JPS63205105A - Concentration of aqueous solution of low molecular weight organic compound by means of membrane - Google Patents

Concentration of aqueous solution of low molecular weight organic compound by means of membrane

Info

Publication number
JPS63205105A
JPS63205105A JP3880987A JP3880987A JPS63205105A JP S63205105 A JPS63205105 A JP S63205105A JP 3880987 A JP3880987 A JP 3880987A JP 3880987 A JP3880987 A JP 3880987A JP S63205105 A JPS63205105 A JP S63205105A
Authority
JP
Japan
Prior art keywords
membrane module
stage
membrane
concentrate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3880987A
Other languages
Japanese (ja)
Inventor
Hisafumi Kimura
尚史 木村
Shinichi Nakao
真一 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU GIJUTSU KENSHIYUUJIYO KK
Nitto Denko Corp
Original Assignee
NIPPON KAGAKU GIJUTSU KENSHIYUUJIYO KK
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU GIJUTSU KENSHIYUUJIYO KK, Nitto Electric Industrial Co Ltd filed Critical NIPPON KAGAKU GIJUTSU KENSHIYUUJIYO KK
Priority to JP3880987A priority Critical patent/JPS63205105A/en
Publication of JPS63205105A publication Critical patent/JPS63205105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To concentrate an aqueous solution to a high concentration under a comparatively low operating pressure in each stage by arranging in parallel and multi-stages membrane modules equipped with reverse osmosis membranes having a specific range of removal rate of low molecular weight organic compounds. CONSTITUTION:Membrane modules with reverse osmosis membranes at 30-80% of removal rate of low molecular weight organic compounds to be concentrated such as isopropanol are arranged in parallel and multi-stages on an effluent side and a concentrate side. A raw liquid of an aqueous solution such as isopropanol is supplied to the first membrane module and the permeated liquid is supplied to the second stage membrane module 2 by means of a pump 7. On the other hand, a concentrate is supplied to the second stage membrane module 4 on the concentrate side. The concentrate from the membrane module of each stage on the permeated liquid side is returned to the membrane module of each preceding stage. The concentrate from the first stage membrane module 1 is supplied to the second membrane module on the concentrate side, and the permeated liquid from the membrane module 4 is returned to the membrane module of the preceding stage.

Description

【発明の詳細な説明】 皮呈上立科叫立亘 本発明は、低分子量有機化合物、特に、エタノール、イ
ソプロパツール等の脂肪族低級アルコールや、アセトン
等の低級ジアルキルケトンの水溶液の膜による高濃度濃
縮方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the polymerization of low molecular weight organic compounds, particularly aliphatic lower alcohols such as ethanol and isopropanol, and lower dialkyl ketones such as acetone, using a membrane. Concerning concentration concentration method.

従来■及血 従来、低分子量有機化合物、特に、エタノール、イソプ
ロパツール等の脂肪族低級アルコールや、アセトン等の
低級ジアルキルケトンに代表される低分子量有機化合物
を含む水溶液を濃縮するには、一般に、蒸留法が採、用
されている。
Traditionally, in order to concentrate aqueous solutions containing low molecular weight organic compounds, especially aliphatic lower alcohols such as ethanol and isopropanol, and lower dialkyl ketones such as acetone, generally , the distillation method is adopted and used.

しかし、この蒸留法は、気液の相転換をさせるために、
多大の熱エネルギーを要する。第2図は、このような蒸
留法による濃縮を示す。原料水溶液は予熱器11にて予
め所定の温度に予熱されて、ポンプ12にて蒸留塔13
に供給され、加熱器14による塔底15でのの加熱によ
って蒸発し、所要の濃度に濃縮され、塔頂16に流れて
、冷却器17で冷却された後、塔頂液として濃縮液を得
る。
However, in this distillation method, in order to perform phase transformation of gas and liquid,
Requires a large amount of thermal energy. FIG. 2 shows concentration by such a distillation method. The raw material aqueous solution is preheated to a predetermined temperature in a preheater 11, and then sent to a distillation column 13 by a pump 12.
is supplied to the tower, is evaporated by heating at the bottom 15 of the tower by the heater 14, is concentrated to the required concentration, flows to the tower top 16, is cooled by the cooler 17, and then obtains a concentrated liquid as the tower top liquid. .

