JP2011173035A - Method and device for separating and recovering intentional substance - Google Patents

Method and device for separating and recovering intentional substance Download PDF

Info

Publication number
JP2011173035A
JP2011173035A JP2010036974A JP2010036974A JP2011173035A JP 2011173035 A JP2011173035 A JP 2011173035A JP 2010036974 A JP2010036974 A JP 2010036974A JP 2010036974 A JP2010036974 A JP 2010036974A JP 2011173035 A JP2011173035 A JP 2011173035A
Authority
JP
Japan
Prior art keywords
stage
liquid
permeate
separation
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010036974A
Other languages
Japanese (ja)
Other versions
JP5398577B2 (en
Inventor
Yasuhiro Tateishi
泰弘 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Original Assignee
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kankyo Engineering Ltd filed Critical Tsukishima Kankyo Engineering Ltd
Priority to JP2010036974A priority Critical patent/JP5398577B2/en
Publication of JP2011173035A publication Critical patent/JP2011173035A/en
Application granted granted Critical
Publication of JP5398577B2 publication Critical patent/JP5398577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To separate each substance of a mixture of not less than two intentional substances whose trends of membrane permeability are approximate at high purity. <P>SOLUTION: The method is for separating an intentional substance 1 contained in a raw material solution into a final penetrant fluid and an intentional substance 2 into the final residue, using a separation means for separating a liquid to be treated as the residue and the penetrant fluid. This method is characteristic in that (1) the separation is carried out by using a multi-stage counter flow separation operation constituted so as to send the residue obtained by separation operation to the latter stage, and return the penetrant fluid as a liquid to be treated and/or a cleaning fluid of the former stage and (2) the raw material solution is supplied to either one of the intermediate stages of the multi-stage counterflow separation operation except the initial and the final stages. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発酵工業、製薬工業、精糖工業、アミノ酸工業、食品工業、染料工業、顔料工業、化学工業、金属精錬工業、廃棄物処理業などにおいて、広く行われている目的物質である有価物や不純物の塩などを分離・回収する方法に係るものである。より詳しくは、複数の目的物質(たとえば有価物や不純物)を、多段向流分離手段を用いて各々の目的物質を分離、除去、精製するものである。   The present invention is a valuable substance that is a widely used target substance in the fermentation industry, pharmaceutical industry, refined sugar industry, amino acid industry, food industry, dye industry, pigment industry, chemical industry, metal refining industry, waste treatment industry, etc. And a method for separating and recovering salt of impurities. More specifically, a plurality of target substances (for example, valuables and impurities) are separated, removed, and purified using multistage countercurrent separation means.

例えば発酵工業、蛋白質アミノ酸工業、製薬工業では微生物を培養してアミノ酸の製造、醸造、抗生物質の製造等が行われている。具体的には、発酵ブロス等から、分離膜、遠心分離機等を用いてアミノ酸等の有価物を含有する製品液に分離し、分離した製品液をスチームによる蒸発操作等により目的物質(有価物)を製造し、微生物菌体が分離残渣として残される。
また、染料工業、顔料工業、化学工業等では、製造工程で塩析操作が行われており、その後に不純物となる塩分を除去されている。
分離残渣中に残留する有価物を回収するに際しては、従来の濾過分離等の方法に代わって、膜処理を適用することが多くなっている。前述した塩分の除去に際しても膜処理が利用されている。
膜処理技術の具体的分離手法として、透過しやすい物質と透過しにくい物質の分離を、最終の段で新鮮な洗浄液を供給し、その段で得た透過液を多段使用しながら、最初の段から目的物質を高い回収率で得、最終残液に目的物質が僅かしか残らない、時間差的多段向流法による膜を用いた技術が知られている。(特許文献1)
また、特許文献2において、発明者らは、被処理物から有価物、不純物などを効率的に回収する目的で、第1系統の多段向流分離操作における最初の段の透過液を、第1系統の最終透過液として取出すこと、該第1系統の多段向流分離操作で生じる他の透過液(または残液)に対し、第2系統の分離操作を行うことを開示した。 それらにより全体として高い分離性能が得られ、目的物質の高濃度回収を可能とした。
特許文献3において発明者は、透過傾向の異なる物質の分離を運転条件の調整により、透過傾向を制御することで、デカグリセリン混合物からのジグリセリンやトリグリセリンの除去などの精密な分離精製方法を開示した。
For example, in the fermentation industry, the protein amino acid industry, and the pharmaceutical industry, microorganisms are cultured to produce amino acids, brew them, and produce antibiotics. Specifically, the fermentation broth is separated into a product liquid containing valuable materials such as amino acids using a separation membrane, a centrifuge, etc., and the separated product liquid is subjected to a target substance (valuable materials) by evaporating operation with steam or the like. ), And microbial cells are left as a separation residue.
In the dye industry, the pigment industry, the chemical industry, and the like, salting out operations are performed in the manufacturing process, and thereafter, the salt that becomes an impurity is removed.
In collecting valuable materials remaining in the separation residue, membrane treatment is often applied instead of the conventional filtration separation method and the like. Membrane treatment is also used for the above-described salt removal.
As a specific separation method for membrane treatment technology, separation of easily permeable substances and difficultly permeable substances is performed by supplying fresh cleaning liquid at the final stage and using the permeated liquid obtained at that stage in multiple stages. There is known a technique using a time-differential multi-stage counter flow method in which the target substance is obtained at a high recovery rate and only a small amount of the target substance remains in the final residual liquid. (Patent Document 1)
Further, in Patent Document 2, the inventors used the first stage permeate in the first stage multistage countercurrent separation operation for the purpose of efficiently recovering valuable materials, impurities, and the like from the object to be processed. It has been disclosed to take out as a final permeate of the system, and to perform a second system of separation with respect to other permeate (or residual liquid) generated by the multistage countercurrent separation operation of the first system. As a result, high separation performance was obtained as a whole, and high concentration recovery of the target substance was made possible.
In patent document 3, the inventor performs a precise separation and purification method such as removal of diglycerin and triglycerin from a decaglycerin mixture by controlling the permeation tendency by adjusting operating conditions for separation of substances having different permeation tendencies. Disclosed.

ところで、水溶性オリゴマーや水溶性高分子の一部では、分子量の異なる類似物質の混合物から、狭い分子量域範囲で分画された精製物を得ることは、その物質やその物質の派生物質の機能性発現にとって重要である場合が多いと言われている。
しかしながら、特許文献1や特許文献2の技術では、それぞれ透過性がある物質同志を採用した膜で分離するにあたり、阻止率や透過率(Transmittance)に大きな差がある場合や、ほとんど透過しない物質と透過する物質の分離は可能であるものの、双方の透過傾向が小さい場合、あるいは透過傾向が近接している場合はそれぞれを効率よく分離することは困難であった。すなわち、比較的透過率の高い目的物質1と比較的透過率の低い目的物質2を分離する場合、双方の目的物質の使用する膜での透過率が近ければ、原料溶液を供給する段から分離される透過液には目的物質1に加えて目的物質2も無視できない濃度で混在することになり、この目的物質2の効率よい回収に困難があった。
By the way, for some water-soluble oligomers and water-soluble polymers, obtaining a purified product fractionated in a narrow molecular weight range from a mixture of similar substances with different molecular weights is a function of the substance and its derivatives. It is said that it is often important for sexual expression.
However, in the techniques of Patent Document 1 and Patent Document 2, there are cases where there is a large difference in the blocking rate and transmittance (Transmittance) when separating with a membrane that employs permeable substances, or a substance that hardly transmits. Although it is possible to separate substances that permeate, it is difficult to efficiently separate the two when the transmission tendency of both is small or when the transmission tendency is close. That is, when separating the target substance 1 having a relatively high transmittance and the target substance 2 having a relatively low transmittance, if the transmittance of the target substance used by both of the target substances is close, the separation is performed from the stage where the raw material solution is supplied. In the permeated liquid, in addition to the target substance 1, the target substance 2 is mixed at a concentration that cannot be ignored, and it is difficult to efficiently recover the target substance 2.

特許第3694871号公報Japanese Patent No. 3694871 特開2004−17035号公報JP 2004-17035 A 特開2008−229559号公報JP 2008-229559 A

本発明では、原料溶液から2以上の物質を分離するに際し、これらの物質の膜による阻止率や透過率などで示される透過傾向が近接している場合においても、これらを効率よく分離することを課題とする。   In the present invention, when two or more substances are separated from the raw material solution, even when the permeation tendency indicated by the blocking rate or the transmittance of these substances by the membrane is close, they are efficiently separated. Let it be an issue.

