JPS6320738A - Medium for optical recording - Google Patents

Medium for optical recording

Info

Publication number
JPS6320738A
JPS6320738A JP61163167A JP16316786A JPS6320738A JP S6320738 A JPS6320738 A JP S6320738A JP 61163167 A JP61163167 A JP 61163167A JP 16316786 A JP16316786 A JP 16316786A JP S6320738 A JPS6320738 A JP S6320738A
Authority
JP
Japan
Prior art keywords
medium
composition
time
laser
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163167A
Other languages
Japanese (ja)
Inventor
Haruo Kawakami
春雄 川上
Kenji Ozawa
小沢 賢治
Masami Ishii
正美 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61163167A priority Critical patent/JPS6320738A/en
Publication of JPS6320738A publication Critical patent/JPS6320738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten an erasing time and to obtain the medium accomplishing the improvement of a light absorbing coefficient and repeat characteristic by adding In and Se to Te which is a main component element of a material and specifying the composition of each element. CONSTITUTION:40-95% Te is contained as the main element for causing the transition of a crystalline - amorphousness, 2-59% Se is added for preventing the reduction of the moisture resistance and oxidation resistance at the time of medium using and of the laser sensibility, and In is added for shortening the erasing time of the recording information. In the case of the In content 35% shown by the dot line A of Te-In binary alloy state figure, a displacement is caused on the medium composition of a laser spot position at the time when solidifying from molten state at the writing and erasing time and the characteristic becomes unstable. The In composition is made in the 11% center range shown by a dot line B for preventing the reduction in the repeatability and the lower limit is taken as 1% for promoting the crystallization. Consequently an usual expression is shown by InxTeySez, (x), (y), (z) are respectively in the range of 1<=x<=30, 40<=y<=95, 2<=z<=59 and the aim is accomplished by the medium made with the composition of x+y+z=100.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明はレーザー光に対して高い感度を有する書き換え
可能な光ディスクの光記録用媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field to Which the Invention Pertains) The present invention relates to an optical recording medium of a rewritable optical disc having high sensitivity to laser light.

(従来技術とその問題点) 近年情報記録の高密度化、大容量化に対する要求が扁ま
り、国内外でその研究開発が盛んに行なわnているが、
とくにレーザーを光源として用いる光ディスクは従来の
磁気記録媒体に比べておよそ10〜工Oo倍の記録密度
をもっており、また記録。
(Prior art and its problems) In recent years, there has been a growing demand for higher density and larger capacity information storage, and research and development on the same has been actively conducted both domestically and internationally.
In particular, optical disks that use a laser as a light source have a recording density that is approximately 10 to 000 times higher than conventional magnetic recording media, and are capable of recording.

再生ヘッドと記録媒体とが非接触状態で情報の記録、再
生ができるので長寿命であるなどの特徴があることから
、高密度、大容量の記録方式として開発を急がれている
Since information can be recorded and reproduced without contact between the playback head and the recording medium, it has long lifespan, and is therefore being developed as a high-density, large-capacity recording method.

この光ディスクは用達に応じて再生専用型、追記型、書
き換え型の3種類に大別することができる。再生専用型
は文字通り情報の読み出しのみが可能な再生専用ディス
クであり、追記型は必要に応じて情報を記録し再生する
ことはできるが、記録した情報の消失は不可能なもので
ある。これに対して書き換え型は情報の記録、再生とさ
らに記録済みの情報を消去して書き換えることが可能で
あり、コンピューター朋のデータファイルとしての利用
が望まれ、最も期待されているものである。
These optical discs can be roughly classified into three types depending on the purpose: read-only type, write-once type, and rewritable type. A read-only type disc is a read-only disc from which information can only be read, and a write-once type disc allows information to be recorded and reproduced as needed, but the recorded information cannot be erased. On the other hand, the rewritable type is capable of recording and reproducing information, as well as erasing and rewriting recorded information, and is desired and has the highest expectations for use as a data file in computers.