この蒸留法によれば、よく知られているように、塔底の
加熱部にて多大の熱エネルギーが必要とされる。
According to this distillation method, as is well known, a large amount of thermal energy is required in the heating section at the bottom of the column.

そこで、圧力を駆動力とする逆浸透膜による濃縮法も試
みられている。しかし、除去率の高い逆浸透膜を用いる
低分子量有機化合物の濃縮においては、濃縮が進行する
につれて、濃縮液の浸透圧が急激に高まるので、ta 
k−Nには自ずから限界がある。例えば、濃度15重量
%のエタノール水溶液の浸透圧は80〜100 kg/
c11!であって、膜透過液の浸透圧が無視し得る場合
には、上記浸透圧を越える高い圧力を必要とする。従っ
て、除去率の高い逆浸透膜を用いる逆浸透法によって、
低分子量有機化合物を含む水溶液を高倍率に濃縮するこ
とは、実用上、不可能である。
Therefore, a concentration method using a reverse osmosis membrane using pressure as a driving force has also been attempted. However, when concentrating low molecular weight organic compounds using a reverse osmosis membrane with a high removal rate, the osmotic pressure of the concentrate increases rapidly as the concentration progresses, so the ta
kN naturally has a limit. For example, the osmotic pressure of an ethanol aqueous solution with a concentration of 15% by weight is 80 to 100 kg/
c11! If the osmotic pressure of the membrane-permeating liquid is negligible, a high pressure exceeding the above-mentioned osmotic pressure is required. Therefore, by reverse osmosis using a reverse osmosis membrane with a high removal rate,
It is practically impossible to concentrate an aqueous solution containing a low molecular weight organic compound to a high magnification.

■が解゛ しようとする問題声 本発明は、低級アルコールやケトンに代表される低分子
量有機化合物を含む水溶液の濃縮における上記した問題
を解決するためになされたものであって、上記のような
水溶液を逆浸透法によって高濃度に濃縮することができ
る方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in concentrating aqueous solutions containing low-molecular-weight organic compounds such as lower alcohols and ketones. It is an object of the present invention to provide a method capable of concentrating an aqueous solution to a high concentration by reverse osmosis.

朋l塾【4解状J−Vだ予jど1段 本発明は、低分子量有機化合物水溶液の膜による濃縮方
法において、上記低分子量有機化合物に対する除去率が
30〜80%である逆浸透膜を備えた膜モジュールを第
1段の膜モジュールから透過液側と濃縮液側とに並列に
して多段に配列し、第1段の膜モジュールからの透過液
を順次、透過液側の次段の膜モジュールに供給し、濃縮
液を前段の膜モジュールに戻すと共に、第1段の膜モジ
ュールからの濃縮液を順次、濃縮液側の次段の膜モジュ
ールに供給し、透過液を前段の膜モジュールに戻し、か
くして、それぞれ最終段の膜モジュールから透過液及び
濃縮液を得ることを特徴とする。
The present invention relates to a method for concentrating an aqueous solution of a low molecular weight organic compound using a membrane, and the present invention provides a reverse osmosis membrane having a removal rate of 30 to 80% for the low molecular weight organic compound. The membrane modules equipped with the above are arranged in parallel in multiple stages on the permeate side and concentrate side from the first stage membrane module, and the permeate from the first stage membrane module is sequentially transferred to the next stage on the permeate side. At the same time, the concentrated liquid from the first membrane module is sequentially supplied to the next membrane module on the concentrated liquid side, and the permeated liquid is returned to the previous membrane module. , and thus obtain a permeate and a concentrate from the final stage membrane module, respectively.