<請求項1>
被処理液を残液と透過液に分離する分離手段を用いて、原料溶液中の目的物質1を最終透過液に、目的物質2を最終残液に分離する方法において、
(1)分離操作による残液を後段に送り、透過液を前段の被処理液および/または洗浄液として戻すように構成された多段向流分離操作を用いて行うこと、
(2)原料溶液を多段向流分離操作の、最初と最後の段を除く中間の段のいずれかに供給すること、
を特徴とする原料溶液の膜分離方法。
<Claim 1>
In the method of separating the target substance 1 in the raw material solution into the final permeate and the target substance 2 into the final residual liquid using a separation means for separating the liquid to be treated into the residual liquid and the permeate.
(1) Performing using a multistage countercurrent separation operation configured to send the residual liquid from the separation operation to the subsequent stage and return the permeate as the liquid to be treated and / or the cleaning liquid in the previous stage;
(2) supplying the raw material solution to one of the intermediate stages except the first and last stages of the multistage countercurrent separation operation;
A membrane separation method for a raw material solution.

〔発明の効果〕
膜透過傾向が近接している目的物質1と目的物質2を分離する場合、例えば目的物質1の方が高い透過傾向であるとしても、原料溶液を供給する最初の段から分離される透過液には、目的物質2も比較的高い濃度で混在している可能性が高い。従来は、このような透過液をさらに分離して目的物質1を得て、残液中の物質(目的物質2)は廃棄されるか、全く別系統の分離手段により分離されるのが通常であった。本願発明では、当該透過液についてさらに多段向流分離手段による分離を行い、その残液を後段の分離手段に供給することで、より濃度の高い状態で目的物質2を多段向流分離手段の最終残液として分離することができる。一方、原料供給段より後段で分離された目的物質1を含む透過液は、分離された段より前の段の洗浄液として順次利用されることで、前段の透過液の目的物質1濃度を高めることが可能である。目的物質1は多段向流手段の最終透過液として分離される。このような構成とすることで、目的物質1と目的物質2の双方を高収率で、効率よく分離することが可能となる。
〔The invention's effect〕
When separating the target substance 1 and the target substance 2 that are close to each other in membrane permeation, for example, even if the target substance 1 has a higher permeation tendency, the permeate separated from the first stage of supplying the raw material solution is used. It is highly possible that the target substance 2 is also mixed at a relatively high concentration. Conventionally, the permeate is further separated to obtain the target substance 1, and the substance (target substance 2) in the residual liquid is usually discarded or separated by a completely different system of separation means. there were. In the present invention, the permeate is further separated by the multistage countercurrent separation means, and the residual liquid is supplied to the subsequent separation means, so that the target substance 2 can be obtained in the final state of the multistage countercurrent separation means in a higher concentration state. It can be separated as a residual liquid. On the other hand, the permeate containing the target substance 1 separated after the raw material supply stage is sequentially used as a cleaning liquid for the stage before the separated stage, thereby increasing the concentration of the target substance 1 in the permeate of the previous stage. Is possible. The target substance 1 is separated as the final permeate of the multistage countercurrent means. With such a configuration, both the target substance 1 and the target substance 2 can be efficiently separated with high yield.

<請求項2>
前記多段向流分離操作を、複数の膜分離手段が直列に配列された装置を用いて行う、請求項1記載の原料溶液の膜分離方法。
<Claim 2>
The membrane separation method for a raw material solution according to claim 1, wherein the multistage countercurrent separation operation is performed using an apparatus in which a plurality of membrane separation means are arranged in series.

〔発明の効果〕
上記構成により2つの目的物質の分離操作について、原料溶液、洗浄液、洗浄水、洗浄溶媒を供給する段や量を変更あるいは調整を一体的に行うことが可能となる。
〔The invention's effect〕
With the above-described configuration, it is possible to integrally change or adjust the steps and amounts for supplying the raw material solution, the cleaning liquid, the cleaning water, and the cleaning solvent for the separation operation of the two target substances.

<請求項3>
前記多段向流分離操作は、複数回のサイクルで行われ、
各サイクルは4段以上の段から構成され、各段の分離操作は被処理液と別途貯留された目的物質1の濃度の異なる複数の洗浄液を使用して行われ、前記洗浄液は前段へいくほど目的物質1の濃度、あるいは目的物質1の目的物質2に対する比率が高くなるように構成され、
各サイクルの最後の段の残液を最終残液として取り出すとともに、各段の透過液を別途設けられた貯留手段に貯留し、後のサイクルの分離操作において最初の段の被処理液として、あるいは前のサイクルで分離された段より前段の洗浄液として使用することにより供給する、
請求項1記載の原料溶液の膜分離方法。
<Claim 3>
The multistage countercurrent separation operation is performed in a plurality of cycles,
Each cycle is composed of four or more stages, and the separation operation of each stage is performed using a plurality of cleaning liquids having different concentrations of the target liquid 1 separately stored from the liquid to be processed. The concentration of the target substance 1 or the ratio of the target substance 1 to the target substance 2 is increased,
The residual liquid at the last stage of each cycle is taken out as the final residual liquid, and the permeated liquid at each stage is stored in a separately provided storage means, and as the first stage liquid to be processed in the separation operation of the subsequent cycle, or Supply by using it as a cleaning liquid before the stage separated in the previous cycle,
The method for membrane separation of a raw material solution according to claim 1.

〔発明の効果〕時間差的多段向流
該多段向流分離手段は、前サイクルの多段向流分離手段おける透過液を次サイクルの多段向流分離手段の洗浄液として使用する、時間差的多段向流を可能とするものである。好ましくは、最後の段における洗浄には目的物質1を実質的に含まない洗浄液を使用する。またこの洗浄液は、最終残液として分離する目的物質2に対する比率が精製するために十分低い程度であれば、目的物質1を含んでいてもよい。時間差的多段向流の利点は、分離手段が1つあれば可能であるため省スペース化が可能であること、多量の洗浄水を必要とせず、排水量が小さいためコストダウンを図れることなどがある。
[Effect of the invention] Time-difference multistage countercurrent The multistage countercurrent separation means uses a time-difference multistage countercurrent that uses the permeate in the multistage countercurrent separation means of the previous cycle as the cleaning liquid of the multistage countercurrent separation means of the next cycle. It is possible. Preferably, a cleaning liquid substantially free of the target substance 1 is used for the cleaning in the last stage. Moreover, this washing | cleaning liquid may contain the target substance 1 if the ratio with respect to the target substance 2 isolate | separated as a final residual liquid is a grade low enough to refine | purify. Advantages of time-difference multistage counterflow include that it can be achieved with a single separation means, and that space can be saved, and a large amount of washing water is not required, and the amount of drainage is small, thereby reducing costs. .

<請求項4>
前記多段向流分離操作の最前の2段を除く段より得られる透過液の一部または全部を、当該段より2つ以上前の段に被処理液として戻す、請求項1〜3のいずれかに記載の原料溶液の膜分離方法。
<Claim 4>
The part or all of the permeate obtained from the stage excluding the last two stages of the multi-stage countercurrent separation operation is returned to the stage two or more stages prior to the stage as the liquid to be treated. The membrane separation method of the raw material solution as described in 2.

〔発明の効果〕
本発明によれば、透過率が小さい物質同士を膜により分離する場合であっても、初段における分離開始時の被処理液として複数段の透過液を用いることで初段における分離開始時の被処理液の量あるいは濃度を適切に確保し、透過液を1段以上飛ばして使用することで、1段当たりに使用する透過液流量を小さくすることができ、かつ1段当たりの透過液と被処理液の組成変化を確保できる。
〔The invention's effect〕
According to the present invention, even when substances having low permeability are separated from each other by a membrane, the treatment at the start of separation in the first stage is achieved by using a plurality of stages of permeate as the treatment liquid at the start of separation in the first stage. By appropriately securing the amount or concentration of the liquid and using it with one or more stages of the permeate, the permeate flow rate used per stage can be reduced, and the permeate and the treatment target per stage. The composition change of the liquid can be secured.

