JPS6321315A - Supercharging device of engine - Google Patents

Supercharging device of engine

Info

Publication number
JPS6321315A
JPS6321315A JP16439486A JP16439486A JPS6321315A JP S6321315 A JPS6321315 A JP S6321315A JP 16439486 A JP16439486 A JP 16439486A JP 16439486 A JP16439486 A JP 16439486A JP S6321315 A JPS6321315 A JP S6321315A
Authority
JP
Japan
Prior art keywords
intake
air
passage
exhaust
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16439486A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Yasuhiro Yuzuriha
楪 泰浩
Yoshikuni Yada
矢田 佳邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16439486A priority Critical patent/JPS6321315A/en
Publication of JPS6321315A publication Critical patent/JPS6321315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the engine output through a supercharging effect, by providing a volume chamber in an air-intake passage and providing in the volume chamber a member, which is vibrated by the pulsation of the exhaust pressure, thereby causing intake-pulsation due to the pulsation of the exhaust system. CONSTITUTION:In a multiple cylinder engine, air intake ports 3A and 3D, which are connected to each other by an air-intake passage 11, are connected to an air-intake main passage 6A situated upstream. On the other hand, air-intake ports 3B and 3C, which are connected to each other by an air-intake passage 12, are connected to an air-intake main passage 6B situated upstream. An air-intake chamber 33 as a volume chamber is provided at the upper end of each air-intake main passage. In the chamber 33 are placed air-intake exciting devices 31 and 32 consisting of an elastic member 37, a partition wall 35, and a spring 39. In the air-intake exciting devices 31 and 32 are introduced individual parts of various cylinder groups via pressure introducing pipes 21 and 22. Pulsation of the exhaust gas vibrates the air-intake exciting devices 31 and 32. At the same time, the pulsation makes the air-intake exciting devices 31 and 32 pulsate, thereby performing supercharging action caused by cooperative action between the said pulsation and the pulsation of the air-intake system as a whole.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの過給装置に関する乙のである。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine supercharging device.

(従来技術) 従来よりエンジンにおいては、吸気の動的効果を利用し
て吸気の充填効率を高めちってエンジン出力の向上を図
ることが行なわれているが、ごの動的効果のみでは吸気
通路内に発生ずる圧力波のレベルが比較的小さいところ
から十分な過給効果が得られない。このことから、例え
ば実開昭60−185027号公報に開示されろ如く、
エンジンの排気脈動を受げて振動ずろ隔壁を有オろ吸気
加振手段を吸気通路に設け、該隔壁の脈動により吸気を
加振し、大きな圧力波を得、これにより吸気充填効率の
増大を図ることも試みられている。
(Prior art) Conventionally, in engines, the dynamic effect of the intake air has been used to increase the filling efficiency of the intake air in order to improve the engine output. A sufficient supercharging effect cannot be obtained because the level of pressure waves generated within the engine is relatively small. From this, for example, as disclosed in Japanese Utility Model Application Publication No. 60-185027,
In response to the exhaust pulsation of the engine, an intake air excitation means with a vibrating sliding partition is provided in the intake passage, and the intake air is excited by the pulsation of the partition to obtain a large pressure wave, thereby increasing the intake air filling efficiency. Attempts are also being made to

ところが、この公知例の方法は、吸気通路内に生じた圧
力波を吸気加振手段により排気脈動を利用して加振する
ことによってその増幅を図ったらのに過ぎず、吸気通路
内に発生ずる圧力波そのもののレベルアップあるいは吸
気加振の動力源となる排気脈動そのもののレベルアップ
及び吸気加振手段そのものの加振能力のアップという点
までは考慮されておらず、これらの点において改善の余
地がある。
However, this known method merely attempts to amplify the pressure waves generated in the intake passage by exciting the pressure waves generated in the intake passage using the exhaust pulsation using the intake vibration excitation means. There is no consideration given to raising the level of the pressure waves themselves, raising the level of the exhaust pulsation itself which is the power source for intake vibration, and increasing the vibration capacity of the intake vibration excitation means itself, and there is room for improvement in these points. There is.

尚、吸気の共鳴効果とは、等間隔で行なわれる吸気作用
の単位時間当りの回数が吸気系の固有振動数と合致(共
鳴)した時、吸気の圧力変動が増幅され、より高い吸気
圧が得られることである。
In addition, the resonance effect of intake air means that when the number of intake actions performed at equal intervals per unit time matches (resonates with) the natural frequency of the intake system, the pressure fluctuations of intake air are amplified, resulting in a higher intake pressure. That's what you get.

また、吸気の慣性効果とは、ピストンの下動によって発
生し且つ吸気弁の開弁に伴って吸気通路内に伝播される
負圧波が吸気通路中の容積部において反転し、正圧波と
なって吸気行程の終期に吸気ポート側に伝達し、過給作
用を行なうことである。
In addition, the inertial effect of intake air means that the negative pressure wave generated by the downward movement of the piston and propagated into the intake passage as the intake valve opens is reversed in the volume of the intake passage and becomes a positive pressure wave. It is transmitted to the intake port side at the end of the intake stroke to perform a supercharging effect.

(発明の目的) 本発明は上記従来技術の項で指摘した問題点に鑑み、吸
気の動的効果を利用して過給を行なうようにしたエンジ
ンの過給装置において、吸気通路内の圧力変動を更に高
めてより高水準の過給効果が得られるようにすることを
目的としてなされたものである。
(Object of the Invention) In view of the problems pointed out in the above section of the prior art, the present invention provides an engine supercharging device that performs supercharging by utilizing the dynamic effect of intake air. This was done with the aim of further increasing the supercharging effect and achieving a higher level of supercharging effect.