本発明において、低分子量有機化合物とは、分子量が1
000以下である有機化合物をいい、特に、本発明の方
法は、前述したように、エタノール、イソプロパツール
等の低級脂肪族アルコールや、アセトン等の低級ジアル
キルケトンの水溶液の濃縮に好適である。また、逆浸透
膜の除去率とは、温度25℃、圧力30kg/cI11
の条件下に、濃度1重量%の水溶液を逆浸透処理したと
きに得られる除去率をいう。
In the present invention, a low molecular weight organic compound is defined as having a molecular weight of 1
As mentioned above, the method of the present invention is particularly suitable for concentrating aqueous solutions of lower aliphatic alcohols such as ethanol and isopropanol, and lower dialkyl ketones such as acetone. In addition, the removal rate of reverse osmosis membrane is at a temperature of 25℃ and a pressure of 30kg/cI11.
This refers to the removal rate obtained when an aqueous solution with a concentration of 1% by weight is subjected to reverse osmosis treatment under the following conditions.

本発明の方法において用いる逆浸透膜は、濃縮すべき低
分子量有機化合物に対する除去率が30〜80%の範囲
にあり、好ましくは40〜70%の範囲にあり、このよ
うに、比較的、除去率の低い膜を用いることが重要であ
る。しかしながら、本発明の方法によれば、最終的には
、上記化合物の水溶液は、高濃度に濃縮されるので、か
かる高濃度水溶液に対して十分な耐久性を有することが
必要であり、かかる耐久性を有する膜として、例えば、
酢酸セルロース、ポリイミド、ポリアミド等からなる非
対称膜や、ポリスルホン、ポリエーテルスルホン、ポリ
イミド等からなる限外濾過膜上にポリ尿素、ポリアミド
、ポリエーテル、ポリビニルアルコール、スルホン化ポ
リスルホン等の超薄膜を形成させてなる複合膜を用いる
ことが好ましい。このような膜は、既に知られており、
上記した範囲の除去率を有する膜は、一部、市販されて
おり、本発明の方法においては、かかる市販されてしく
る膜を用いることができる。
The reverse osmosis membrane used in the method of the present invention has a removal rate of 30 to 80%, preferably 40 to 70%, for low molecular weight organic compounds to be concentrated. It is important to use a membrane with a low ratio. However, according to the method of the present invention, the aqueous solution of the compound is ultimately concentrated to a high concentration, so it is necessary to have sufficient durability against such a highly concentrated aqueous solution. For example, as a film with properties,
An ultra-thin film made of polyurea, polyamide, polyether, polyvinyl alcohol, sulfonated polysulfone, etc. is formed on an asymmetric membrane made of cellulose acetate, polyimide, polyamide, etc., or an ultrafiltration membrane made of polysulfone, polyethersulfone, polyimide, etc. It is preferable to use a composite membrane consisting of: Such membranes are already known,
Some of the membranes having removal rates within the above range are commercially available, and such commercially available membranes can be used in the method of the present invention.

本発明の方法において用いる逆浸透膜は、前述したよう
に、?;縮すべき低分子量有機化合物に対する除去率が
30〜80%の範囲であることが必要である。除去率が
余りに低いときは、非常に多数の膜モジュールを必要と
し、効率及び費用のいずれの点においても好ましくなく
、他方、余りに高いときは、それぞれの段において高い
操作圧力を必要とし、かかる高い操作圧力に耐える逆浸
透膜を得ることが困難であるからである。
As mentioned above, the reverse osmosis membrane used in the method of the present invention is ? It is necessary that the removal rate for low molecular weight organic compounds to be reduced is in the range of 30 to 80%. If the removal rate is too low, it will require a very large number of membrane modules, which is unfavorable in terms of both efficiency and cost, while if it is too high, it will require a high operating pressure in each stage, and the high This is because it is difficult to obtain a reverse osmosis membrane that can withstand operating pressure.