<請求項5>
4段以上の多段向流分離操作において、原料溶液を複数の段に分けて供給する、請求項1〜4のいずれかに記載の原料溶液の膜分離方法。
<Claim 5>
The raw material solution membrane separation method according to any one of claims 1 to 4, wherein the raw material solution is supplied in a plurality of stages in a multistage countercurrent separation operation of four or more stages.

〔発明の効果〕
原料溶液を単独の段に供給するのではなく、必要に応じて洗浄液で希釈して、複数の段に分けて供給することによって、特に時間差的多段向流分離において中間段での液量不足の防止が可能になる。
〔The invention's effect〕
Rather than supplying the raw material solution to a single stage, diluting with a cleaning liquid as necessary, and supplying it in multiple stages, so that the amount of liquid in the intermediate stage is insufficient particularly in time-differential multistage countercurrent separation. Prevention becomes possible.

<請求項6>
前記多段向流分離操作における最初の段に供給する被処理液を処理前に濃縮する請求項1〜5のいずれかに記載の原料溶液の膜分離方法。
<Claim 6>
The raw material solution membrane separation method according to claim 1, wherein the liquid to be treated to be supplied to the first stage in the multistage countercurrent separation operation is concentrated before the treatment.

〔発明の効果〕
最初の段の被処理液の濃度を適切にすることを目的とする。特に多サイクルを有する多段向流分離手段において、該最初の段に供給する被処理液とするには、前サイクルの透過液は望ましい循環液濃度より低濃度であり、そのままでは適切な濃度の透過液が得られない場合がある。そこで、最初の段の処理前に対象とする前サイクルの回収液を対象として濃縮操作を行うことで、分離開始時の被処理液の濃度を上げるとともに、目的物質1と目的物質2間の透過率の差を広げ、またより多くの透過液を濃縮することにより望ましい濃度の循環液量を確保することが可能となる。
〔The invention's effect〕
The purpose is to make the concentration of the liquid to be treated in the first stage appropriate. In particular, in a multistage countercurrent separation means having multiple cycles, the permeate in the previous cycle has a lower concentration than the desired circulating fluid concentration to be treated to be supplied to the first stage. A liquid may not be obtained. Therefore, by performing a concentration operation on the collected liquid of the target previous cycle before the first stage processing, the concentration of the liquid to be processed at the start of separation is increased and the permeation between the target substance 1 and the target substance 2 is performed. By widening the difference in rate and concentrating more permeate, it becomes possible to secure a desired amount of circulating fluid.

<請求項7>
前記多段向流分離操作の最終段から分離される残液の少なくとも一部を、原料溶液供給段より後段のいずれかの段に供給する、請求項1〜6のいずれかに記載の原料溶液の膜分離方法。
<Claim 7>
The raw material solution according to any one of claims 1 to 6, wherein at least a part of the residual liquid separated from the final stage of the multistage countercurrent separation operation is supplied to any stage after the raw material solution supply stage. Membrane separation method.

〔発明の効果〕
多段向流分離手段の最終段から分離される残液の少なくとも一部を原料溶液供給段より後段のいずれかの段に供給することで、膜分離操作の継続に必要な循環液量が不足する段の液量を確保することができる。また、精製が進んだ残液をいずれかの段に供給することで、精製品の組成を改善、安定させることが可能となる。
〔The invention's effect〕
Supplying at least a part of the residual liquid separated from the final stage of the multistage countercurrent separation means to any of the stages subsequent to the raw material solution supply stage results in a shortage of circulating fluid necessary for continuing the membrane separation operation. The amount of liquid in the stage can be secured. Moreover, it becomes possible to improve and stabilize the composition of a refined product by supplying the residual liquid which has been refined to any stage.

<請求項8>
少なくとも3種類の目的物質を含む原料溶液から、多段向流分離操作により、
(1)前記多段向流分離操作の最終透過液に目的物質1を分離する工程、
(2)前記多段向流分離操作の最終残液に目的物質2を分離する工程、
(3)前記多段向流分離操作のいずれかの段より、透過液または残液の全部または一部を前記多段分離操作とは別の分離手段に供給し、前記別の分離手段の最終透過液または最終残液に目的物質3を分離する工程、
を含む請求項1〜7のいずれかに記載の原料溶液の膜分離方法。
<Claim 8>
From a raw material solution containing at least three kinds of target substances, by a multistage countercurrent separation operation,
(1) a step of separating the target substance 1 from the final permeate of the multistage countercurrent separation operation;
(2) a step of separating the target substance 2 from the final residual liquid of the multistage countercurrent separation operation;
(3) From either stage of the multistage countercurrent separation operation, all or part of the permeate or residual liquid is supplied to a separation means different from the multistage separation operation, and the final permeate of the other separation means Or a step of separating the target substance 3 into the final residual liquid,
The membrane separation method of the raw material solution in any one of Claims 1-7 containing these.

〔発明の効果〕
3種類以上の目的物質の分離が可能となる。第3の分離手段については、多段向流分離手段でも、他の分離手段でもよい。
〔The invention's effect〕
Three or more kinds of target substances can be separated. The third separation means may be a multistage countercurrent separation means or another separation means.

<請求項9>
最初の段の透過液の少なくとも一部を、次サイクルの被処理液の一部として使用することを特徴とする請求項3〜8のいずれかに記載の原料溶液の膜分離方法
<Claim 9>
9. The raw material solution membrane separation method according to claim 3, wherein at least part of the permeate in the first stage is used as part of the liquid to be treated in the next cycle.

〔発明の効果〕
所定の組成に達しない透過液の排出を防止しつつ、次サイクルの初段で必要とする被処理液量を確保することができ、初段以降の透過液量の低減あるいは段の省略が可能となる。また、本発明を複数サイクル繰り返すことで、被処理液の組成を安定させることができる。
なお、本発明は必ずしも全てのサイクルにおいて適用する使用する必要はなく、複数サイクルのうち、必要なサイクルに適用してもよい。
〔The invention's effect〕
While preventing discharge of permeate that does not reach a predetermined composition, the amount of liquid to be treated required in the first stage of the next cycle can be ensured, and the amount of permeate after the first stage can be reduced or the stage can be omitted. . Moreover, the composition of the liquid to be treated can be stabilized by repeating the present invention for a plurality of cycles.
Note that the present invention is not necessarily applied to all cycles, and may be applied to a necessary cycle among a plurality of cycles.

<請求項10>
最初の段の透過液は、前記透過液中の目的物質1が所定濃度以上、および/または透過液中の目的物質1の濃度の目的物質2の濃度に対する比率が所定比率以上となるまで次サイクルの被処理液として使用し、所定濃度、および/または所定比率以上となったら最終透過液として系外に取り出し、第2段の透過液を次サイクルの被処理液として使用する、請求項3〜8のいずれかに記載の原料溶液の膜分離方法。
<Claim 10>
The first stage of the permeate is the next cycle until the target substance 1 in the permeate has a predetermined concentration or more and / or the ratio of the concentration of the target substance 1 in the permeate to the concentration of the target substance 2 becomes a predetermined ratio or more. The liquid to be treated is taken out of the system as a final permeate when a predetermined concentration and / or a predetermined ratio is reached, and the second stage permeate is used as a liquid to be treated in the next cycle. The membrane separation method of the raw material solution in any one of 8.

〔発明の効果〕
請求項8の効果に加え、最終透過液の組成を安定させることができる。
〔The invention's effect〕
In addition to the effect of the eighth aspect, the composition of the final permeate can be stabilized.

<請求項11>
多段向流操作の複数段での膜分離に同一の分離手段を用いることを特徴とする請求項3〜10のいずれかに記載の膜分離方法。
<Claim 11>
The membrane separation method according to any one of claims 3 to 10, wherein the same separation means is used for membrane separation in a plurality of stages of multistage countercurrent operation.

〔発明の効果〕
本発明によれば、膜分離手段および循環槽など付属機器および制御機構を少なくすることができ、操作しやすく、自動化が実施しやすくなるとともに省スペース化、低コスト化が可能となる。
〔The invention's effect〕
According to the present invention, it is possible to reduce the number of accessory devices and control mechanisms such as a membrane separation means and a circulation tank, which makes it easy to operate, facilitates automation, and saves space and costs.