書き換え型のディスクについては光磁気記録と相変態記
録の二つの記録方式の開発が進められているが、いずれ
も記録材料や書き込み樋溝などの点でなお改良すべき余
地が残されている。これらのうち相変態記録は書き換え
可能な元デ、rスクとして記録材料の相変態を利用した
記録方式であり、一般にレーザー光を記録面に集光して
加熱し、レーザー光のパルス出力、継続時間を制御する
ことによって生ずる記録材料の相変態前後の各相におけ
る反射率の違いで情報の記録を行なうものである。
Two recording methods, magneto-optical recording and phase change recording, are being developed for rewritable disks, but both still have room for improvement in terms of recording materials, writing grooves, etc. Among these, phase transformation recording is a recording method that utilizes phase transformation of the recording material as a rewritable source disk.Generally, laser light is focused on the recording surface and heated, and the pulse output of the laser light is continued. Information is recorded using the difference in reflectance between the phases before and after the phase transformation of the recording material, which is generated by controlling time.

この相変態型光ディスクの構造の1例を第3図の模型斯
面図に示す。第3図において例えばポリカーボネートな
どの基板1の片面にあらかじめ多くのトラッキング用の
溝2が設けられており、この溝2を有する方の基板1の
表面にスパッタ法などによりSiO□膜3が形成され、
その上に記録用材料すなわち媒体膜4が形成される。さ
らにその上に5ZO2膜5と有機物保護層6がこの順に
堆積された構成となっている。このように媒体膜4がl
o。
An example of the structure of this phase change type optical disk is shown in the schematic cross-sectional view of FIG. In FIG. 3, many tracking grooves 2 are provided in advance on one side of a substrate 1 made of polycarbonate, for example, and a SiO□ film 3 is formed on the surface of the substrate 1 having the grooves 2 by sputtering or the like. ,
A recording material or medium film 4 is formed thereon. Further, a 5ZO2 film 5 and an organic protection layer 6 are deposited in this order on top of the 5ZO2 film 5. In this way, the medium film 4
o.

膜3,5によってはさまれた構造としであるのは信号の
書き込みや消去の際に光加熱のために媒体膜4が高温に
なるのでその時媒体膜4が基板1と反応したり、蒸発、
飛散するのを防止し、媒体膜4の変質が生じないように
するためである。そしてレーザー光は基板1の媒体膜4
を有する側と反対の面から入射するのが普通である。
The structure sandwiched between the films 3 and 5 is such that the medium film 4 reaches a high temperature due to optical heating when writing or erasing signals, so the medium film 4 may react with the substrate 1, evaporate, or
This is to prevent scattering and to prevent deterioration of the medium film 4. Then, the laser beam is transmitted to the medium film 4 of the substrate 1.
It is normal for the light to enter from the side opposite to the side with the .

このような光記録媒体に実際に4r!報を書き込むには
、まずフラッシュランプなどの光照射により媒体を十分
に結晶化させ、書き込み可能な切期状態を確保し、次い
で高出力、短パルスのレーザー光を媒体面上にスポット
状に照射して媒体を溶融した後急冷する。このことによ
り媒体面上のスポット領域は結晶質から非晶質へ変態し
、書き込みが行なわれる。一方情報を消失するときは非
晶質の媒体に比較的低出力のレーザー光を照射して媒体
を結晶化温度まで昇温、アニールし結晶質とすることに
より行なわれる。このときのレーザー光照射時間は媒体
の結晶化速度により決定される。
Actually 4R! on such an optical recording medium! To write information, first the medium is sufficiently crystallized by irradiation with light such as a flash lamp to ensure a writing-ready state, and then high-power, short-pulse laser light is irradiated onto the medium surface in the form of a spot. After the medium is melted, it is rapidly cooled. As a result, the spot area on the medium surface transforms from crystalline to amorphous, and writing is performed. On the other hand, when information is to be lost, an amorphous medium is irradiated with a relatively low-power laser beam to raise the temperature of the medium to a crystallization temperature and anneal it to make it crystalline. The laser beam irradiation time at this time is determined by the crystallization speed of the medium.