また、本発明の方法において用いる膜モジュールの形態
は特に限定されるものではなく、スパイラル型、ホロー
ファイバー型、プレート・アンド・フレーム型等、任意
の形態の膜モジュールを用いることができる。
Further, the form of the membrane module used in the method of the present invention is not particularly limited, and any form of membrane module such as a spiral type, hollow fiber type, plate and frame type, etc. can be used.

以下に実施例を示す図面に基づいて、本発明の方法を詳
細に説明する。
The method of the present invention will be explained in detail below based on the drawings showing examples.

第1図は、第1段の膜モジュール1を含めて、膜モジュ
ール2及び3によって透過液側を3段に直列に接続する
と共に、濃縮液側についても、第1段の膜モジュール1
を含めて、膜モジュール4及び5によって3段に直列に
接続し、これら透過液側と濃縮液側とを合計5段に接続
してなる濃縮装置を示す。
In Figure 1, the permeate side is connected in series in three stages by membrane modules 2 and 3, including the first stage membrane module 1, and the first stage membrane module 1 is also connected on the concentrate side.
Including, membrane modules 4 and 5 are connected in series in three stages, and the permeate side and concentrate side are connected in a total of five stages.

この装置においては、先ず、原液としての低分子量有機
化合物を含む水溶液は、ポンプ6にて第1段の膜モジュ
ール1に供給され、その透過液は、ポンプ7にて透過液
側の第2段の膜モジュール2に供給され、他方、濃縮液
は、濃縮液側の第2段の膜モジュール4に供給される。
In this device, first, an aqueous solution containing a low molecular weight organic compound as a stock solution is supplied to the first stage membrane module 1 by a pump 6, and the permeate is supplied to a second stage membrane module 1 on the permeate side by a pump 7. On the other hand, the concentrate is supplied to the second stage membrane module 4 on the concentrate side.

透過液側の第2段の膜モジュール2からの透過液は、ポ
ンプ8にて更に第3段の膜モジュール3に供給され、こ
のようにして、透過液は、透過液側の膜モジュールを多
段に直列に通過して、最終的に透過液を得る。
The permeate from the second-stage membrane module 2 on the permeate side is further supplied to the third-stage membrane module 3 by the pump 8, and in this way, the permeate passes through the membrane modules on the permeate side in multiple stages. The permeate is finally obtained.

透過液側においては、各段の膜モジュールからの濃縮液
は、前段の膜モジュールに戻される。
On the permeate side, the concentrated liquid from each membrane module is returned to the previous membrane module.

他方、第1段の膜モジュールlからの濃縮液は、濃縮液
側の第2段の膜モジュール4に供給され、この第2段の
膜モジュール4からの透過液は、前段、即ち、第1段の
膜モジュール1にポンプ9にて戻される。濃縮液側の第
2段の膜モジュール4からの濃縮液は、次段、即ち、第
3段の膜モジュール5に供給され、第3段の膜モジュー
ル5からの透過液は、前段、即ち、第2段の膜モジュー
ル4にポンプ10にて戻される。このようにして、濃縮
液は、第1段の膜モジュールから濃縮液側の膜モジュー
ルを多段に直列に通過して、最終段の膜モジュールから
所要の高濃度の濃縮液を得る。
On the other hand, the concentrate from the first-stage membrane module l is supplied to the second-stage membrane module 4 on the concentrate side, and the permeate from the second-stage membrane module 4 is sent to the previous stage, that is, the first stage. It is returned to the membrane module 1 in the stage by a pump 9. The concentrate from the second-stage membrane module 4 on the concentrate side is supplied to the next stage, that is, the third-stage membrane module 5, and the permeate from the third-stage membrane module 5 is supplied to the previous stage, that is, It is returned to the second stage membrane module 4 by the pump 10. In this way, the concentrate passes from the first-stage membrane module to the membrane module on the concentrate side in series in multiple stages, and the desired high-concentration concentrate is obtained from the final-stage membrane module.