<請求項12>
被処理液を残液と透過液に分離する分離手段を備え、原料溶液中の目的物質1を最終透過液に、目的物質2を最終残液に分離する膜分離装置であって、
(1)分離操作による残液を後段に送り、透過液を前段の被処理液および/または洗浄液として戻す多段向流分離操作により、
(2)原料溶液を多段向流分離操作の、最初と最後の段を除く中間の段のいずれかに供給する、
ように構成された、原料溶液の膜分離装置。
<Claim 12>
A membrane separation apparatus comprising a separation means for separating a liquid to be treated into a residual liquid and a permeate, and separating a target substance 1 in a raw material solution into a final permeate and a target substance 2 into a final residual liquid,
(1) By the multistage countercurrent separation operation in which the residual liquid from the separation operation is sent to the subsequent stage and the permeate is returned as the liquid to be treated and / or the cleaning liquid in the previous stage.
(2) The raw material solution is supplied to one of the intermediate stages except the first and last stages of the multistage countercurrent separation operation.
A raw material solution membrane separator configured as described above.

<請求項13>
直列に配列された複数の膜分離手段を有し、前記多段向流分離操作を前記複数の膜分離手段を用いて行う、請求項12記載の原料溶液の膜分離装置。
<Claim 13>
13. The raw material solution membrane separation apparatus according to claim 12, comprising a plurality of membrane separation means arranged in series, and performing the multistage countercurrent separation operation using the plurality of membrane separation means.

本発明では、原料溶液から2以上の物質を分離するに際し、これらの物質の膜による阻止率や透過傾向等が近接している場合においても、これらを効率よく分離することが可能となる。また原料溶液からの物質の回収率、回収濃度が高く、高い純度が実現でき、排水量、洗浄水量がともに少なくすることができる。   In the present invention, when two or more substances are separated from the raw material solution, they can be efficiently separated even if the blocking rate and permeation tendency of these substances by the membrane are close to each other. Further, the recovery rate and concentration of substances from the raw material solution are high, high purity can be realized, and both the amount of waste water and the amount of washing water can be reduced.

分離装置のフロー図である。It is a flowchart of a separation apparatus. 多段分離装置の各段の構成を示した図である。It is the figure which showed the structure of each stage of a multistage separator. 多段分離装置の各段の構成の一例を示したフロー図である。It is the flowchart which showed an example of the structure of each stage of a multistage separator. 多段分離装置の各段の構成の他の例を示したフロー図である。It is the flowchart which showed the other example of the structure of each stage of a multistage separator. 実施例2の多段分離のフロー図である。6 is a flowchart of multistage separation in Example 2. FIG. 実施例3の多段分離のフロー図である。FIG. 6 is a flow diagram of multi-stage separation in Example 3. 時間差的多段向流に用いる装置の他の例を示すフロー図である。It is a flowchart which shows the other example of the apparatus used for time difference multistage countercurrent. 標準物質となる各ポリエチレングリコール(PEG)関連物質の液体クロマトグラフチャートである。(A)ジエチレングリコール、(B)PEG200、(C)PEG300。It is a liquid chromatograph chart of each polyethylene glycol (PEG) related substance used as a standard substance. (A) Diethylene glycol, (B) PEG200, (C) PEG300. 実施例1における最終残液の液体クロマトグラフチャートである。(A)第5サイクルの最終残液、(B)第6サイクルの最終残液、(C)第7サイクルの最終残液、(D)第8サイクルの最終残液、(E)第9サイクルの最終残液。2 is a liquid chromatograph chart of a final residual liquid in Example 1. FIG. (A) 5th cycle final residue, (B) 6th cycle final residue, (C) 7th cycle final residue, (D) 8th cycle final residue, (E) 9th cycle The final residual liquid. 実施例1における最終透過液の液体クロマトグラフチャートである。(A)第5サイクルの最終透過液、(B)第6サイクルの最終透過液、(C)第7サイクルの最終透過液、(D)第8サイクルの最終透過液、(E)第9サイクルの最終透過液。2 is a liquid chromatograph chart of a final permeate in Example 1. FIG. (A) 5th cycle final permeate, (B) 6th cycle final permeate, (C) 7th cycle final permeate, (D) 8th cycle final permeate, (E) 9th cycle Final permeate.

課題の解決手段に係る各技術について詳説するとともに、より適切な形態について下記に提示する。
本発明は、複数の分離装置を直列に配置した多段向流分離装置(以下、連続多段向流分離装置という)や、時間差的多段向流分離装置を利用して目的物質を分離するものである。
ところで本発明では、分離装置において分離膜を透過した液を透過液、膜を透過せず、残留した液を残液という。なお、時間差的多段向流分離装置においては、操作を構成する膜装置、貯留槽および循環系を構成する配管類に残留する液を含めて残液という。原料溶液は分離操作を行っていない原料を含む液であり、原料液またはその希釈液を指す。また、いわゆる溶液のみを示すものではなく、溶液と固形物の混合物であるスラリーや懸濁液を含むものとする。
Each technique related to the means for solving the problem is described in detail, and a more appropriate form is presented below.
The present invention separates a target substance using a multistage countercurrent separator (hereinafter referred to as a continuous multistage countercurrent separator) in which a plurality of separators are arranged in series or a time-differential multistage countercurrent separator. .
By the way, in this invention, the liquid which permeate | transmitted the separation membrane in the separation apparatus is called permeate, and the liquid which does not permeate | transmit a membrane is called residual liquid. In the time-differential multi-stage countercurrent separation device, the residual liquid including the liquid remaining in the membrane apparatus, the storage tank, and the pipes constituting the circulation system constituting the operation is referred to as a residual liquid. A raw material solution is a liquid containing a raw material that has not been subjected to a separation operation, and refers to a raw material solution or a diluted solution thereof. Moreover, not only a so-called solution is shown, but a slurry or suspension that is a mixture of a solution and a solid material is included.

多段向流分離操作における用語を次の通り規定する。
<被処理液>
被処理液は各段の分離工程に供給される目的物質を含む液の総称である。連続多段向流分離装置における被処理液は、前段の膜分離装置から供給される残液や後段からの透過液を含み、原料溶液が供給される段においては、原料溶液も含む。
一方、時間差的多段向流分離装置では、各段の開始時の膜装置や循環系の液であり、前サイクルにおける透過液などを含んでいる。
The terms in the multistage countercurrent separation operation are defined as follows.
<Processed liquid>
The liquid to be treated is a general term for liquids containing a target substance supplied to the separation process in each stage. The liquid to be treated in the continuous multistage countercurrent separation apparatus includes the residual liquid supplied from the preceding membrane separation apparatus and the permeate from the subsequent stage, and also includes the raw material solution in the stage where the raw material solution is supplied.
On the other hand, in the time-differential multistage countercurrent separation device, the liquid is a membrane device or a circulatory system at the start of each stage, and includes the permeate in the previous cycle.

<洗浄液>
被処理液に水などの溶媒を添加する一方、膜分離を用いて透過液を分離することで対象液中から透過液に着目物質を除去する手法であるダイアフィルトレーションは物質の精製手段として広く用いられる。本発明では被処理液に添加する液を洗浄液と称する。具体的には、純水や洗浄水、後段からの透過液、有機溶媒などである。なお、洗浄液中に目的物質が含まれていても構わない。
<Cleaning liquid>
Diafiltration, which is a technique for removing a target substance from a target liquid by separating the permeate using membrane separation while adding a solvent such as water to the liquid to be treated, is a means for purifying the substance. Widely used. In the present invention, the liquid added to the liquid to be treated is called a cleaning liquid. Specifically, pure water, washing water, permeated liquid from the subsequent stage, organic solvent, and the like. The target substance may be contained in the cleaning liquid.

<段>
連続して複数ある膜分離工程のうち1段分の装置による工程を段と呼ぶ。連続多段向流分離装置では直列に配置された個々の分離装置において実施される分離工程若しくは、分離装置そのものをいう。一方、時間差的多段向流装置では、順次使用する透過液用容器に対応させて分離工程を区切り、その区切りから次の区切りまでの操作をさす。なお、その間に対応させた透過液をその1段分の透過液とする。例えば、容器を各段用に複数用意し、連続的に得られる透過液をその容器に入れるまでを1段としてもよい。そのほか、並列的に複数の容器を使用して、それらを合わせて1段と称することもできる。
<Stage>
Of a plurality of continuous membrane separation processes, a process using an apparatus for one stage is called a stage. In the continuous multistage countercurrent separator, it means a separation step performed in individual separators arranged in series or the separator itself. On the other hand, in the time-differential multi-stage countercurrent apparatus, the separation process is divided in accordance with the permeated liquid containers to be used in sequence, and operations from the division to the next division are performed. In addition, let the permeate | liquid corresponded in the meantime be the permeate | transistor for the 1st step. For example, a plurality of containers may be prepared for each stage, and the process until the continuously obtained permeate is put into the container may be one stage. In addition, a plurality of containers can be used in parallel, and they can be collectively referred to as one stage.