この相変即記録方式の書き換え可能な光記録用材料は、
従来いくつかのものが提案されているが、現在最も実泪
性が高いと考えられているのはTa系材料の結晶質−非
晶質遷移による反射率の変化を利用したものである。こ
の種の材料に関する発明は多数出願されており、最近の
ものでは例えば特開昭60−42095号公報に開示さ
れている5WTISsO系や特開昭60−107744
号公報に開示されているT10g5f&O系などがある
。しかしこれらの材料に共通する間頑点もある。すなわ
ち情報のGき込みに要する時間に比べて記録の消去に要
する時間が従いために、これが情報記録装置としてのデ
ータ転送速度を制限する要因となっていることである。
This phase change instant recording type rewritable optical recording material is
Several methods have been proposed in the past, but the one currently considered to be the most practical is one that utilizes the change in reflectance caused by the crystalline-amorphous transition of Ta-based materials. Many inventions related to this type of material have been filed, and recent ones include the 5WTISsO system disclosed in JP-A No. 60-42095 and the 5WTISsO system disclosed in JP-A No. 60-107744.
Examples include the T10g5f&O series disclosed in the above publication. However, there are some tenacities that these materials have in common. That is, since the time required to erase a record is longer than the time required to record information, this is a factor that limits the data transfer speed of the information recording apparatus.

第4図はこれらの媒体材料を用いたときのレーザ照射時
間に対するレーザー出力の関係を示した代表的な線図で
あり、各曲線間に書込領域と消去領域を明示しである。
FIG. 4 is a typical diagram showing the relationship between laser output and laser irradiation time when these media materials are used, and the writing area and erasing area are clearly shown between each curve.

第4図から書き込み時のレーザー照射条件は例えばレー
ザー光のスポットを1μ導φにしたとき10rrLW、
0.2μsac pd度であるのに対し、消去時のレー
ザー照射条件は3mW、2μsac侵度であり、消去時
には省き込み時より1桁程度長い照射時間全必要とする
ことがわかる。そのためこれら媒体材料を用いた実際の
光ディスクでは消去用レーザー光のスポットを楕円状に
拡げて媒体がレーザースポット内を通る時間を長くする
などの対策がとられるが、レーザー光のパワー密度を一
定とすればスポットの大きさにはレーザー光の全出力に
より定められる限界が生ずる。したがって実用上はディ
スクの回転数を抑制してディスクがレーザースポットを
通過する時間を長くする方がよいが、このことがデータ
転送速度を制限する大きな要因となるわけである。
From Fig. 4, the laser irradiation conditions during writing are, for example, 10rrLW when the laser beam spot is 1μ conductive φ,
It can be seen that the laser irradiation conditions for erasing are 3 mW and 2 μsac PD degree, whereas the total irradiation time for erasing is about one order of magnitude longer than that for omitting. Therefore, in actual optical discs using these media materials, countermeasures are taken such as expanding the spot of the erasing laser beam into an elliptical shape to lengthen the time the medium passes through the laser spot, but the power density of the laser beam remains constant. The spot size then has a limit determined by the total power of the laser light. Therefore, in practice, it is better to suppress the number of rotations of the disk to increase the time it takes for the disk to pass the laser spot, but this is a major factor that limits the data transfer speed.

以上のことから、データ転送速度を高めるためには、記
録の消失時に必要とするレーザー照射時間はすなわち媒
体の結晶化時間であるから、この時間を短縮することが
可能な結晶化速度の大きな媒体材料を用いることが望ま
れる。
From the above, in order to increase the data transfer speed, the laser irradiation time required when recording is lost is the crystallization time of the medium, so it is necessary to use a medium with a high crystallization speed that can shorten this time. It is desirable to use materials.

(発明の目的) 本発明は上述の点に鑑みてなされたものであり、その目
的は非晶質からの結晶化速度が大きく、レーザー光の照
射による高速消去が可能な光記録用材料を堤供すること
にある。
(Object of the Invention) The present invention has been made in view of the above points, and its purpose is to provide an optical recording material that has a high crystallization rate from an amorphous state and can be erased at high speed by laser beam irradiation. It is about providing.

(発明の要点) 値はそれぞれ14z≦、so、+041495,2≦2
≦59の範囲にあり、x+y −1−1= 100とな
るものである。
(Key points of the invention) The values are 14z≦, so, +041495, 2≦2, respectively.
It is in the range of ≦59, and x+y −1−1=100.

