperature using chlorinated silane gas.

(作 用) SiH4ガスを用いて低温で多結晶シリコン層を形成す
る方法によれば、例え絶縁膜上であっても全面に均一な
多結晶シリコン層が成長し、下地の絶縁膜が露出する箇
所が生じることはない。したがって、その後、塩化シラ
ンガスを用いて高温で厚く第2の多結晶シリコン層を成
長させても、多結晶シリコンが全く成長しない領域や多
結晶シリコン層中の空隙などの不良は発生せず、非常に
均一で信頼性の高い多結晶シリコン層を得ることができ
る。また、塩化シランガスを用いての高温での多結晶シ
リコン成長を実施することにより、短時間で所望の厚さ
の、厚い多結晶シリコン層を得られる。
(Function) According to the method of forming a polycrystalline silicon layer at low temperature using SiH4 gas, a uniform polycrystalline silicon layer grows over the entire surface even on an insulating film, and the underlying insulating film is exposed. There will be no spots. Therefore, even if a thick second polycrystalline silicon layer is subsequently grown at high temperature using chlorinated silane gas, defects such as areas where no polycrystalline silicon grows or voids in the polycrystalline silicon layer do not occur, and it is extremely A uniform and highly reliable polycrystalline silicon layer can be obtained. Further, by performing polycrystalline silicon growth at high temperature using chlorinated silane gas, a thick polycrystalline silicon layer with a desired thickness can be obtained in a short time.

(実施例) 以下この発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図(a)は、シリコン基板11の主表面に、酸化ま
たはCVDなどの公知の方法によって絶縁膜12を形成
した状態を示す。
FIG. 1(a) shows a state in which an insulating film 12 is formed on the main surface of a silicon substrate 11 by a known method such as oxidation or CVD.

しかる後、前記絶縁膜12上に多結晶シリコン層を形成
するが、まず、前記絶縁膜12上にS i H。
After that, a polycrystalline silicon layer is formed on the insulating film 12, but first, SiH is formed on the insulating film 12.

ガスを原料ガスとして供給し、それを例えば1000℃
以下の低温で熱分解させて、第1図(b)に示すように
数μmの第1の多結晶シリコン層13 (多結晶シリコ
ンの種結晶)を成長させる。この時の多結晶シリコン層
13は極めて均一で、下地の絶縁膜12が露出すること
はない。
Gas is supplied as a raw material gas, and it is heated to, for example, 1000°C.
By thermal decomposition at a low temperature below, a first polycrystalline silicon layer 13 (polycrystalline silicon seed crystal) having a thickness of several μm is grown as shown in FIG. 1(b). At this time, the polycrystalline silicon layer 13 is extremely uniform, and the underlying insulating film 12 is not exposed.

このような処理を施した後、連続して、5iH2CJ2
などの塩化シランガスを用いて、例えば1100℃以上
の高温で第1図(c)に示すように非常に厚い(例えば
誘電体分離基板の支持体となるぐらいの厚さ)第2の多
結晶シリコン層14を成長させる。
After performing such treatment, 5iH2CJ2
Using a chlorinated silane gas such as Grow layer 14.

この時、最初のSin、ガスの成長で得られた薄い均一
な第1の多結晶シリコン層13の種結晶効果により、多
結晶シリコンが全く成長しない領域や、多結晶シリコン
層中の空隙といった不良が発生することはない。また、
5LH4ガスのみによる成長に比べて短時間で所望の厚
さの、厚い多結晶シリコン層が得られる(通常、SiH
4ガスの熱分解による反応では、成長速度は1μm /
 m l n弱であるが、Si[Cj  や5iHCj
  の水素還元法では5〜10μm1 / @ i n
の成長速度が容易に得られる)。
At this time, due to the seed crystal effect of the thin and uniform first polycrystalline silicon layer 13 obtained by the initial growth of Sin and gas, there are areas where polycrystalline silicon does not grow at all and defects such as voids in the polycrystalline silicon layer. will never occur. Also,
A thick polycrystalline silicon layer with the desired thickness can be obtained in a shorter time compared to growth using only 5LH4 gas (usually SiH4 gas).
In the reaction by thermal decomposition of 4 gases, the growth rate is 1 μm/
ml n is weak, but Si[Cj and 5iHCj
In the hydrogen reduction method, 5-10μm1/@in
growth rate is easily obtained).