<透過率>
分離膜から出る物質の透過液中濃度の循環液、濃縮液、膜装置への供給液などの取り扱い液の着目した物質の濃度の比を着目した物質の“透過率”と呼ぶ。
<Transmissivity>
The ratio of the concentration of the focused substance in the handling liquid such as the circulating liquid, the concentrated liquid, and the supply liquid to the membrane device of the permeated liquid of the substance exiting the separation membrane is called “permeability” of the focused substance.

<原料溶液と段について>
原料溶液の供給を行う段での原料の供給方法は、透過液の取得と並行して膜装置内の循環系などに行っても、前段での透過液の取得後の残液に対して、その段での透過液の取得に先立って行っても良く、洗浄水などを原料供給に併せて加える方法を含めて、柔軟に対応できる。
<About raw material solutions and steps>
Even if the raw material supply method in the stage where the raw material solution is supplied is performed on the circulation system in the membrane apparatus in parallel with the acquisition of the permeate, the remaining liquid after the permeate is acquired in the previous stage, Prior to acquisition of the permeated liquid at that stage, it may be performed flexibly, including a method of adding washing water or the like together with the raw material supply.

〔連続多段向流分離装置〕
第1の実施形態として図2〜図6により連続多段向流分離装置を利用する方法を開示する。
連続多段向流分離装置は、図5、図6のように直列に複数設けられた膜分離装置から構成される。被処理液を個々の膜分離装置によって透過液と残液に分離し、残液を次の膜分離装置の被処理液として供給するとともに、透過液を、前段の膜分離装置に洗浄液として返送するよう構成されている。図2,3、4は個々の膜分離装置例を示す。適宜組み合わせて使用すればよい。
[Continuous multi-stage counter-current separator]
As a first embodiment, a method of using a continuous multistage countercurrent separator is disclosed with reference to FIGS.
The continuous multistage countercurrent separator is composed of a plurality of membrane separators provided in series as shown in FIGS. The liquid to be treated is separated into a permeate and a residual liquid by each membrane separator, and the residual liquid is supplied as a liquid to be treated in the next membrane separator, and the permeate is returned to the previous membrane separator as a cleaning liquid. It is configured as follows. 2, 3 and 4 show examples of individual membrane separation apparatuses. What is necessary is just to use it combining suitably.

図2の装置は、目的物質1と目的物質2について異なる透過率を示す分離膜および昇圧ポンプ、圧力調節機能などが設けられた膜分離装置65に被処理液61、洗浄液62を供給し、分離操作を行う。膜分離装置65に供給された被処理液、洗浄液から透過液63、残液64が得られる。なお、必要に応じて濃縮用のRO膜やそのための昇圧ポンプ、熱交換器などの圧力・温度調節機能を併設される。   The apparatus shown in FIG. 2 supplies a liquid 61 to be treated and a cleaning liquid 62 to a separation membrane 65 having a different permeability for the target substance 1 and the target substance 2 and a membrane separation apparatus 65 provided with a pressure pump, a pressure control function, etc. Perform the operation. A permeated liquid 63 and a residual liquid 64 are obtained from the liquid to be treated and the cleaning liquid supplied to the membrane separation device 65. In addition, pressure / temperature control functions such as a RO membrane for concentration, a booster pump for that purpose, and a heat exchanger are provided as needed.

図3の装置は、循環液槽70、循環ポンプ67を用いて残液を循環させながら分離を行うものであり、膜表面でのクロスフローを確保する。洗浄液62を加えながら分離を行い、所定の分離濃度となったところで、残液を次の段に被処理液として供給する。なお、透過液は前段の循環液槽に洗浄液として供給するが、流量調整が可能なように透過液タンク71、透過液ポンプ68などを設けることが好ましい。   The apparatus of FIG. 3 performs separation while circulating the residual liquid using the circulating liquid tank 70 and the circulating pump 67, and ensures a cross flow on the membrane surface. Separation is performed while adding the cleaning liquid 62, and when a predetermined separation concentration is reached, the remaining liquid is supplied to the next stage as a liquid to be processed. The permeate is supplied as a cleaning liquid to the circulating fluid tank in the previous stage, but it is preferable to provide a permeate tank 71, a permeate pump 68, and the like so that the flow rate can be adjusted.

図4の装置は、循環液槽は用いず、循環ポンプ67を用いてクロスフローを確保している。圧力調節弁66を用いて対象段の操作圧力を制御する。膜ユニット65は、複数の膜モジュールを一部並列、一部直列に配置している。被処理液61は循環ポンプ67により昇圧され供給される。膜ユニット65内の膜モジュールからの残液64の一部が循環ポンプ67に返送される。この循環系により膜モジュール内の必要なクロスフローが確保できる。また各モジュールからの透過液は集合配管に集まり、透過液63として膜ユニット65から抜き出される。   The apparatus shown in FIG. 4 uses a circulation pump 67 to secure a cross flow without using a circulating liquid tank. The operation pressure of the target stage is controlled using the pressure control valve 66. In the membrane unit 65, a plurality of membrane modules are partially arranged in parallel and partially in series. The liquid 61 to be treated is pressurized by a circulation pump 67 and supplied. Part of the residual liquid 64 from the membrane module in the membrane unit 65 is returned to the circulation pump 67. This circulation system can secure the necessary cross flow in the membrane module. Further, the permeated liquid from each module gathers in the collecting pipe and is extracted from the membrane unit 65 as the permeated liquid 63.

ところで、原料溶液81は、複数ある分離装置のうち中間の段(図6では5段目の段)に供給する。ここで原料溶液供給段からみて上流側の分離操作を『第1の多段向流分離操作』、原料供給段および下流側の分離工程を、『第2の多段向流分離操作』という。また、それらに対応する膜分離装置を『第1の多段向流分離装置』、『第2の多段向流分離装置』という。便宜上、第1および第2の多段向流分離操作について、それぞれ若い段数から、1番目、2番目と数える。   By the way, the raw material solution 81 is supplied to an intermediate stage (fifth stage in FIG. 6) among a plurality of separation apparatuses. Here, the separation operation on the upstream side when viewed from the raw material solution supply stage is referred to as “first multistage countercurrent separation operation”, and the separation process on the raw material supply stage and the downstream side is referred to as “second multistage countercurrent separation operation”. Further, the membrane separation devices corresponding to them are referred to as “first multistage countercurrent separation device” and “second multistage countercurrent separation device”. For convenience, the first and second multi-stage countercurrent separation operations are counted as the first and second from the youngest number of stages, respectively.

図6のフロー図では、原料溶液は第2の多段向流分離装置の1番目の膜分離装置に供給される。その供給位置は、膜ユニットの前後の配管部や貯槽から適切な供給点を選択できる。膜分離装置によって分離された残液は、2番目の膜分離装置に供給される。一方、透過液は、第1の多段向流分離装置に洗浄液として供給される。第2の多段向流分離装置の2番目の膜分離装置では、先に供給された被処理液が2番目の透過液と残液に分離される。ここで2番目の透過液は、1番目の膜分離装置に供給され、2番目の残液は、3番目の膜分離装置に供給される。以下、同様に透過液は前段の洗浄液として、残液は後段の被処理液として供給されていく。第2の多段向流分離装置の最終段の残液が透過しにくい目的物質をもっとも多く含む最終残液として取り出される。 なお、第1の多段向流分離装置の1番目の膜分離装置の上流側には、透過液の濃縮段が設けられている。   In the flowchart of FIG. 6, the raw material solution is supplied to the first membrane separation device of the second multistage countercurrent separation device. The supply position can select an appropriate supply point from the piping part and storage tank before and behind the membrane unit. The residual liquid separated by the membrane separator is supplied to the second membrane separator. On the other hand, the permeate is supplied as a cleaning liquid to the first multistage countercurrent separator. In the second membrane separation device of the second multistage countercurrent separation device, the liquid to be treated previously supplied is separated into the second permeate and the residual liquid. Here, the second permeate is supplied to the first membrane separator, and the second residual liquid is supplied to the third membrane separator. Hereinafter, similarly, the permeated liquid is supplied as a front-stage cleaning liquid, and the remaining liquid is supplied as a rear-stage processing liquid. The residual liquid in the final stage of the second multistage countercurrent separation device is taken out as the final residual liquid that contains the most target substance that hardly permeates. A permeate concentration stage is provided on the upstream side of the first membrane separator of the first multistage countercurrent separator.