(発明の実施例) はじめに本発明の媒体の構成元素とその組成比の選択理
由について述べる。光記録媒体として結晶質−非晶質遷
移を起こさせるためにはT6は必須の構成元素であり、
40〜95%含まれることが必要である。Ssは媒体の
使用に際して良好な耐湿性。
(Embodiments of the Invention) First, the reasons for selecting the constituent elements of the medium of the present invention and their composition ratios will be described. T6 is an essential constituent element in order to cause crystalline-amorphous transition as an optical recording medium.
It is necessary to contain 40-95%. Ss has good moisture resistance when used as a medium.

耐酸化性を保持するための構成元素であり、この目的か
らはSεの組成比は2%以上で効果があるが、あまり多
くなると光波長780〜83υIにおける媒体の光吸収
係数が減少しレーザー感度が低下する。上限はT−、エ
ルの量によって決まり59%となるが、この範囲でその
目的は達せられる。さらに本発明者らは種々研究の結果
、媒体材料が非晶質状態から結晶化を容易に促進し、本
発明の目的である記録情報の消去時間を短縮するのに効
果的な役割を果す元素はエルであることを見出し、エル
を媒体構成元素として用いるために以下のような検討を
行なった。この点を第1図に示したTgIt’の2元合
金状M図を参照して述べる。本発明の媒体は工n T 
# S−の3元合金であるから本来は3元合金状態図を
用いて考慮すべきであるが、この3元合金については正
確な平衡状態図が未だ得られていないからである。
It is a constituent element for maintaining oxidation resistance, and for this purpose, it is effective if the composition ratio of Sε is 2% or more, but if it increases too much, the light absorption coefficient of the medium at light wavelengths of 780 to 83υI decreases, and the laser sensitivity decreases. decreases. The upper limit is determined by the amount of T- and L and is 59%, but the objective can be achieved within this range. Furthermore, as a result of various studies, the present inventors have found that elements that easily promote the crystallization of media materials from an amorphous state and play an effective role in shortening the erasing time of recorded information, which is the objective of the present invention. It was discovered that L is L, and the following study was conducted in order to use L as a constituent element of the medium. This point will be described with reference to the binary alloy M diagram of TgIt' shown in FIG. The medium of the present invention is
Since it is a #S- ternary alloy, it should originally be considered using a ternary alloy phase diagram, but an accurate equilibrium phase diagram has not yet been obtained for this ternary alloy.

前述のように情報の書き込み時には媒体はレーザー光に
よって局所的に溶融されるが、第1図の状態図によれば
例えば点線Aで示したエル含有率35%の組成を持つ材
料は溶融状態からの凝固に際して、ある分配係数により
工rL3Tg5なる化合物を優先的に晶出する。レーザ
ースポットはスポットの中央部と周辺部とでは温度差が
あり、そのスポットに対応する個所の媒体の凝固は周辺
から始まるので、凝固が終了したとき結果的にはエル、
T6゜が凝固領域の周辺に集まり、中央部はで擦の含有
率の高いものとなる。情報の書き込み、消去が数多く行
なわれると、この現象も繰り返えされることになり、ス
ポット位置における媒体組成が初期状態からのずれを生
ずるため媒体特性が不安定となり長期間の使用に対して
再現性が低下する。これを避けるためにT−一工九系合
金については第1図の点線Bで示した工311%の共晶
点付近の組成とするのが融点も低く、凝固が一様に行な
われるということから媒体材料としては望ましい。この
共晶点は実際にはS6が添加されるので組成のずれを生
ずるが前述のように3元合金状S<は不明である。しか
し工sl1%の組成を中心とした範囲が繰り返し書き込
み、消去の安定性を保つことは確かであり、工n、が結
晶化を促進する元素であることを考慮すれば工nの添加
は少なくとも1%が40≦y≦95,2≦2≦59であ
り、z+y+r=loo  と定められ、これら構成元
素がバランスよく配合されたものである。
As mentioned above, when writing information, the medium is locally melted by the laser beam, but according to the phase diagram in Figure 1, for example, the material with a composition of 35% L content shown by the dotted line A changes from the molten state. Upon solidification, the compound rL3Tg5 is preferentially crystallized due to a certain distribution coefficient. There is a temperature difference between the center and the periphery of the laser spot, and the solidification of the medium in the area corresponding to the spot starts from the periphery, so when the solidification is finished, the result is L,
T6° gathers around the solidified region, and the central part has a high content of resin. If information is written and erased many times, this phenomenon will be repeated, and the medium composition at the spot position will deviate from the initial state, making the medium characteristics unstable and difficult to reproduce even after long-term use. Sexuality decreases. In order to avoid this, the composition of the T-1 engineering 9 series alloy should be set near the eutectic point of 311%, indicated by the dotted line B in Figure 1, so that the melting point is low and solidification occurs uniformly. Therefore, it is desirable as a media material. This eutectic point actually causes a deviation in composition because S6 is added, but as mentioned above, the ternary alloy state S< is unknown. However, it is certain that a range centered around 1% of the composition maintains the stability of repeated writing and erasing, and considering that n is an element that promotes crystallization, the addition of n is at least 1% is defined as 40≦y≦95, 2≦2≦59, z+y+r=loo, and these constituent elements are blended in a well-balanced manner.