なお、最初の、SiH,ガスの熱分解によって形成され
る第1の多結晶シリコン層13の厚さは、通常1μmJ
J、上の厚さを要する。それは、以降の厚い第2の多結
晶シリコン層14の成長工程に入るまでの期間、乃至は
厚い第2の多結晶シリコン層14の成長のごく初期に、
予め成長した第1の多結晶シリコン層13が高温水素雰
囲気にさらされることや、SrH,CI2やS:HCl
3 の水素還元で発生する塩素(または塩化水素)ガス
によって一部エッチングされるため、これによって下地
の絶縁膜12が部分的に露見するのを防ぐためである。
The thickness of the first polycrystalline silicon layer 13 formed by thermal decomposition of SiH gas is usually 1 μmJ.
Requires thickness above J. This is during the period before starting the subsequent growth process of the thick second polycrystalline silicon layer 14 or at the very beginning of the growth of the thick second polycrystalline silicon layer 14.
The first polycrystalline silicon layer 13 grown in advance may be exposed to a high temperature hydrogen atmosphere, or exposed to SrH, CI2 or S:HCl.
This is to prevent the underlying insulating film 12 from being partially exposed because it is partially etched by the chlorine (or hydrogen chloride) gas generated by hydrogen reduction in step 3.

(発明の効果) 以上説明したように、この発明の方法によれば、−坦、
5in4ガスによって低温で均一な第1の多結晶シリコ
ン層を成長させることにより、従来方法の欠点であった
下地の絶縁膜が露出する箇所をなくすることが可能とな
るので、その後、塩化シランガスを用いて高温で非常に
厚い第2の多結晶シリコン暦を成長させても、多結晶シ
リコンが全く成長しない領域や多結晶シリコン層中の空
隙などの不良は発生せず、非常に均一で信頼性の高い多
結晶シリコン層を得ることができる。
(Effect of the invention) As explained above, according to the method of this invention, -tan,
By growing a uniform first polycrystalline silicon layer at low temperature using 5in4 gas, it is possible to eliminate the exposed portion of the underlying insulating film, which was a drawback of the conventional method. Even when a very thick second polycrystalline silicon layer is grown at high temperatures using a polycrystalline silicon layer, defects such as areas where no polycrystalline silicon grows or voids in the polycrystalline silicon layer do not occur, making it extremely uniform and reliable. It is possible to obtain a polycrystalline silicon layer with a high polycrystalline silicon layer.

第3図に従来の方法とこの発明の方法の各々について、
多結晶シリコンを30μm成長させた時の多結晶シリコ
ン層の表面状態を示す。第3図(a)は、従来の方法に
より、1μmの下地絶縁膜上に、5iCj431 / 
@in、キャリアH2ガy、 401 /win。
FIG. 3 shows the conventional method and the method of this invention, respectively.
The surface state of a polycrystalline silicon layer is shown when polycrystalline silicon is grown to a thickness of 30 μm. FIG. 3(a) shows that 5iCj431/5iCj431/
@in, carrier H2 guy, 401/win.

温度1100℃の条件下で成長させたものであり、多結
晶シリコンが成長せずに下地の絶縁膜が部分的に露見し
、ており、空[21が存在している。第3図(b)はこ
の発明の方法によるものであり、5il(4(水素で4
%に希釈) 11 / win、キャリアH240Z/
win、温度1000℃の条件で1.czmの下地絶縁
膜上に厚さ約2μm多結晶シリコンを成長させた後、連
続的に、5iCj4を用い従来方法と同一の条件で30
μmの厚さまで多結晶シリコンを成長させたものである
。この例では、P11Ii膜上は完全に多結晶シリコン
層で覆われており、第3図(a)に見られるような空隙
は存在しない。
The film was grown at a temperature of 1100° C., and the underlying insulating film was partially exposed without growing polycrystalline silicon, and there was a void [21]. FIG. 3(b) shows the result of the method of this invention, in which 5il (4 (4 with hydrogen)
(diluted to %) 11/win, carrier H240Z/
win, temperature 1000℃ condition 1. After growing polycrystalline silicon to a thickness of about 2 μm on the underlying insulating film of czm, it was continuously grown for 30 minutes using 5iCj4 under the same conditions as the conventional method.
Polycrystalline silicon is grown to a thickness of μm. In this example, the P11Ii film is completely covered with a polycrystalline silicon layer, and there are no voids as seen in FIG. 3(a).

このように、この発明によれば、良好な多結晶シリコン
層が得られる。また、この発明の方法によれば、塩化シ
ランガスを用いての高温での多結晶シリコン成長を実施
することにより、5in4ガスのみによる成長に比べて
短時間で所望の厚さを得ることができる。
Thus, according to the present invention, a good polycrystalline silicon layer can be obtained. Further, according to the method of the present invention, by performing polycrystalline silicon growth at high temperature using chlorinated silane gas, a desired thickness can be obtained in a shorter time compared to growth using only 5in4 gas.