(目的を達成するための手段) 本発明は」二記の目的を達成するための手段として、複
数の気筒と、各気筒の吸気ポートにそれぞれ接続された
吸気通路と、各気筒の排気ポートに、接続された排気通
路とを備えた多気筒エンジンにおいて、」二記吸気通路
に、所定容積をもつ容積部を有し月っ該容積部内を圧力
脈動に応じて振動可能な隔壁により相互に遮断された2
室に区画するとともにその一方の室を上記吸気主通路に
又他方の室を圧力導管を介して上記排気通路に連通せし
めて上記隔壁を介して排気圧力の脈動により吸気が加振
されるようにした吸気加振手段を設けろとともに、上記
吸気通路を含む吸気系と、上記排気通路と」1記圧力導
管とを含む排気系と、上記吸気加振手段のうち少なくと
もいずれかひとつがエンジンの実用回転数域において共
振するようにその固有振動数を設定したものである。
(Means for Achieving the Objects) The present invention provides a means for achieving the objects set forth in the following, which includes a plurality of cylinders, an intake passage connected to the intake port of each cylinder, and an exhaust passage connected to the exhaust port of each cylinder. In a multi-cylinder engine equipped with a connected exhaust passage, the two intake passages have a volume part having a predetermined volume, and the volume parts are mutually isolated by a partition wall that can vibrate in response to pressure pulsations. was done 2
It is divided into two chambers, and one of the chambers is connected to the main intake passage and the other chamber is connected to the exhaust passage via a pressure conduit, so that the intake air is excited by the pulsation of exhaust pressure through the partition wall. In addition, at least one of the intake system including the intake passage, the exhaust system including the exhaust passage and the pressure conduit described in 1. Its natural frequency is set so that it resonates in a frequency range.

(作 用) 本発明では上記の手段により、吸気通路内に発生する吸
気の動的効果、即ち、慣性効果あるいは共鳴効果による
圧力脈動が排気通路内の排気脈動を受けて作動する吸気
加振手段の加振作用により増幅され、動的効果による過
給作用が効果的に行なわれろが、これに加えて例えば、 (+)  吸気通路を含む吸気系の固有振動数をエンジ
ンの実用回転数域で共振作用が得られろように設定した
場合には、吸気通路内において動的効果により発生ずる
吸気脈動自体が共振作用により増幅され、さらにこれが
上記加振作用により増幅されろためより高水準の過給効
果が得られ、(2)排気通路及び圧力導管を含む排気系
の固有振動数をエンジンの実用回転数域で共振作用が得
られろように設定した場合には、共振作用により排気脈
動が増幅され、これが吸気加振手段に加振力として伝達
されるため、該吸気加振手段による吸気加振作用が排気
脈動の増幅性だけ増大せしめられ、より大きな吸気脈動
が得られ、これによりより高水準の過給作用が実現され
ろ、 (3)吸気加振手段そのものの固有振動数をエンジンの
実用回転数域で共振作用か得られるように設定した場合
には、該吸気加振手段の隔壁の振幅が増大してその加振
能力が増大するため、共振作用が得られない場合に比し
てより大きな吸気加振作用を得ることができ、より高水
準の過給作用が実現される、 等の作用が得られる。
(Function) In the present invention, by the above means, the dynamic effect of the intake air generated in the intake passage, that is, the pressure pulsation due to the inertial effect or the resonance effect is activated by the exhaust pulsation in the exhaust passage. In addition to this, for example, (+) the natural frequency of the intake system, including the intake passage, is amplified by the excitation effect of the engine, and the supercharging effect is effectively performed due to the dynamic effect. If the setting is such that a resonance effect can be obtained, the intake pulsation itself generated in the intake passage due to the dynamic effect will be amplified by the resonance effect, and this will be further amplified by the above-mentioned excitation effect, resulting in a higher level of excess. (2) If the natural frequency of the exhaust system, including the exhaust passage and pressure conduit, is set so that a resonance effect can be obtained in the engine's practical rotation speed range, the resonance effect will cause exhaust pulsation. This is amplified and transmitted as an excitation force to the intake excitation means, so that the intake excitation action by the intake excitation means is increased by the amplification of the exhaust pulsation, and a larger intake pulsation is obtained, which results in a higher intake pulsation. (3) If the natural frequency of the intake vibration excitation means itself is set so that a resonance effect can be obtained in the practical engine speed range, the intake vibration excitation means Since the amplitude of the bulkhead increases and its excitation capacity increases, it is possible to obtain a larger intake excitation action compared to the case where resonance action is not obtained, and a higher level of supercharging action is achieved. , etc. can be obtained.

(実施例) 以下、第1図ないし第7図を参照して本発明の好適な実
施例をいくつか説明ずろ。
(Embodiments) Hereinafter, some preferred embodiments of the present invention will be described with reference to FIGS. 1 to 7.

(第1の実施例) 第1図には本発明の第1の実施例に係る過給装置を備え
た自動車用4気筒エンジンの吸・排気系のシステム図が
示されており、同図において符号lはエンジン本体であ
る。このエンジン本体1の4つの気筒2 A、2 B、
2 C,2Dの各吸気ポート3Δ、313,3C,3D
にはそれぞれ相互に独立した独立吸気通路5 A、5 
B、5 C,5Dがそれぞれ接続されている。この4本
の独立吸気通路5A。
(First Embodiment) FIG. 1 shows a system diagram of an intake/exhaust system of a four-cylinder automobile engine equipped with a supercharging device according to a first embodiment of the present invention. The symbol l is the engine body. The four cylinders 2A, 2B of this engine body 1,
2 C, 2D intake ports 3Δ, 313, 3C, 3D
are provided with mutually independent independent intake passages 5A and 5, respectively.
B, 5 C, and 5D are connected respectively. These four independent intake passages 5A.

5B・・のうち、点火順序が相互に連続しない気筒、即
ち第1の気筒2Aと第4の気筒2Dにそれぞれ接続され
た第1の独立吸気通路5Aと第4の独立吸気通路5D、
及び第2の気筒2Bと第3の気筒2Cにそれぞれ接続さ
れた第2の独立吸気通路5Bと第3の独立吸気通路5C
とをそれぞれ吸気上流側で集合させている。従って、上
記4つの気筒2 A、2 B、2 C,2Dは、相互に
点火順序が連続しない気筒同士からなる2つの気筒群、
即ち第1の気筒2Aと第4の気筒2Dよりなる第1の気
筒群X1と、第2の気筒2Bと第3の気筒2Cよりなる
第2の気筒群X、に分けられる。
5B..., the first independent intake passage 5A and the fourth independent intake passage 5D are connected to the cylinders whose ignition order is not consecutive to each other, that is, the first cylinder 2A and the fourth cylinder 2D, respectively.
and a second independent intake passage 5B and a third independent intake passage 5C connected to the second cylinder 2B and the third cylinder 2C, respectively.
and are gathered together on the upstream side of the intake air. Therefore, the four cylinders 2A, 2B, 2C, and 2D are two cylinder groups consisting of cylinders whose ignition order is not consecutive to each other,
That is, it is divided into a first cylinder group X1 consisting of a first cylinder 2A and a fourth cylinder 2D, and a second cylinder group X consisting of a second cylinder 2B and a third cylinder 2C.