以上のように、本発明の方法においては、第1段の膜モ
ジュールから透過液側と濃縮液側とにそれぞれ多段に膜
モジュールを接続し、透過液側においては、それぞれの
段の透過液を次段の膜モジュールに供給すると共に、濃
縮液を前段の膜モジュールに戻し、他方、濃縮液側では
、それぞれの段の濃縮液を次段の膜モジュールに供給す
ると共に、透過液を前段の膜モジュールに戻し、それぞ
れ最終段の膜モジュールから透過液及び濃縮液を得るも
のである。
As described above, in the method of the present invention, membrane modules are connected in multiple stages from the first stage membrane module to the permeated liquid side and the concentrated liquid side, respectively, and on the permeated liquid side, the permeated liquid of each stage is connected to the permeated liquid side and the concentrated liquid side. The concentrated liquid is supplied to the next membrane module, and the concentrated liquid is returned to the previous membrane module.On the other hand, on the concentrated liquid side, the concentrated liquid of each stage is supplied to the next membrane module, and the permeated liquid is sent to the membrane module of the previous stage. The permeated liquid and concentrated liquid are obtained from the membrane module at the final stage.

衾皿曳塾来 ここに、本発明の方法において用いる逆浸13Jllは
、その濃縮すべき低分子量有機化合物に対する除去率が
比較的低いので、いずれの段の膜モジュールについても
、これに供給される低分子量有機化合物の原料水溶液と
透過液との間の濃度差はそれほど大きくはなく、従って
、原料水溶液と透過液との間の浸透圧の差もそれほど大
きくはない。
Here, since the reverse immersion 13Jll used in the method of the present invention has a relatively low removal rate for low molecular weight organic compounds to be concentrated, The difference in concentration between the raw aqueous solution of the low molecular weight organic compound and the permeate is not so large, and therefore the difference in osmotic pressure between the raw aqueous solution and the permeate is not so large.

その結果として、本発明の方法によれば、いずれの段に
おいても、それほど大きい操作圧力を必要としないで、
逆浸透処理による水溶液の濃縮処理を行なうことができ
、このように、各段においては、比較的低い操作圧力に
て多段に順次に濃縮処理を行ないながら、最終的に高濃
度の濃縮水溶液を得ることができる。
As a result, the method according to the invention does not require very high operating pressures in any stage.
It is possible to concentrate an aqueous solution by reverse osmosis treatment, and in this way, in each stage, the concentration process is performed sequentially in multiple stages at a relatively low operating pressure, and finally a highly concentrated concentrated aqueous solution is obtained. be able to.

大施貫 操作圧力80kg/calO下でイソプロパツールに対
する除去率が40〜60%、透過流量が0.1〜0.2
m’/m”・日であるポリアミド架橋超薄膜を有する複
合逆浸透膜を備えた膜モジュールを第1図に示したよう
に、5段の装置に構成した。
Under a large operating pressure of 80 kg/calO, the removal rate for isopropanol is 40-60%, and the permeation flow rate is 0.1-0.2.
A membrane module equipped with a composite reverse osmosis membrane having an ultra-thin polyamide crosslinked membrane with a thickness of m'/m''·day was configured into a five-stage device as shown in FIG.

この装置を用いて、原料として、濃度20重量%のイソ
プロパツール水溶液を10001qr/IIの割合で第
1段の膜モジュールに供給し、濃度60重■%のイソプ
ロパツール水溶液を濃縮液として330kg/時の割合
で得た。
Using this equipment, an aqueous solution of isopropanol with a concentration of 20% by weight is supplied as a raw material to the first stage membrane module at a rate of 10001 qr/II, and 330 kg of an aqueous solution of isopropanol with a concentration of 60% by weight is used as a concentrated liquid. / hour.