図5の装置では、第1番目、第2番目で得た透過液を所定の濃度、例えば20重量%程度まで濃縮する操作をおこない濃縮透過液85を得ている。なお、この濃縮操作は、多段分離向流操作中でも分離操作前でも特に限定されることはない。 必要に応じて、第3段以降の透過液を濃縮し、洗浄液として使用してもよい。濃縮段に続く1番目の分離操作では3段目の操作で得た透過液を洗浄液として加える操作を行い、最終透過液83として得る。
第1の多段向流分離装置では、予め原料溶液から得た、処理液の一部を供給してもよい。
In the apparatus of FIG. 5, the concentrated permeate 85 is obtained by performing an operation of concentrating the permeate obtained in the first and second to a predetermined concentration, for example, about 20% by weight. The concentration operation is not particularly limited even during the multistage separation countercurrent operation or before the separation operation. If necessary, the permeated liquid after the third stage may be concentrated and used as a cleaning liquid. In the first separation operation following the concentration stage, an operation of adding the permeate obtained in the third stage as a washing liquid is performed to obtain a final permeate 83.
In the first multistage countercurrent separator, a part of the processing liquid obtained from the raw material solution in advance may be supplied.

一方、第2の多段向流分離装置でも同様に多段向流分離が行われていき、第1の多段向流分離装置の最終の膜分離装置の残液は、第2の多段向流分離装置の1番目に被処理液として返送される。第1の多段向流分離装置の1番目の膜分離装置から分離される透過液が膜を透過しやすい目的物質を含む最終透過液として取り出される。   On the other hand, multistage countercurrent separation is similarly performed in the second multistage countercurrent separator, and the remaining liquid of the final membrane separator of the first multistage countercurrent separator is the second multistage countercurrent separator. Is returned as the liquid to be treated. The permeate separated from the first membrane separator of the first multistage countercurrent separator is taken out as a final permeate containing a target substance that easily permeates the membrane.

最終段とその1つ前の段では、専ら純水82を洗浄液として用い、最終段から最終残液84を得る。各段の濃度は25重量%程度を維持して実施可能で、濃度調節はそれらの段あるいは代表する段の濃度を測定し、下流段からの透過液の増量あるいは最終2段以外の段での純水の投入、取得した透過液の同じ段への返送などにより実施可能である。また、各段の圧力はそれぞれの段に適した圧力に調節すればよい。具体的には、残液を下流側に移送する際に圧力制御弁を調節することで、順次上流段から下流段に移送する配管系内で、調節する。また、最初の段に昇圧ポンプを用い、それ以降の段には循環ポンプによる昇圧機能と圧力調節弁などの圧力調節機能により、各膜ユニットの運転圧力を調節することができる。   In the final stage and the previous stage, pure water 82 is exclusively used as the cleaning liquid, and the final residual liquid 84 is obtained from the final stage. The concentration of each stage can be maintained at about 25% by weight, and the concentration can be adjusted by measuring the concentration of those stages or representative stages, increasing the amount of permeate from the downstream stage, or in stages other than the last two stages. This can be done by adding pure water or returning the acquired permeate to the same stage. Moreover, what is necessary is just to adjust the pressure of each stage to the pressure suitable for each stage. Specifically, the pressure control valve is adjusted when the residual liquid is transferred to the downstream side, thereby adjusting in the piping system that sequentially transfers from the upstream stage to the downstream stage. Further, the booster pump is used in the first stage, and the operation pressure of each membrane unit can be adjusted in the subsequent stages by a booster function using a circulation pump and a pressure control function such as a pressure control valve.

なお、第1および第2の多段向流分離装置で得られた各段の透過液は、前段の洗浄液として使用されるが、返送先は、直前の段に限定されるものではなく、例えば図5のようにさらに上流側の段としてもよい。このように分離操作の進行方向とは逆方向の離れた段透過液を供給することで透過液を濃度的な推進力が確保された洗浄液として使用することが可能になる。   Note that the permeated liquid obtained in each of the first and second multistage countercurrent separation apparatuses is used as the preceding stage cleaning liquid, but the return destination is not limited to the immediately preceding stage. Further, as shown in FIG. As described above, by supplying the step permeate separated in the direction opposite to the traveling direction of the separation operation, it becomes possible to use the permeate as a cleaning liquid having a high concentration driving force.

なお、第2の多段向流分離装置の最初の段以外から得られた透過液を、第1の多段向流分離装置の洗浄液として使用し、第1の多段向流分離装置と第2の多段向流分離装置による一連の分離操作とすることが好ましい。   The permeate obtained from other than the first stage of the second multistage countercurrent separator is used as the washing liquid of the first multistage countercurrent separator, and the first multistage countercurrent separator and the second multistage separator are used. It is preferable to use a series of separation operations by a countercurrent separation device.

例えば、透過率の小さい膜から透過した物質の量は、残液の組成変化に必要で、透過率の少ない膜による目的物質を対象とした物質の分離においては、残液の組成の有意な変化には、多量の透過液取得が必要になる。しかし多量すぎる同じ濃度組成の洗浄液を同じ分離工程に用いてもその濃度変化は、処理が進むに従い低下する。このような場合に複数の段をとばすことが効果的となる。また段数を増やしても、隣接する段間の組成差が小さくなるような場合にも適用できる。
また、受け入れ側の段で必要とする洗浄液の量、すなわち目標とする透過液量を得るまでに加えるべき洗浄液の量、あるいは目標とする透過液中の糖度分などの内容物の量を得るまでに加えるべき洗浄液の量は、必ずしも、予め準備した透過液量と一致せず、また一致させる必要が常にある訳でもない。本発明において、段数の使い方は、おおむね後段で分離した透過液を前方の段で使いきるように記載したが、それらは不可欠ではなく液量のバランスに関して柔軟に対応する事が可能である。
また、膜分離を行った場合、一般に透過液は循環液と比べると濃度が希薄であり、透過液の濃縮操作を行うことで、分離操作中の濃度の適正化が可能となる。
For example, the amount of substance permeated from a membrane with a low permeability is necessary for the composition change of the residual liquid, and in the separation of a substance targeted for the target substance by a membrane with a low permeability, a significant change in the composition of the residual liquid Requires a large amount of permeate acquisition. However, even if a too large amount of the cleaning solution having the same concentration composition is used in the same separation step, the change in concentration decreases as the processing proceeds. In such a case, it is effective to skip a plurality of steps. Further, even if the number of stages is increased, the present invention can be applied to a case where the difference in composition between adjacent stages becomes small.
Also, the amount of cleaning liquid required at the receiving stage, that is, the amount of cleaning liquid to be added before obtaining the target permeate amount, or the amount of contents such as the sugar content in the target permeate is obtained. The amount of the cleaning liquid to be added to the liquid does not necessarily match the preliminarily prepared permeate amount, and it is not always necessary to match. In the present invention, the usage of the number of stages is described so that the permeated liquid separated in the latter stage is used up in the front stage, but they are not indispensable and can flexibly cope with the balance of the liquid amount.
When membrane separation is performed, the permeate generally has a lower concentration than the circulating fluid, and the concentration during the separation operation can be optimized by concentrating the permeate.