さらに、この各気筒群X、、X2のうち、第1の気筒群
X1の2本の独立吸気通路5A、5Dの集合部25には
、第1の吸気主通路6Aが接続されており、該2本の独
立吸気通路5 A、5 Dと吸気主通路6Aとで第1の
吸気通路11が構成されている。これに対して、第2の
気筒群X2の2本の独立吸気通路5B、5Cの集合部2
6には、第2の吸気主通路6Bが接続されており、該2
本の独立吸気通路5B、5Cと吸気主通路6Bとで第2
の吸気通路12が構成されている。この第1の吸気通路
11と第2の吸気通路12は、その各吸気主通路6 A
、6 Bの上流側において相互に合流せしめられており
、さらに、その合流部より上流側にはエアフローメータ
18とエアクリーナ19とが設けられている。
Further, among the cylinder groups X, X2, the first main intake passage 6A is connected to the gathering part 25 of the two independent intake passages 5A and 5D of the first cylinder group X1. A first intake passage 11 is composed of two independent intake passages 5A and 5D and a main intake passage 6A. On the other hand, the gathering part 2 of the two independent intake passages 5B and 5C of the second cylinder group
A second main intake passage 6B is connected to the 2
The main independent intake passages 5B and 5C and the main intake passage 6B are
An intake passage 12 is configured. The first intake passage 11 and the second intake passage 12 are connected to each main intake passage 6A.
, 6B are made to merge with each other on the upstream side, and furthermore, an air flow meter 18 and an air cleaner 19 are provided upstream of the merged portion.

また、第1の吸気通路11の集合部25と第2の吸気通
路I2の集合部26との間は、同期作動する一対の連通
制御弁52A、52Bを備えた連通路24を介して相互
に連通されており、該連通制御弁52A、52Bを開閉
することにより画集合部25.26は相互に連通又は連
通遮断されるようになっている。さらに、第1の吸気通
路11の集合部25より」−流側位置と第2の吸気通路
12の集合部26より上流側位置とには、それぞれ同期
作動する一対のスロットルバルブ51A。
Further, the gathering portion 25 of the first intake passage 11 and the gathering portion 26 of the second intake passage I2 are connected to each other via a communication passage 24 provided with a pair of communication control valves 52A and 52B that operate synchronously. By opening and closing the communication control valves 52A and 52B, the image collection sections 25 and 26 are communicated with each other or disconnected from each other. Furthermore, a pair of throttle valves 51A are provided at a position upstream of the gathering portion 25 of the first intake passage 11 and a position upstream of the gathering portion 26 of the second intake passage 12, respectively, and operate synchronously.

51Bが設(:lられている。51B is set (:l).

さらに、−1−記第1の吸気通路IIの吸気主通路6A
には第1の吸気加振装置31が、また第2の吸気通路1
2の吸気主通路6Bには第2の吸気加振装置32がそれ
ぞれ設けられている。この第1の吸気加振装置3Iと第
2の吸気加振装置32はそれぞれ特許請求の範囲中の吸
気加振手段に該当するものであって、同一構成を有して
いる。このため、ここでは、その具体的構成を第1の吸
気加振装置31を例にとって説明すると、この第1の吸
気加振装置31は第1の吸気通路IIの吸気主通路6A
の通路途中に設けられた適宜容積を有する容積部4Iを
有している。この容積部41は、その−刃側で上記吸気
主通路6Aに連通ずる一方、他方側においては、第1の
圧力導管2Iを介して、上記第1の気筒2Aに接続され
た第1の独立排気通路7Aと第4の気筒2Dに接続され
た第4の独立排気通路7Dとを排気下流側において集合
させてなる第1の排気通路13に接続されている。尚、
第2の吸気加振装置32の容積部41は、第2の圧力導
管22を介して、第2の気筒2Bに接続された第2の独
立排気通路7Bと第3の気筒2cに接続された第3の独
立排気通路7Cとをその排気下流側において集合させて
なる第2の排気通路14に接続されている。
Furthermore, -1- main intake passage 6A of the first intake passage II
The first intake vibration device 31 is connected to the second intake passage 1.
A second intake vibration device 32 is provided in each of the second intake main passages 6B. The first intake vibration device 3I and the second intake vibration device 32 each correspond to the intake vibration device in the claims, and have the same configuration. Therefore, here, the specific configuration will be explained by taking the first intake vibration device 31 as an example.
It has a volume part 4I having an appropriate volume provided in the middle of the passage. This volume part 41 communicates with the main intake passage 6A on its blade side, while on the other side, it has a first independent pipe connected to the first cylinder 2A via a first pressure conduit 2I. It is connected to a first exhaust passage 13 formed by combining the exhaust passage 7A and a fourth independent exhaust passage 7D connected to the fourth cylinder 2D on the exhaust downstream side. still,
The volume part 41 of the second intake vibration device 32 is connected to the second independent exhaust passage 7B connected to the second cylinder 2B and the third cylinder 2c via the second pressure conduit 22. The third independent exhaust passage 7C is connected to a second exhaust passage 14 formed by collecting the third independent exhaust passage 7C on the exhaust downstream side thereof.

さらに、上記容積部41内には、該容積部41を上記吸
気主通路6Aに連通ずる吸気室33と、第1の圧力導管
21に連通ずる排気室34とに区画する隔壁35が設け
られている。この隔壁35は、蛇腹状のダイヤフラム等
からなる弾性部材37によりその厚さ方向へ変位可能に
支持されており、上記吸気室33と排気室34はこの隔
壁35と弾性部材37とにより相互に気密的に区画され
ている。また、この隔壁35は、スプリング39により
常時吸気室33側にイ」勢されている。
Furthermore, a partition wall 35 is provided in the volume part 41 to partition the volume part 41 into an intake chamber 33 communicating with the main intake passage 6A and an exhaust chamber 34 communicating with the first pressure conduit 21. There is. The partition wall 35 is supported by an elastic member 37 such as a bellows-shaped diaphragm so as to be able to move in its thickness direction. It is divided into sections. Further, the partition wall 35 is always urged toward the intake chamber 33 by a spring 39.