上記の濃縮処理によれば、所要動力は、各段の膜モジュ
ールに原料水溶液を供給するポンプのための動力のみで
あって、所要動力は、約20HP(計算値15)TP、
ポンプ効率が0.7)であった。
According to the above concentration process, the required power is only for the pumps that supply the raw material aqueous solution to the membrane modules at each stage, and the required power is approximately 20 HP (calculated value 15) TP,
The pump efficiency was 0.7).

他方、前述した蒸留法によって、効率は低いが、最も低
エネルギーで実施し得るように、還流比0(還流液量O
kg/時)として、脱法と同じ条件にて、イソプロパツ
ールを濃縮した。この蒸留法によれば、所要動力は約6
0HPであった。但し、実際には、170HP必要であ
るが、熱回収等を加味して、発電効率を約1/3として
いる。
On the other hand, by the distillation method described above, the reflux ratio is 0 (the amount of reflux liquid O
kg/hour), isopropanol was concentrated under the same conditions as the extraction method. According to this distillation method, the required power is approximately 6
It was 0HP. However, although 170 HP is actually required, the power generation efficiency is reduced to about 1/3 by taking into account heat recovery, etc.

従って、脱法によれば、蒸留法に比べて、所要エネルギ
ー量を約1/3に低減することができる。
Therefore, according to the elimination method, the amount of energy required can be reduced to about 1/3 compared to the distillation method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施するための膜モジュール
構成の一例を示し、第2図は、蒸留法による水溶液の濃
縮を示す。 1〜5・・・膜モジュール、6〜10・・・ポンプ、1
1・・・予熱器、12・・・ポンプ、13・・・蒸留塔
、14・・・加熱器、15・・・塔底、16・・・塔頂
、17・・・冷却器。 特許出願人 日東電気工業株式会社 %、4’L−一 第2図
FIG. 1 shows an example of a membrane module configuration for carrying out the method of the present invention, and FIG. 2 shows concentration of an aqueous solution by a distillation method. 1-5... Membrane module, 6-10... Pump, 1
DESCRIPTION OF SYMBOLS 1... Preheater, 12... Pump, 13... Distillation column, 14... Heater, 15... Tower bottom, 16... Tower top, 17... Cooler. Patent applicant Nitto Electric Industry Co., Ltd.%, 4'L-1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)低分子量有機化合物水溶液の膜による濃縮方法に
おいて、上記低分子量有機化合物に対する除去率が30
〜80%である逆浸透膜を備えた膜モジュールを第1段
の膜モジュールから透過液側と濃縮液側とに並列にして
多段に配列し、第1段の膜モジュールからの透過液を順
次、透過液側の次段の膜モジュールに供給し、濃縮液を
前段の膜モジュールに戻すと共に、第1段の膜モジュー
ルからの濃縮液を順次、濃縮液側の次段の膜モジュール
に供給し、透過液を前段の膜モジュールに戻し、かくし
て、それぞれ最終段の膜モジュールから透過液及び濃縮
液を得ることを特徴とする低分子量有機化合物水溶液の
膜による濃縮方法。
(1) In a method for concentrating an aqueous solution of a low molecular weight organic compound using a membrane, the removal rate for the above low molecular weight organic compound is 30%.
Membrane modules equipped with reverse osmosis membranes of ~80% are arranged in multiple stages in parallel on the permeate side and concentrate side from the first-stage membrane module, and the permeate from the first-stage membrane module is sequentially , the permeated liquid is supplied to the next stage membrane module on the permeated liquid side, the concentrated liquid is returned to the previous stage membrane module, and the concentrated liquid from the first stage membrane module is sequentially supplied to the next stage membrane module on the concentrated liquid side. A method for concentrating an aqueous solution of a low molecular weight organic compound using a membrane, characterized in that the permeate is returned to the membrane module at the previous stage, and thus a permeate and a concentrate are obtained from the membrane module at the final stage, respectively.
JP3880987A 1987-02-20 1987-02-20 Concentration of aqueous solution of low molecular weight organic compound by means of membrane Pending JPS63205105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3880987A JPS63205105A (en) 1987-02-20 1987-02-20 Concentration of aqueous solution of low molecular weight organic compound by means of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3880987A JPS63205105A (en) 1987-02-20 1987-02-20 Concentration of aqueous solution of low molecular weight organic compound by means of membrane