特に本発明では、第1の多段向流分離装置の1番目の段に供給される被処理液は重要で、その濃度を適切に維持することにより、透過液濃度の確保が可能になると共に、次の段においても、開始時の被処理液、透過液濃度の確保が可能になり、全体の運転を円滑に進める事ができる。また、運転の一時停止や対象物質が不足するなど、被処理液濃度が低下した場合も、その液を一旦濃縮することにより、透過液濃度を適切な濃度に確保する事ができる。
また、第1の多段向流手段の開始時の被処理液の濃縮に限らず、分離操作中にも濃縮を行うことで、第1の多段向流手段における目的物質1の透過液への分離が容易になり、同時に目的物質2の残液側への回収が容易になる。その結果、最終透過液中の目的物質2の混入の抑制できる。この濃縮は目的物質1が透過率の低い物質である場合に好適である。多くのナノフィルトレーション膜の場合、残液側の濃度が低いと、透過率が低くなる傾向があり、この濃縮操作は、透過液の濃度を高くするために特に有効である。濃縮の方法は、膜を用いた方法の外、蒸発、蒸留、濾過、吸着などの公知の方法を用いればよい。
Particularly in the present invention, the liquid to be treated supplied to the first stage of the first multistage countercurrent separation device is important, and by maintaining its concentration appropriately, the permeate concentration can be secured, Also in the next stage, it is possible to secure the liquid to be processed and the permeate concentration at the start, and the entire operation can be smoothly advanced. In addition, even when the concentration of the liquid to be treated is reduced, such as when the operation is temporarily stopped or the target substance is insufficient, the permeate concentration can be ensured to an appropriate concentration by concentrating the liquid once.
Further, not only the concentration of the liquid to be treated at the start of the first multistage countercurrent means but also the concentration during the separation operation allows the first multistage countercurrent means to separate the target substance 1 into the permeate. At the same time, the recovery of the target substance 2 to the remaining liquid side is facilitated. As a result, mixing of the target substance 2 in the final permeate can be suppressed. This concentration is suitable when the target substance 1 is a substance having a low transmittance. In the case of many nanofiltration membranes, if the concentration on the residual liquid side is low, the transmittance tends to be low, and this concentration operation is particularly effective for increasing the concentration of the permeated liquid. As the concentration method, a known method such as evaporation, distillation, filtration, adsorption or the like may be used in addition to the method using a membrane.

<膜あるいは分離膜>
多段向流分離装置に用いる膜として、RO膜(逆浸透膜)、NF膜(ナノフィルトレーション膜)、UF膜(限外濾過膜)、MF膜(マイクロフィルトレーション膜)、透析膜、イオン交換膜などから選定する事ができる。特にナノフィルトレーション膜は、分子量が1000以下程度での分離に好ましい。
これらの膜を単段で用いて透過傾向が近い2つの目的物質を透過液と残液にそれぞれをシャープに分離することは難しいが、本発明の多段向流操作を用いる事によって、こうした透過しやすさが近接している分離膜と目的物質1及び目的物質2の組み合わせであっても、それぞれ高い純度の物質に高い収率で分画することが可能になる。
<Membrane or separation membrane>
RO membrane (reverse osmosis membrane), NF membrane (nanofiltration membrane), UF membrane (ultrafiltration membrane), MF membrane (microfiltration membrane), dialysis membrane, You can select from ion exchange membranes. In particular, a nanofiltration membrane is preferable for separation with a molecular weight of about 1000 or less.
Although these membranes are used in a single stage, it is difficult to sharply separate two target substances having similar permeation tendencies into a permeate and a residual liquid. However, by using the multistage countercurrent operation of the present invention, such permeation can be achieved. Even in the case of a combination of the separation membrane and the target substance 1 and the target substance 2 that are close to each other, it is possible to fractionate the substance with high purity in a high yield.

<循環液などの処理液、透過液、洗浄液について>
また、目的物質1、目的物質2を膜で濃縮する場合には、RO膜、NF膜、UF膜などの分離膜等、目的物質1、目的物質2ともに透過しにくい膜を選定する。また、目的物質1及び/又は目的物質2が透過する膜であっても、透過を複数回繰り返して元の液の濃縮液への回収率を高める方法などで採用することができる。膜により処理液を濃縮することで、透過液濃度、洗浄液濃度、被処理液濃度が上がり、少ない液量で物質組成を変化させる事が可能になる。
また透過液あるいは洗浄液の濃縮は、多段操作と独立して行うことができる。その結果、透過液や洗浄液を予め高い濃度にすること、貯蔵容量を削減すること、洗浄水やその他の洗浄媒液の使用を自由なタイミングで行うことが可能となる。
<About processing liquid such as circulating liquid, permeated liquid, and cleaning liquid>
When the target substance 1 and the target substance 2 are concentrated with a membrane, a membrane that does not easily penetrate both the target substance 1 and the target substance 2 such as a separation membrane such as an RO membrane, an NF membrane, and a UF membrane is selected. Further, even a membrane through which the target substance 1 and / or the target substance 2 permeates can be employed by a method of increasing the recovery rate of the original liquid to the concentrated liquid by repeating permeation a plurality of times. By concentrating the treatment liquid with the membrane, the permeate concentration, the cleaning solution concentration, and the liquid concentration to be treated are increased, and the material composition can be changed with a small amount of liquid.
Further, the permeation liquid or the cleaning liquid can be concentrated independently of the multistage operation. As a result, it is possible to make the permeate and the cleaning liquid have a high concentration in advance, reduce the storage capacity, and use the cleaning water and other cleaning medium liquid at any timing.

<多段向流装置/操作後の残液の循環使用について>
また、第2の多段向流分離装置の最終段から分離される残液の少なくとも一部を、第2の多段向流分離装置のいずれかの段に被処理液の一部として供給することが好ましい。供給先は、最終段を含め、第2の多段向流分離装置であればよく、膜分離操作の継続に必要な循環液量が不足する段に供給することが好適である。また供給先は、1段に限定することはなく、複数の段に供給してもよい。このように残液を第1の多段向流分離装置に段に供給することで被処理液量を増加させることができるだけにとどまらず、精製が進んだ残液を供給することで、精製品の組成を改善、安定させることが可能となる。また、精製を進める過程で残液が目標に適合しない場合であっても、製品としての系外への抜き出さずに再処理することが可能になる。
<Multistage counter-current device / circulation use of residual liquid after operation>
In addition, at least a part of the residual liquid separated from the final stage of the second multistage countercurrent separation device may be supplied to any stage of the second multistage countercurrent separation apparatus as a part of the liquid to be treated. preferable. The supply destination may be the second multi-stage countercurrent separator including the final stage, and it is preferable to supply to the stage where the amount of circulating fluid necessary for continuing the membrane separation operation is insufficient. Further, the supply destination is not limited to one stage, and may be supplied to a plurality of stages. In this way, the amount of liquid to be treated can be increased by supplying the residual liquid to the first multi-stage countercurrent separator, and the purified liquid can be supplied by supplying the residual liquid that has been refined. The composition can be improved and stabilized. Further, even if the residual liquid does not meet the target in the course of purification, it can be reprocessed without being taken out of the system as a product.

第2の実施形態として、時間差的多段向流分離装置を利用する方法について開示する。時間差的多段向流分離装置は、1つの膜分離装置に対し、膜分離装置から分離された透過液を受け入れる複数の貯留タンクを設け、時間経過とともに変化する透過液を取り分けることで、擬似的に多段向流分離を行うものである。   As a second embodiment, a method using a time-differential multistage countercurrent separation device is disclosed. A time-differential multi-stage countercurrent separator is provided with a plurality of storage tanks for receiving a permeate separated from a membrane separator for a single membrane separator, and by separating permeates that change over time, Multi-stage countercurrent separation is performed.

時間差的多段向流分離操作における用語を、次のとおり規定する。
<サイクル>
時間差的多段向流分離操作において、多段の操作を開始時の被処理液に対して実施する、一連の多段向流操作(第1の多段向流分離と第2の多段向流分離を一連の操作として実施する)の開始から終了までを1“サイクル”と呼ぶ。そのサイクルに付随して行う濃縮などの操作を含めてもサイクルと呼ぶことがある。
The terms in the time-differential multistage countercurrent separation operation are defined as follows.
<Cycle>
In a time-differential multistage countercurrent separation operation, a series of multistage countercurrent operations (a first multistage countercurrent separation and a second multistage countercurrent separation are performed in series) The operation from the start to the end is called one “cycle”. Even if an operation such as concentration performed in association with the cycle is included, it may be called a cycle.

<循環液>
時間差的多段向流分離操作では、各段に供給された被処理液および洗浄液は、膜装置と循環液槽に構成された循環系内を循環する。この循環系内に存在する液を循環液という。循環液は、循環系内でさまざまな濃度分布で存在している。また、分離操作の進行や、原料溶液や洗浄液の添加により、循環系全体の組成も変化する。
<Circulating fluid>
In the time-differential multi-stage countercurrent separation operation, the liquid to be treated and the cleaning liquid supplied to each stage circulate in the circulation system constituted by the membrane device and the circulating liquid tank. The liquid existing in the circulation system is called a circulation liquid. Circulating fluid exists in the circulation system with various concentration distributions. In addition, the composition of the entire circulation system changes with the progress of the separation operation and the addition of the raw material solution and the cleaning liquid.