このように構成された第1の吸気加振装置31及び第2
の吸気加振装置32は、その容積部4Iの排気室34内
に導入される排気圧の脈動により隔壁35がその厚さ方
向に振動し、これにより吸気室33側の吸気を加振する
如く作用する。尚、第1の圧力導管21と第2の圧力導
管22には、それぞれ同期して作動する加振制御弁53
Δ、53Bか設けられており、」−記第1の吸気加振装
置31及び第2の吸気加振装置32は、この加振制御弁
51A、51Bの開閉操作により作動又は作動停止され
る。
The first intake vibration device 31 and the second intake vibration device 31 configured in this way
In the intake air vibration device 32, the partition wall 35 vibrates in its thickness direction due to the pulsations of the exhaust pressure introduced into the exhaust chamber 34 of the volume portion 4I, thereby exciting the intake air on the side of the intake chamber 33. act. Note that the first pressure conduit 21 and the second pressure conduit 22 each have an excitation control valve 53 that operates synchronously.
The first intake vibration device 31 and the second intake vibration device 32 are activated or deactivated by opening and closing the vibration control valves 51A and 51B.

又、連通制御バルブ52A、52Bは、吸気の動的効果
に寄与する吸気通路長さをエンジン回転数に応じて切換
えるためのものであって、エンジンの低速回転数域では
閉弁され、エンジンの高速回転数域では開弁される。さ
らに、加振制御弁53A、53Bは、吸気加振の必要な
時においてのみ開弁され、それ以外の場合(例えば加振
することにより逆に吸気充填効率が損なわれるような場
合)には閉弁される。
The communication control valves 52A and 52B are for switching the length of the intake passage, which contributes to the dynamic effect of intake air, according to the engine speed, and are closed in the low speed range of the engine. The valve is opened in the high speed range. Furthermore, the excitation control valves 53A and 53B are opened only when excitation of intake air is necessary, and closed at other times (for example, when excitation would adversely affect intake air filling efficiency). be excused.

上述の如く吸気系及び排気系を構成することにより、吸
気の動的効果を利用した過給作用が行なわれる。即ち、
吸気通路11.12内にはそれぞれ吸気の慣性効果によ
る吸気脈動が発生しており、さらにこの吸気脈動が排気
脈動を受けて振動する各吸気加振装置31.32により
加振増幅され、より大きな圧力脈動のもとて効率的に過
給作用が行なわれる。尚、この実施例においては、各連
通制御バルブ52A、52Bが閉じている低回転数域に
おいては各吸気加振装置31.32の吸気室3、33が
圧力波の圧力波反転部として機能し、これに対して各連
通制御バルブ52A、52Bが開いて高回転数域におい
ては連通路24か圧力波反転部として機能し、それぞれ
吸気の動的効果が実現されている。
By configuring the intake system and exhaust system as described above, a supercharging effect utilizing the dynamic effect of intake air is performed. That is,
Intake pulsations occur in the intake passages 11 and 12 due to the inertial effect of the intake air, and these intake pulsations are amplified by the intake vibration devices 31 and 32 that vibrate in response to the exhaust pulsations, making them even louder. Supercharging is performed efficiently under pressure pulsations. In this embodiment, in the low rotational speed range when each communication control valve 52A, 52B is closed, the intake chambers 3, 33 of each intake vibration device 31, 32 function as a pressure wave inversion section of the pressure wave. In response to this, each of the communication control valves 52A and 52B opens, and in the high rotational speed range, the communication passage 24 functions as a pressure wave inversion section, and the dynamic effects of intake are respectively realized.

ところで、吸気脈動と排気脈動及び各吸気加振装置31
.32の各隔壁35.35は、それぞれ共振によりその
脈動及び振動が増幅されることは既知であるが、本発明
はこの共振現象を有効に利用して過給効果のより一層の
向上を図っている。以下、これを具体的に説明する。
By the way, intake pulsation, exhaust pulsation, and each intake vibration device 31
.. It is known that the pulsations and vibrations of each of the 32 partition walls 35.35 are amplified by resonance, but the present invention aims to further improve the supercharging effect by effectively utilizing this resonance phenomenon. There is. This will be explained in detail below.

ここで、 m :吸気系及び排気系における1群の気筒数N工、慣
性効果の共振回転速度(吸気系)NE:慣性効果の共振
回転速度(排気系)NIR共鳴効果の共振回転速度(吸
気系)NER:共鳴効果の共振回転速度(排気系)1l
− No:吸気加振装置の共振回転速度 θ■・吸気弁の有効開口期間(deg)θE:排気弁の
有効開口期間(deg)M :吸気加振装置の振動部質
量 k :吸気加振装置のバネ定数 また、 vI・吸気系の固有振動数 VE・排気系の固有振動数 ■o:吸気加振装置の固有振動数 とした場合、 共振回転速度と固有振動数との間には下記の条件式が成
立する。
Here, m: Number of cylinders in one group in the intake system and exhaust system N, resonance rotation speed of inertia effect (intake system) NE: resonance rotation speed of inertia effect (exhaust system), resonance rotation speed of NIR resonance effect (intake system) System) NER: Resonance rotation speed of resonance effect (exhaust system) 1l
- No: Resonant rotational speed θ■ of the intake vibration device・Effective opening period (deg) of the intake valve θE: Effective opening period (deg) of the exhaust valve M: Mass of the vibrating part of the intake vibration device k: Intake vibration device Also, when the spring constant is vI, the natural frequency of the intake system VE, the natural frequency of the exhaust system ■o: the natural frequency of the intake vibration device, the relationship between the resonance rotation speed and the natural frequency is as follows. The conditional expression is satisfied.