次に以上により本発明の媒体を有する積層体を作製し、
レーザー照射条件を求めた結果について言及する。まず
石英ガラスの基板上に平均組成が工rL1゜”ss”a
ss  からなる合金原料を真空蒸着して厚すo、1μ
m の同組成の薄膜として形成し、次いでその上にスパ
ッタにより約0.1μ鴇 の厚さにs i o2  の
保護膜を形成した。このようにして形成した積層体の薄
膜とは反対側の基板面から入射するレーザーには波長9
3Qzmの半導体レーザーを用い、レンズなどにより媒
体上で約1μmφのスポットとなるように焦点を合わせ
る。特にこの場合は消去特性の測定に重点をi迂くため
、薔き込み時のレーザー光の照射条件を1onW、0.
4μSetに固定し、消去可能なレーザー照射条件を求
め第2図の結果を得た。
Next, a laminate having the medium of the present invention is produced as described above,
We will discuss the results of determining the laser irradiation conditions. First, on a quartz glass substrate, the average composition is
An alloy raw material consisting of ss is vacuum-deposited to a thickness of 1 μm.
A thin film of the same composition was formed, and then a protective film of sio2 was formed thereon to a thickness of about 0.1 μm by sputtering. The laser beam incident from the surface of the substrate opposite to the thin film of the laminate thus formed has a wavelength of 9
A 3Qzm semiconductor laser is used and focused using a lens or the like to form a spot of approximately 1 μmφ on the medium. In particular, in this case, the emphasis is not on measuring the erasing characteristics, so the laser beam irradiation conditions at the time of penetration are 1 onW, 0.
The laser irradiation conditions were fixed at 4 μSet and erasable, and the results shown in FIG. 2 were obtained.

第2図は第4図と同じスケールで表わしたレーザー照射
時間に対するレーザー出力の関係を示した線図であり、
第4図と直接比較することができる。消去可能なレーザ
ー照射条件のうち、レーザー出力は主として媒体の加熱
温度を決定するが、消失を可能とするためには媒体を特
定の結品化温度領域に加熱する必要があり、レーザー出
方もそれに応じである範囲でのみ消去が可能となる。本
発明による媒体では第2図かられかるようにレーザー出
力5mWとしたとき、0.5μJ4Cで繰り返しの消失
が可能である。@2図と第4図を比較すれば明らかに本
発明の方が従来の結晶質−非晶質変態を利用した媒体の
冨去領域より、レーザー照射時間が短時間に移行してい
る。すなわち本発明の媒体は消去の際大巾に時間が短縮
されるものである。またエルを添加したことが媒体の光
吸収係数を増加させ、同時に繰り返しの性能も向上させ
ることがわかった。
Figure 2 is a diagram showing the relationship between laser output and laser irradiation time, expressed on the same scale as Figure 4;
A direct comparison can be made with FIG. Among the laser irradiation conditions for erasing, the laser output mainly determines the heating temperature of the medium, but in order to make erasing possible, the medium needs to be heated to a specific condensation temperature range, and the way the laser is emitted also depends on the heating temperature of the medium. Accordingly, erasing is possible only within a certain range. In the medium according to the present invention, as shown in FIG. 2, when the laser output is 5 mW, repeated disappearance is possible at 0.5 μJ4C. Comparing Figure 2 and Figure 4, it is clear that the laser irradiation time is shorter in the present invention than in the conventional exhaust region of the medium that utilizes crystalline-amorphous transformation. In other words, the medium of the present invention greatly reduces the time required for erasing. It was also found that the addition of L increased the optical absorption coefficient of the medium and at the same time improved the repeat performance.