【図面の簡単な説明】[Brief explanation of drawings]

(図 面) 第1図はこの発明の多結晶シリコンの製造方法の一実施
例を工程順に示す断面図、第2図は従来の方法の欠点を
説明するための断面図、第3図は従来の方法とこの発明
の方法により製造した場合の多結晶シリコン層の表面状
態を示す平面図である。 13・・・第1の多結晶シリコン層、14・・・第2の
多結晶シリコン層。 (b) 本を帆−穴方邑イ列の原生面図 第1図
(Drawings) Fig. 1 is a sectional view showing an embodiment of the polycrystalline silicon manufacturing method of the present invention in the order of steps, Fig. 2 is a sectional view for explaining the drawbacks of the conventional method, and Fig. 3 is a sectional view of the conventional method. FIG. 3 is a plan view showing the surface state of a polycrystalline silicon layer produced by the method of FIG. 1 and the method of the present invention. 13... First polycrystalline silicon layer, 14... Second polycrystalline silicon layer. (b) Hon wo Sail - Primeval surface map of the Anakata Village I series Figure 1

Claims (1)

【特許請求の範囲】 常圧下で気相化学反応により多結晶シリコンを成長させ
る方法において、 (a)SiH_4ガスを用いて低温で第1の多結晶シリ
コン層を薄く形成する工程と、 (b)次いで、塩化シランガスを用いて高温で第2の多
結晶シリコン層を前記第1の多結晶シリコン層上に所望
の厚さまで形成する工程とを具備することを特徴とする
多結晶シリコンの製造方法。
[Claims] A method for growing polycrystalline silicon by a gas phase chemical reaction under normal pressure, comprising: (a) forming a thin first polycrystalline silicon layer at a low temperature using SiH_4 gas; (b) A method for manufacturing polycrystalline silicon, comprising the step of: forming a second polycrystalline silicon layer on the first polycrystalline silicon layer to a desired thickness at high temperature using chlorinated silane gas.
JP10596385A 1985-05-20 1985-05-20 Manufacture of polycrystalline silicon Pending JPS61264720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10596385A JPS61264720A (en) 1985-05-20 1985-05-20 Manufacture of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10596385A JPS61264720A (en) 1985-05-20 1985-05-20 Manufacture of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS61264720A true JPS61264720A (en) 1986-11-22

Family

ID=14421446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10596385A Pending JPS61264720A (en) 1985-05-20 1985-05-20 Manufacture of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS61264720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177915A (en) * 1986-01-30 1987-08-04 Nec Corp Manufacture of semiconductor device
US5786027A (en) * 1996-02-14 1998-07-28 Micron Technology, Inc. Method for depositing polysilicon with discontinuous grain boundaries
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177915A (en) * 1986-01-30 1987-08-04 Nec Corp Manufacture of semiconductor device
US6514803B1 (en) * 1993-12-22 2003-02-04 Tdk Corporation Process for making an amorphous silicon thin film semiconductor device
US5786027A (en) * 1996-02-14 1998-07-28 Micron Technology, Inc. Method for depositing polysilicon with discontinuous grain boundaries

Similar Documents

Publication Publication Date Title
US3385729A (en) Composite dual dielectric for isolation in integrated circuits and method of making
JPH05343316A (en) Manufacture of semiconductor device
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JPS61264720A (en) Manufacture of polycrystalline silicon
JPS60145376A (en) Growing method of tungsten silicide film
JPH09115833A (en) Manufacture of polysilicon film in semiconductor device
JP2725460B2 (en) Manufacturing method of epitaxial wafer
JPS5840820A (en) Formation of silicon single crystal film
JPS61256732A (en) Method for selective epitaxial growth
KR100341059B1 (en) A Method for Forming Poly-Crystalline Silicon Thin Film
JP3018408B2 (en) Method for manufacturing semiconductor device
JP2776109B2 (en) Method for manufacturing semiconductor device
JPS60178620A (en) Manufacture of semiconductor substrate
JP2752164B2 (en) Method for manufacturing polycrystalline silicon film
JP2003528443A5 (en)
JPS5928330A (en) Vapor growth method of semiconductor
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPH08227994A (en) Manufacture of semiconductor device
JPH071753B2 (en) Method for manufacturing semiconductor device
JPH05175121A (en) Manufacture of soi substrate and semiconductor device
JP2592984B2 (en) Manufacturing method of silicon thin film
JPS60158672A (en) Manufacture of semiconductor device
JPS58168260A (en) Semiconductor integrated circuit device and manufacture thereof
JP2002170892A (en) Method for manufacturing laminated gate oxide film structure
JPH02102520A (en) Vapor epitaxial deposition