慣性効果については、 Nr=(Or−Vr)/6    ・−・・・(+)N
E−(θE・VE)/6    ・・・・・(2)共鳴
効果については NIR−(120−Lr)7m  I I 161 (
3)NER−(120・VE)7m ・・・・・(4)
吸気加振装置については No−(120・vo)7m  ・・・・・(5)〜1
2− 2π■o−k/M       ・ ・ ・ ・ ・(
6)即ち、」二足各条件式から、吸気系、排気系及び吸
気加振装置の固有振動数を適宜に設定することにより任
意のエンジン回転速度域において共振効果を得ることが
可能であることがわかる。又、この固有振動数は、吸気
系及び排気系においては吸気通路及び排気通路の通路長
さとか通路径とかボリュームを変化させることにより任
意に設定し得るものである。尚、通路径の簡易な変化手
段としては例えば通路途中に絞りを設けることが考えら
れ、またボリュームの簡易な変化手段としては例えば吸
気通路中に容積部を設けることが考えられる。
Regarding the inertial effect, Nr=(Or-Vr)/6 ・−・・・(+)N
E-(θE・VE)/6 (2) Regarding the resonance effect, NIR-(120-Lr)7m I I 161 (
3) NER-(120・VE)7m ・・・・・・(4)
Regarding the intake vibration device, No-(120・vo)7m...(5)~1
2- 2π■ok/M ・ ・ ・ ・ ・(
6) In other words, it is possible to obtain a resonance effect in any engine speed range by appropriately setting the natural frequencies of the intake system, exhaust system, and intake vibration device from each of the two conditional expressions. I understand. Further, this natural frequency can be arbitrarily set in the intake system and exhaust system by changing the length, diameter, and volume of the intake passage and the exhaust passage. As a simple means for changing the passage diameter, for example, a restriction may be provided in the middle of the passage, and as a simple means for changing the volume, for example, a volume portion may be provided in the intake passage.

この実施例においては、上記の理論に基づいて、吸気系
と排気系と吸気加振装置の固有振動数を」二足の如き共
振効果が得られるように設定している。
In this embodiment, based on the above-mentioned theory, the natural frequencies of the intake system, exhaust system, and intake vibration device are set so as to obtain a resonance effect similar to that of two legs.

尚、ここで、吸気系とは、エンジンの低速回転数域にお
いては第1の気筒2Aの吸気ポート3A及び第4の気筒
2Dの吸気ポート3Dから第1の吸気加振装置31の吸
気室33に至る第1の吸気通路11と、第2の気筒2B
の吸気ポート3B及び第3の気筒2Cの吸気ポート3C
から第2の吸気加振装置32の吸気室33に至る第2の
吸気通路12で構成される。
In addition, the intake system here refers to the air flow from the intake port 3A of the first cylinder 2A and the intake port 3D of the fourth cylinder 2D to the intake chamber 33 of the first intake vibration device 31 in the low speed range of the engine. The first intake passage 11 leading to the second cylinder 2B
intake port 3B and intake port 3C of the third cylinder 2C.
The second intake passage 12 extends from the intake chamber 33 of the second intake vibration excitation device 32.

また、エンジンの高速回転数域においては、上記第1の
吸気通路11と第2の吸気通路12のうち各々対応する
吸気ポートから」−記述通路24に至る短い通路で吸気
系が構成される。
In addition, in a high speed range of the engine, the intake system is constituted by short passages from the corresponding intake ports of the first intake passage 11 and the second intake passage 12 to the passage 24.

また、排気系とは、第1の気筒2Aの排気ポート4Aと
第4の気筒2Dの排気ポート41)から第1の圧力導管
21を介して第1の吸気加振装置31の排気室34に至
る通路と、第2の気筒2Bの排気ポート4Bと第3の気
筒2Cの排気ポート4Cから第2の圧力導管22を経て
第2の吸気加振装置32の排気室34に至る通路でそれ
ぞれ構成されろ。
In addition, the exhaust system refers to the exhaust port 4A of the first cylinder 2A and the exhaust port 41 of the fourth cylinder 2D to the exhaust chamber 34 of the first intake vibration device 31 via the first pressure conduit 21. and a passage leading from the exhaust port 4B of the second cylinder 2B and the exhaust port 4C of the third cylinder 2C to the exhaust chamber 34 of the second intake vibration device 32 via the second pressure conduit 22. Be it.

このように吸気系、排気系及び吸気加振装置の固有振動
数をそれぞれ、エンジンの実用回転数域において共振効
果が得られるように設定すると、例えば吸気系を共振さ
せた場合には慣性効果あるいは共鳴効果により吸気系内
に発生している吸気脈動そのものが」(振により増幅さ
れ、また排気系を共振させた場合には吸気加振装置の加
振源となる排気脈動そのものが共振により増幅され、さ
らに吸気加振装置を共振させた場合には該吸気加振装置
そのものの加振力が増幅され、これらの相乗作用によっ
てより大きな吸気脈動が得られ、高水準の過給作用が実
現されろこととなる。
In this way, if the natural frequencies of the intake system, exhaust system, and intake vibration device are set so that a resonance effect is obtained in the practical engine speed range, for example, when the intake system is made to resonate, the inertial effect or The intake pulsation itself that occurs in the intake system due to the resonance effect is amplified by vibration, and when the exhaust system is made to resonate, the exhaust pulsation itself, which is the source of vibration for the intake vibration device, is amplified by resonance. Furthermore, when the intake vibration device is made to resonate, the vibration force of the intake vibration device itself is amplified, and the synergistic effect of these effects results in a larger intake pulsation and a high-level supercharging effect. It happens.

尚、この三つの共振系は必ずしもこれを同時に共振させ
る必要はなく、これら三つの共振系のうち、少なくとも
いずれかひとつを選択して共振させることにより過給効
果の増大が図れるものである。例えば第7図(イ)に破
線で示す如く三つの共振系のうちいずれかひとつを低速
回転数域で共振させたり、第7図(ロ)に破線で示す如
く三つの共振系のうちいずれか2つを低速回転数域と高
速回転数域の両方で共振させたり、第7図(ハ)に破線
で示す如くいずれか2つの共振系をともに低速回転数域
で共振させて大きな共振効果を実現したり、第7図(ニ
)に破線で示す如く三つの共振系をともに低速回転数域
で共振させて最も大きな共振効果を実現したり、第7図
(ホ)に破線で示す如く三つの共振系のうち、いずれか
2つを低速回転数域で他のひとつを高速回転数域でそれ
ぞれ共振させたり、また第7図(へ)に破線で示すよう
に三つの共振系をそれぞれ低・中・高速回転数域で共振
させて全回転数域を通じて共振効果を得るなど、共振系
の共振点はエンジン仕様等に応じて任意に設定し得るも
のである。
Note that these three resonance systems do not necessarily need to resonate at the same time, and the supercharging effect can be increased by selecting at least one of these three resonance systems to resonate. For example, as shown by the broken line in Figure 7 (a), one of the three resonant systems may be made to resonate in a low rotational speed range, or one of the three resonance systems as shown by the broken line in Figure 7 (b) may be made to resonate in the low speed rotation speed range. A large resonance effect can be achieved by making the two systems resonate in both a low rotation speed range and a high rotation speed range, or by making any two resonant systems resonate in a low rotation speed range as shown by the broken line in Figure 7 (C). It is possible to achieve the greatest resonance effect by making all three resonance systems resonate in the low speed range as shown by the broken lines in Figure 7 (d), or to achieve the greatest resonance effect by making all three resonance systems resonate in the low speed range, as shown by the broken lines in Figure 7 (e). Of the two resonant systems, two can be made to resonate in a low speed range and the other one can be made to resonate in a high speed range, or each of the three resonance systems can be made to resonate in a low speed range as shown by the broken lines in Figure 7 - The resonance point of the resonance system can be arbitrarily set according to the engine specifications, such as resonance in the medium and high speed range to obtain a resonance effect throughout the entire rotation speed range.