次に平均組成がIn、。T ’653 $25からなる
合金原料を用いて前述と同様の方法で成膜し、レーザー
光による書き込み、消去特性を求めた。その結果、レー
ザー出力5.5%Wのとき、消去時間は0.35μse
cとさらに短縮することが可能となった。この事実は前
述のものよりTIの組成比を増したことにより半導体レ
ーザー光に対する吸収係数が大きくなり、光に対する感
度を高めると同時に、結晶化速度がさらに増大したため
である。とくに結晶化速度の増大に関しては、S−に比
べてで−の方が大きいことに起因するものであると本発
明者らは推測している。
Next, the average composition is In. A film was formed in the same manner as described above using an alloy raw material consisting of T'653 $25, and the writing and erasing characteristics with laser light were determined. As a result, when the laser output was 5.5%W, the erasing time was 0.35μsec.
It became possible to further shorten it to c. This fact is due to the fact that the absorption coefficient for semiconductor laser light was increased by increasing the composition ratio of TI compared to the above-mentioned one, thereby increasing the sensitivity to light and further increasing the crystallization rate. In particular, the present inventors conjecture that the increase in crystallization rate is due to the fact that the crystallization rate is larger in D- than in S-.

さらに上記と同じ組成をもち、膜享が0.07μ扉の媒
体薄膜を成膜し、同様にレーザー光による書き込み、消
去特性を求めた結果、書き込み時と消去時の反射率の差
が上記の場合のほぼ /3に減少したが、消失時間はさ
らに短縮されo、3oμ54Cが得られた。
Furthermore, we deposited a media thin film with the same composition as above and a film thickness of 0.07 μm, and similarly determined the writing and erasing characteristics using laser light.As a result, we found that the difference in reflectance during writing and erasing was the same as above. However, the disappearance time was further shortened, and 3oμ54C was obtained.

以上説明したように本発明の媒体は消去時間の大巾な短
縮を可能としたが、これは媒体の合金系とその組成比が
極めて適切に定められたことに基づくものである。
As explained above, the medium of the present invention makes it possible to significantly shorten the erasing time, and this is based on the fact that the alloy system of the medium and its composition ratio are very appropriately determined.