Publications (1)

Publication Number Publication Date
JPS63205105A true JPS63205105A (en) 1988-08-24

Family

ID=12535615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3880987A Pending JPS63205105A (en) 1987-02-20 1987-02-20 Concentration of aqueous solution of low molecular weight organic compound by means of membrane

Country Status (1)

Country Link
JP (1) JPS63205105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173035A (en) * 2010-02-23 2011-09-08 Tsukishima Kankyo Engineering Ltd Method and device for separating and recovering intentional substance
JP4868479B2 (en) * 1999-05-10 2012-02-01 ビーエーエスエフ ソシエタス・ヨーロピア Fractionation of polymers with amino groups having a broad molar mass distribution and soluble or dispersible in water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116695A (en) * 1984-11-12 1986-06-04 科学技術庁原子力局長 Method of treating aqueous solution containing radioactive iodine
JPS61200813A (en) * 1985-03-01 1986-09-05 Kurita Water Ind Ltd Membrane separation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116695A (en) * 1984-11-12 1986-06-04 科学技術庁原子力局長 Method of treating aqueous solution containing radioactive iodine
JPS61200813A (en) * 1985-03-01 1986-09-05 Kurita Water Ind Ltd Membrane separation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868479B2 (en) * 1999-05-10 2012-02-01 ビーエーエスエフ ソシエタス・ヨーロピア Fractionation of polymers with amino groups having a broad molar mass distribution and soluble or dispersible in water
JP2011173035A (en) * 2010-02-23 2011-09-08 Tsukishima Kankyo Engineering Ltd Method and device for separating and recovering intentional substance

Similar Documents

Publication Publication Date Title
Drioli et al. Progress and new perspectives on integrated membrane operations for sustainable industrial growth
US10500544B2 (en) Advancements in osmotically driven membrane systems including multi-stage purification
Drioli et al. Membrane engineering for process intensification: a perspective
AU2011328535B2 (en) Forward osmosis system having solvent separation by means of membrane distillation
Davis et al. Facilitated transport membrane hybrid systems for olefin purification
JPS63296820A (en) Production of high-purity hydrogen or helium
CA2351272A1 (en) Membrane-assisted fluid separation apparatus and method
Chong et al. Energy-efficient reverse osmosis desalination: Effect of retentate recycle and pump and energy recovery device efficiencies
EP3559197A1 (en) Removing components of alcoholic solutions via forward osmosis and related systems
US20130056416A1 (en) Conversion of seawater to drinking water at room temperature
JP5988032B2 (en) Fresh water production apparatus and operation method thereof
Al-Sofi et al. Optimization of hybridized seawater desalination process
JP2000167358A (en) Membrane separation system and membrane separation method
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
US20120311796A1 (en) Apparatus and method for production of natural dye
Cassano et al. Integrating different membrane operations and combining membranes with conventional separation techniques in industrial processes
JPS63205105A (en) Concentration of aqueous solution of low molecular weight organic compound by means of membrane
JP2001078732A (en) Method for reverse osmosis concentration of tomato juice
KR101695215B1 (en) Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater
US4755297A (en) Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems
JP2685928B2 (en) Recovery method of dilute ethanol
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
CN112456606A (en) Flat forward osmosis concentration device
JPH05226A (en) Dehydration and concentration of aqueous solution of organic matter
CN110342599A (en) A kind of membrane distillation purified water preparation system