(第2の実施例) 第2図には本発明の第2の実施例に係る過給装置を備え
たエンジンの吸・排気システム図が示されている。この
実施例のものは、上記第1の実施例の技術思想を6気筒
エンジンに適用したものであって、上記第1の実施例の
場合とほぼ同様の作用効果即ち、吸気の動的効果と吸気
加振装置3I、32による加振効果と共振系の共振によ
る共振効果の相乗作用によりより高水準の過給効果が得
られろことは勿論であるが、その他に3つの気筒で1つ
の気筒群を構成した場合に特有の吸気現象(共鳴効果)
を強めることができろという利点もある。
(Second Embodiment) FIG. 2 shows an intake/exhaust system diagram of an engine equipped with a supercharging device according to a second embodiment of the present invention. This embodiment applies the technical idea of the first embodiment to a six-cylinder engine, and has almost the same effect as the first embodiment, that is, the dynamic effect of intake air. It goes without saying that a higher level of supercharging effect can be obtained by the synergistic effect of the vibration effect by the intake vibration vibration devices 3I and 32 and the resonance effect by the resonance of the resonance system. Intake phenomenon peculiar to groups (resonance effect)
It also has the advantage of being able to strengthen the

尚、第2図において符号92A、92Bはスロットルバ
ルブ、93A、93Bは加振制御弁であり、その他の部
材には上記第1図に示す各部材に対応させてそれぞれ符
号を付し、その説明を省略する。
In Fig. 2, reference numerals 92A and 92B are throttle valves, 93A and 93B are vibration control valves, and other members are numbered in correspondence with the respective members shown in Fig. 1 above, and their explanations will be given below. omitted.

(第3の実施例) 第3図は本発明の第3の実施例に係る過給装置を備えた
エンジンの吸・排気システム図が示されている。この実
施例のものは、エンジン本体lの4つの気筒2Δ、2B
、2C12Dの各吸気ポート3 A、3 B、3 D、
3 Cにそれぞれ接続される独立吸気通路61 A、6
1 B、610.61 Dを吸気マニホールド63にお
いて集合させ、該吸気マニホールド63より吸気−に流
側に位置する吸気主通路64部分に分岐通路66を介し
て吸気加振装置77を設(Jている。この吸気加振装置
77の枯木構造は」−記第1、第2の実施例のムのと同
様てあり、容積部82の吸気室78Aと排気室78Bと
を区画する隔壁79と弾性部材80及び該隔壁79を付
勢するスプリング81とを備えている。又、容積部82
の排気室78Bは加振制御弁75を備えた圧力導管73
を介して排気通路70の各独立排気通路71A、71B
、71C,71Dの集合部72に連通せしめられている
(Third Embodiment) FIG. 3 shows an intake/exhaust system diagram of an engine equipped with a supercharging device according to a third embodiment of the present invention. In this example, the four cylinders 2Δ, 2B of the engine body l are
, 2C12D each intake port 3A, 3B, 3D,
3C, independent intake passages 61A, 6 connected to
1B, 610.61D are collected in the intake manifold 63, and an intake vibration excitation device 77 is installed via the branch passage 66 in the main intake passage 64 located on the intake side of the intake manifold 63. The dry tree structure of this intake vibration device 77 is similar to that of the first and second embodiments, and the partition wall 79 that partitions the intake chamber 78A and the exhaust chamber 78B of the volume part 82 and the elastic It includes a member 80 and a spring 81 that biases the partition wall 79.
The exhaust chamber 78B is a pressure conduit 73 equipped with an excitation control valve 75.
Each independent exhaust passage 71A, 71B of the exhaust passage 70 via
, 71C, and 71D.

この実施例の場合にも、吸気系。排気系及び吸気加振装
置77の固有振動数を共振が得られるような値に設定す
ることにより上記第1、第2の実施例とほぼ同様の効果
が得られることは勿論である。
Also in the case of this example, the intake system. Of course, substantially the same effects as in the first and second embodiments can be obtained by setting the natural frequencies of the exhaust system and the intake vibration device 77 to values that allow resonance.

(第4の実施例) 第4図には本発明の第4の実施例に係る過給装置を備え
たエンジンの吸・排気システム図が示されている。この
実施例のものは上記第3の実施例のものに排気系の固有
振動数の可変機構を追加したものであって、圧力導管を
、通路長さの長い第1の圧力導管74Aと通路長さの短
い第2の圧力導管74Bで構成し、これを2つの加振制
御弁75A、75Bの切換えにより選択使用し、低速回
転数域と高速回転数域の両方で排気系の共振効果が得ら
れるようにしている。尚、第4図の他の各構成部材には
第3図の各構成部材に対応させて符号を付することによ
りその説明を省略する。
(Fourth Embodiment) FIG. 4 shows an intake/exhaust system diagram of an engine equipped with a supercharging device according to a fourth embodiment of the present invention. In this embodiment, a variable mechanism for the natural frequency of the exhaust system is added to the third embodiment, and the pressure conduit is connected to the first pressure conduit 74A having a long passage length. It consists of a second pressure conduit 74B with a short length, which is selectively used by switching between two vibration control valves 75A and 75B, and a resonance effect of the exhaust system can be obtained in both the low speed rotation speed range and the high speed rotation speed range. I'm trying to be able to do that. It should be noted that the other constituent members in FIG. 4 are designated by reference numerals corresponding to the constituent members in FIG. 3, and their explanations will be omitted.