(発明の効果) 情報の書き換えが可能な光ディスクの結晶質−非晶質遷
移による反射率変化を利用する媒体材料として従来知ら
れているものは、情報の書き込みに要する時間に比べて
消去時間が長く、データ転送速度が遅いという問題が避
けられなかったのに対し、本発明によれば実施例で述べ
たごとく、媒体材料の主要構成元素であるTeに、結晶
化速度を促進する元素としてエルが有効であることを見
出してこれを添加し、さらにS−を加えて工nT#sg
系合金薄膜として媒体を構成し、これら各元素の組成比
をそれぞれの役割を活かして最も適切な範囲の組成比と
なるように設定したために、本発明による媒体は従来の
媒体に比べて消去時間が大巾に短縮され、光吸収係数も
高く、繰り返し特性も良好であって、情報記録装置に用
いるとき実用上極めて大きな効果を発揮することができ
るものである。
(Effects of the Invention) Conventionally known media materials that utilize the change in reflectance due to the crystalline-amorphous transition of optical discs on which information can be rewritten take less time to erase than the time required to write information. However, according to the present invention, as described in the embodiment, Elle is added to Te, which is the main constituent element of the media material, as an element that promotes the crystallization speed. was found to be effective and was added to it, and then S- was added to form T#sg.
The medium according to the present invention is configured as a thin alloy film, and the composition ratio of each of these elements is set to the most appropriate range by taking advantage of their respective roles. Therefore, the medium according to the present invention has a faster erasure time than conventional media. It has a significantly shortened width, a high optical absorption coefficient, and good repeatability, and can exhibit extremely great practical effects when used in information recording devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はT 6− エルの2元合金状態図、第2図は本
発明による媒体の消去時間に対するレーザ出力の関係線
図、第3図は光ディスクの構造を表わす模型的断面図、
第4図は従来の媒体の消去時間とレーザー出力との関係
mhである。 1:基板1.s、5:szo、膜、4:媒体膜。 Te       In惜 (〃) 第1図
FIG. 1 is a binary alloy phase diagram of T6-L, FIG. 2 is a relationship diagram of laser output versus erasing time of the medium according to the present invention, and FIG. 3 is a schematic cross-sectional view showing the structure of an optical disk.
FIG. 4 shows the relationship mh between erasing time and laser output of a conventional medium. 1: Substrate 1. s, 5: szo, membrane, 4: medium membrane. Te In regret (〃) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)レーザー光の照射によつて生ずる光記録材料の可逆
的相変態を利用した情報の記録、再生および消去可能な
光ディスクの光記録用媒体であつて、組成が一般式In
_xTe_ySe_zで表わされ、x、y、zの値がそ
れぞれ1≦x≦30、40≦y≦95、2≦z≦59の
範囲にあり、かつz+y+z=100となることを特徴
とする光記録用媒体。
1) An optical recording medium of an optical disk capable of recording, reproducing, and erasing information using reversible phase transformation of an optical recording material caused by laser beam irradiation, and having a composition of the general formula In
Optical recording represented by _xTe_ySe_z, where the values of x, y, and z are in the ranges of 1≦x≦30, 40≦y≦95, and 2≦z≦59, and z+y+z=100 Medium for use.
JP61163167A 1986-07-11 1986-07-11 Medium for optical recording Pending JPS6320738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163167A JPS6320738A (en) 1986-07-11 1986-07-11 Medium for optical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163167A JPS6320738A (en) 1986-07-11 1986-07-11 Medium for optical recording

Publications (1)

Publication Number Publication Date
JPS6320738A true JPS6320738A (en) 1988-01-28

Family

ID=15768507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163167A Pending JPS6320738A (en) 1986-07-11 1986-07-11 Medium for optical recording

Country Status (1)

Country Link
JP (1) JPS6320738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411257A (en) * 1987-07-03 1989-01-13 Nippon Telegraph & Telephone Phase transition type optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411257A (en) * 1987-07-03 1989-01-13 Nippon Telegraph & Telephone Phase transition type optical recording medium

Similar Documents

Publication Publication Date Title
JP2003532248A (en) Optical recording medium and use thereof
JP2737666B2 (en) Optical information recording medium
JPS63155436A (en) Information recording medium
JPS613324A (en) Optical information recording medium
JPS6320738A (en) Medium for optical recording
US5862122A (en) Phase change optical disk and a method for recording and playbacking optical information on or from an optical disk
JP2577349B2 (en) Optical recording medium
JPS6329334A (en) Optical recording medium
JP3080844B2 (en) Phase change optical disk
JPH06150368A (en) Write once type optical recording medium and information recording method
JP3159374B2 (en) Optical information recording medium
JPH0312824A (en) Method for recording/erasing/reproducing and constituting phase change type optical recording medium
JPS6329333A (en) Optical recording medium
KR100186525B1 (en) Structure for phase change type optical disk
JP3165354B2 (en) Optical information recording medium
JP2007157258A (en) Optical recording medium
JPH0573961A (en) High-density optical recording medium having molten mask layer
JPH01159839A (en) Optical recording medium
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JPH06103609A (en) Optical recording medium
JP2000043414A (en) Phase change type optical recording medium
KR100455273B1 (en) Method of recording optical recordable medium
JP2000222776A (en) Optical recording medium
JP3877756B2 (en) Information recording medium
JPH01165043A (en) Optical recording medium