(第5の実施例) 第5図には本発明の第5の実施例に係る過給装置を備え
たエンジンの吸・排気システム図が示されている。この
実施例のものも、上記第3の実施例の変形例であって、
各気筒2 A、2 B、2 C,2Dに接続される各独
立吸気通路61 A、61 B、61C,’61Dを集
合させた吸気マユボール163部分に直接吸気加振装置
77を配置するとともに該吸気マニホールド63の上流
側に容積部69を設けたものであり、その作用・効果は
」二足第3の実施例の場合と同様である。尚、第5図の
他の各部材には第3図の各部材に対応させて符号を付す
ることによりその説明を省略する。
(Fifth Embodiment) FIG. 5 shows an intake/exhaust system diagram of an engine equipped with a supercharging device according to a fifth embodiment of the present invention. This embodiment is also a modification of the third embodiment,
An intake vibration excitation device 77 is placed directly at the intake eyebrow ball 163 where the independent intake passages 61A, 61B, 61C, and 61D connected to the cylinders 2A, 2B, 2C, and 2D are assembled. A volume portion 69 is provided on the upstream side of the intake manifold 63, and its functions and effects are the same as those of the third embodiment. It should be noted that each of the other members in FIG. 5 is given a reference numeral corresponding to each member in FIG. 3, and a description thereof will be omitted.

(第6の実施例) 第6図には本発明の第6の実施例に係る過給袋置を備え
たエンジンの吸・排気システム図が示されている。この
ものは、吸気行程が連続する気筒の独立吸気通路と独立
排気通路それぞれ独立した圧力導管で接続−・1ている
。即ち第1の気筒2Aの独立吸気通路95Aと第4の気
筒2Dの独立排気通路96Dを第1の圧力導管97Aで
、第2の気筒2Bの独立吸気通路95Bと第3の気筒2
Cの独立排気通路96Cを第2の圧力導管97Bで、第
3の気筒2Cの独立吸気通路95Cと第2の気筒2Bの
独立排気通路96Bを第3の圧力導管97Cで、また第
4の気筒2Dの独立吸気通路75Dと第1の気筒2Aの
独立吸気通路76Aを第4の圧力導管97Dでそれぞれ
接続している。そして、この各圧力導管97A、97B
・・にそれぞれ吸気加振装置77を設けている。
(Sixth Embodiment) FIG. 6 shows an intake/exhaust system diagram of an engine equipped with a supercharging bag arrangement according to a sixth embodiment of the present invention. In this system, the independent intake passages and independent exhaust passages of cylinders whose intake strokes are continuous are connected to each other by independent pressure conduits. That is, the independent intake passage 95A of the first cylinder 2A and the independent exhaust passage 96D of the fourth cylinder 2D are connected by the first pressure conduit 97A, and the independent intake passage 95B of the second cylinder 2B and the independent exhaust passage 96D of the fourth cylinder 2D are connected to each other by the first pressure conduit 97A.
The independent exhaust passage 96C of the third cylinder 2C is connected to the second pressure conduit 97B, the independent intake passage 95C of the third cylinder 2C and the independent exhaust passage 96B of the second cylinder 2B are connected to the third pressure conduit 97C, and the fourth cylinder The independent intake passage 75D of the cylinder 2D and the independent intake passage 76A of the first cylinder 2A are connected to each other by a fourth pressure conduit 97D. And each pressure conduit 97A, 97B
... are each provided with an intake vibration device 77.

この場合にも上記各実施例の場合と同様に、吸気系と排
気系と吸気加振装置77の固有振動数を適宜に設定する
ことにより、吸気の動的効果と加振効果と共振効果の相
乗作用で高水準の過給効果を実現できることは勿論であ
る。
In this case, as in the above embodiments, by appropriately setting the natural frequencies of the intake system, exhaust system, and intake vibration device 77, the dynamic effect, vibration effect, and resonance effect of the intake air can be controlled. It goes without saying that a high level of supercharging effect can be achieved through synergistic action.

尚、第6図において符号65は吸気通路、70は排気通
路を示している。
In FIG. 6, reference numeral 65 indicates an intake passage, and 70 indicates an exhaust passage.

(発明の効果) 本発明のエンジンの過給装置は、複数の気筒と、各気筒
の吸気ポートにそれぞれ接続された吸気通路と、各気筒
の排気ポートに接続された排気通路とを備えた多気筒エ
ンジンにおいて、上記吸気通路に、所定容積をもつ容積
部を有し且つ該容積部内を圧力脈動に応じて振動可能な
隔壁により相互に遮断された2室に区画するとともにそ
の一方の室を上記吸気主通路に又他方の室を圧力導管を
介して上記排気通路に連通せしめて上記隔壁を介して排
気圧力の脈動により吸気が加振されるようにした吸気加
振手段を設けるとともに、上記吸気通路を含む吸気系と
、上記排気通路と上記圧力導管とを含む排気系と、上記
吸気加振手段のうち少なくともいずれかひとつがエンジ
ンの実用回転数域において共振するようにその固有振動
数を設定したことを特徴とするものである。
(Effects of the Invention) The engine supercharging device of the present invention has a plurality of cylinders, an intake passage connected to the intake port of each cylinder, and an exhaust passage connected to the exhaust port of each cylinder. In the cylinder engine, the intake passage has a volume portion having a predetermined volume, and the volume portion is divided into two chambers separated from each other by a partition wall that can vibrate in response to pressure pulsations, and one of the chambers is divided into An intake excitation means is provided in the main intake passage and the other chamber is communicated with the exhaust passage via a pressure conduit so that the intake air is excited by the pulsation of the exhaust pressure through the partition wall. The natural frequency of at least one of the intake system including the passage, the exhaust system including the exhaust passage and the pressure conduit, and the intake vibration excitation means is set so that it resonates in the practical rotational speed range of the engine. It is characterized by the fact that

従って、本発明のエンジンの過給装置によれば、吸気の
動的効果により吸気通路内に発生する吸気脈動が吸気加
振手段の加振作用により増幅せしめられると同時に、例
えば吸気系が共振する回転数域においては上記動的効果
による吸気脈動そのものが増幅され、また排気系が共振
する回転数域においては排気脈動そのものが共振により
増幅され吸気加振手段に人力される加振駆動力が増大し
、さらに吸気加振手段が共振する回転数域においては該
吸気加振手段の隔壁の振動が増幅されその加振能力が増
大し、これらの相乗作用によりより高水準の過給効果が
得られることになる。
Therefore, according to the engine supercharging device of the present invention, the intake pulsation generated in the intake passage due to the dynamic effect of intake air is amplified by the vibration action of the intake vibration excitation means, and at the same time, for example, the intake system resonates. In the rotation speed range, the intake pulsation itself due to the above dynamic effect is amplified, and in the rotation speed range where the exhaust system resonates, the exhaust pulsation itself is amplified due to resonance, and the excitation driving force applied to the intake vibration means increases. Furthermore, in the rotation speed range where the intake vibration excitation means resonates, the vibration of the partition wall of the intake vibration excitation means is amplified and its excitation capacity increases, and a higher level of supercharging effect can be obtained by the synergistic effect of these. It turns out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に係る過給装置を備えた
エンジンの吸・排気システム図、第2図ないし第6図は
本発明の第2ないし第6の実施例に係る過給装置を備え
たエンジンの吸・排気システム図、第7図(イ)ないし
第7図(へ)は共振点の設定要領図である。 l  ・・・・・エンジン本体 2A〜2D ・・・・気筒 3八〜3D ・・・・吸気ポート 4A〜4D ・・・・排気ポート 5A〜5D ・・・・独立吸気通路 6A〜6D ・・・・吸気主通路 11.12.65 ・・・吸気通路 1、14.70 ・・・排気通路2 1.22,74.93・・圧力導管3 1.32.77 ・・・吸気加振装置35.79・・・
・・隔壁
FIG. 1 is an intake/exhaust system diagram of an engine equipped with a supercharging device according to a first embodiment of the present invention, and FIGS. 2 to 6 are supercharger system diagrams according to second to sixth embodiments of the present invention. The intake/exhaust system diagram of an engine equipped with a feeding device, and FIGS. l...Engine body 2A-2D...Cylinder 38-3D...Intake port 4A-4D...Exhaust port 5A-5D...Independent intake passage 6A-6D... ...Intake main passage 11.12.65 ...Intake passage 1, 14.70 ...Exhaust passage 2 1.22,74.93...Pressure conduit 3 1.32.77 ...Intake vibration device 35.79...
・・Bulkhead

Claims (1)

【特許請求の範囲】[Claims] 1、複数の気筒と、各気筒の吸気ポートにそれぞれ接続
された吸気通路と、各気筒の排気ポートに接続された排
気通路とを備えた多気筒エンジンにおいて、上記吸気通
路に、所定容積をもつ容積部を有し且つ該容積部内を圧
力脈動に応じて振動可能な隔壁により相互に遮断された
2室に区画するとともにその一方の室を上記吸気主通路
に又他方の室を圧力導管を介して上記排気通路に連通せ
しめて上記隔壁を介して排気圧力の脈動により吸気が加
振されるようにした吸気加振手段を設けるとともに、上
記吸気通路を含む吸気系と、上記排気通路と上記圧力導
管とを含む排気系と、上記吸気加振手段のうち少なくと
もいずれかひとつがエンジンの実用回転数域において共
振するようにその固有振動数を設定したことを特徴とす
るエンジンの過給装置。
1. In a multi-cylinder engine having a plurality of cylinders, an intake passage connected to the intake port of each cylinder, and an exhaust passage connected to the exhaust port of each cylinder, the intake passage has a predetermined volume. It has a volume part, and the volume part is divided into two chambers separated from each other by a partition wall that can vibrate in response to pressure pulsations, and one of the chambers is connected to the main intake passage, and the other chamber is connected to the main intake passage through a pressure conduit. An intake vibration means is provided which communicates with the exhaust passage so that the intake air is excited by the pulsation of exhaust pressure through the partition wall, and an intake system including the intake passage, the exhaust passage and the pressure 1. A supercharging device for an engine, wherein the natural frequency of at least one of an exhaust system including a conduit and the intake vibration excitation means is set so as to resonate in a practical rotational speed range of the engine.
JP16439486A 1986-07-12 1986-07-12 Supercharging device of engine Pending JPS6321315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16439486A JPS6321315A (en) 1986-07-12 1986-07-12 Supercharging device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16439486A JPS6321315A (en) 1986-07-12 1986-07-12 Supercharging device of engine

Publications (1)

Publication Number Publication Date
JPS6321315A true JPS6321315A (en) 1988-01-28

Family

ID=15792294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16439486A Pending JPS6321315A (en) 1986-07-12 1986-07-12 Supercharging device of engine

Country Status (1)

Country Link
JP (1) JPS6321315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939630B2 (en) 2001-08-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
CN104481759A (en) * 2014-12-04 2015-04-01 桑元俊 Conditionally selectable execution system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939630B2 (en) 2001-08-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
CN104481759A (en) * 2014-12-04 2015-04-01 桑元俊 Conditionally selectable execution system

Similar Documents

Publication Publication Date Title
JPS6014169B2 (en) Intake system for multi-cylinder engines
JP2846705B2 (en) Engine intake system
JPS6321315A (en) Supercharging device of engine
JPH03168325A (en) Suction device of multiple cylinder engine
JPS63215828A (en) Supercharger for engine
JPH0639055Y2 (en) Engine supercharger
JP2721983B2 (en) V-type engine intake system
JP2750122B2 (en) Engine intake system
JPH0586869A (en) Intake device for multiple cylinder engine
JPS6241922A (en) Intake-air device for v-type engine
JPH0619805Y2 (en) Engine supercharger
JPS638814Y2 (en)
JPS63285222A (en) Supercharging device for v-engine
JPS62291431A (en) Supercharging device for engine
JPH03115732A (en) Intake device for multiple cylinder engine
JPH082431Y2 (en) Engine intake system
JPH01277622A (en) Intake device of engine
JPS63106324A (en) Exhauster for v-type multicylinder engine
JPS63285220A (en) Supercharging device for v-engine
JPH079183B2 (en) Engine intake system
JPH0730911Y2 (en) Intake device for V-type internal combustion engine
JPH079186B2 (en) Engine intake system
JPS61197714A (en) Intake device of multicylinder internal-combustion engine
JPH01237318A (en) Air intake device for engine with supercharger
JPH02157419A (en) Intake device of multi-cylinder engine