<透過液の保存と飛び段>
飛び段は、多段向流操作における循環液と透過液の組成あるいは濃度の変化を効率よく達成することを目的として、多段向流法でのダイアフィルトレーションを実施するにあたって、隣接する前段より前に位置する段で透過液を洗浄液として使用する操作を意味する。連続多段向流分離操作では、複数の分離装置を連結させ、使用する分離装置がそれぞれの段に対応し、取得した透過液を隣接する前段の分離装置より前の分離装置に洗浄液として供給することを意味する。
<Permeate storage and jump>
In order to efficiently achieve a change in the composition or concentration of the circulating fluid and permeate in the multi-stage countercurrent operation, the jump stage is used before the adjacent previous stage in performing the diafiltration in the multistage countercurrent method. Means the operation of using the permeated liquid as the cleaning liquid in the stage located at the position. In continuous multi-stage countercurrent separation operation, a plurality of separation devices are connected, the separation devices to be used correspond to the respective stages, and the obtained permeate is supplied as a cleaning liquid to the separation device before the adjacent previous separation device. Means.

また時間差的多段向流分離操作での飛び段は、各段での洗浄液取得を操作と物質量が共に同じパターンで繰り返す複数のサイクルの同じ順番の段を対応する段として説明でき、前サイクルで取得した透過液を、次サイクルで隣接する前段より前に位置する段で洗浄液とすることを意味する。取得した透過液の全てを次のサイクルの隣接する前段で洗浄液として使用する操作を考えると最初の段で得る最終透過液中に、1サイクル分で供給する原料溶液中の目的物質1分の目的物質量を得る場合、最初の段には少なくともその目的物質1分以上の目的物質を含む洗浄液が含まれていなければならず、目的物質1の透過率が低い場合は、必要とする透過液量は透過率が高い場合と比べて大きくなり、初段に続く段の透過液量も同様に多量になる。またそれにより各段の被処理液が多量の洗浄液を使用してもその濃度や組成比に変化を与えにくくなる。発明者は、鋭意検討の結果、透過液を1段以上飛ばして洗浄液として使用する連続多段向流法において、1段当たりに使用する透過液の量あるいは流量を小さくすることで、1段当たりの透過液と被処理液の組成変化が確保でき、それぞれの段での洗浄液と被処理液の組成変化のための推進力も確保できることを見出した。実施例2に示した分離が可能であり、実施例2で例示した場合と異なる透過率の場合への対応として、飛び段や飛び段数の増減が有効であることを見出した。   In addition, the jump step in the time-dependent multi-stage countercurrent separation operation can be described as the step corresponding to the same order of the multiple cycles in which the cleaning liquid acquisition in each step repeats the operation and the substance amount in the same pattern. This means that the acquired permeate is used as a cleaning liquid in a stage positioned before the adjacent previous stage in the next cycle. Considering the operation of using all of the obtained permeate as a cleaning liquid in the adjacent preceding stage of the next cycle, the objective of 1 minute of the target substance in the raw material solution supplied in 1 cycle in the final permeate obtained in the first stage When obtaining the amount of the substance, the first stage must contain at least a cleaning liquid containing the target substance for 1 minute or more. If the target substance 1 has a low transmittance, the permeate amount required Is larger than that when the transmittance is high, and the amount of permeate in the next stage is also large. This also makes it difficult to change the concentration and composition ratio of the liquid to be processed at each stage even when a large amount of cleaning liquid is used. As a result of intensive studies, the inventor reduced the amount or flow rate of permeate used per stage in a continuous multi-stage countercurrent method in which the permeate was skipped by one or more stages and used as a cleaning liquid. It has been found that the composition change between the permeated liquid and the liquid to be treated can be secured, and the driving force for the composition change of the cleaning liquid and the liquid to be treated at each stage can be secured. The separation shown in Example 2 is possible, and it has been found that increasing or decreasing the number of steps or the number of steps is effective as a response to the case of transmittance different from the case illustrated in Example 2.

時間差的多段向流分離操作では、各段用の容器に取り出す透過液量分を一旦保存するため、段ごとに異なる目標液量を定めることも、各段間で同じ液量を目標に定めることができる。運転に応じてその液量を適宜変更でき、また一段分の透過液を複数の同じ容量の容器群を使用することもでき、各多段向流操作内で段数や飛び段数を変更することもできる。   In the time-differential multi-stage countercurrent separation operation, the amount of permeate to be extracted is temporarily stored in the container for each stage, so that a different target liquid volume can be set for each stage, or the same liquid volume can be set for each stage. Can do. The amount of liquid can be appropriately changed according to the operation, and a plurality of containers with the same capacity can be used for one stage of permeate, and the number of stages and jumping stages can be changed in each multistage countercurrent operation. .

時間差的多段向流分離装置概要を図1に示して詳説する。
洗浄水52として、常温あるいは温度調節したイオン交換水を用いることができる。
透過液53は、膜モジュールの分離膜を透過した液である。各膜モジュールのノズルから、透過液容器15などに移送することができる。また必要に応じて、返送用配管30を通じ、透過液全量を循環液槽にもどすことができる。
An outline of the time-differential multistage countercurrent separator is shown in FIG.
As the washing water 52, ion-exchanged water at room temperature or temperature can be used.
The permeated liquid 53 is a liquid that has permeated the separation membrane of the membrane module. It can be transferred from the nozzle of each membrane module to the permeate container 15 or the like. If necessary, the entire permeate can be returned to the circulating liquid tank through the return pipe 30.

残液54は、分離処理中の循環液で、最終的に個々の分離が終了したあとに循環系に残存する液を残液と称する。なお、最終残液は最終段における分離処理を終了後に循環液槽と膜モジュール間の循環系に残る液をさす。   The remaining liquid 54 is a circulating liquid during the separation process, and the liquid remaining in the circulating system after the individual separation is finally completed is referred to as a residual liquid. The final residual liquid refers to the liquid remaining in the circulation system between the circulating liquid tank and the membrane module after the separation process in the final stage is completed.

返送透過液55は、膜モジュールから出た透過液で、循環液槽に戻す液である。
洗浄液56は、循環系に系外から供給される液であり透過液53の一部、あるいは洗浄水が用いられる。サイクルの最終段階では、洗浄液とは別にイオン交換水である洗浄水52を用い、透過液を得る操作を行う。洗浄水は最終段を含む任意の段で使用する。
The return permeate 55 is a permeate that comes out of the membrane module and returns to the circulating fluid tank.
The cleaning liquid 56 is supplied from outside the system to the circulation system, and a part of the permeated liquid 53 or cleaning water is used. In the final stage of the cycle, an operation for obtaining a permeated liquid is performed using the cleaning water 52 which is ion-exchanged water separately from the cleaning liquid. Wash water is used at any stage including the final stage.

循環液槽1は、循環液槽1から、昇圧ポンプの入口配管3、昇圧ポンプ4、熱交換器(冷却器)5−A、膜モジュール6−A、6−B、6−C、圧力調節弁9、循環液出口配管/ホース10、熱交換器(加熱器)5−B、循環液槽1の循環系を形成する液の主な貯留機構であり、秤2の上に設置され、pH計8、被処理液投入機構(図示せず)、循環液の抜出し機構22、洗浄液供給量の制御による循環液濃度維持機構27を付帯する。◇ 付帯する秤2は循環液槽内液の重量維持機能に連なり、洗浄液の供給機構とともに循環液槽内液量を維持する事ができる。   The circulating fluid tank 1 is connected to the circulating fluid tank 1 from the inlet piping 3 of the booster pump, the booster pump 4, the heat exchanger (cooler) 5-A, the membrane modules 6-A, 6-B, 6-C, and pressure control. The valve 9, the circulating fluid outlet pipe / hose 10, the heat exchanger (heater) 5-B, and the main storage mechanism of the liquid that forms the circulating system of the circulating fluid tank 1, are installed on the scale 2, pH A total of 8 liquid processing mechanism (not shown), a circulating fluid extraction mechanism 22, and a circulating fluid concentration maintaining mechanism 27 by controlling the cleaning liquid supply amount are attached. ◇ The attached scale 2 is connected to the function of maintaining the weight of the liquid in the circulating liquid tank, and can maintain the amount of liquid in the circulating liquid tank together with the cleaning liquid supply mechanism.

洗浄水貯槽13は、洗浄水52として、加熱された洗浄用温水59あるいは加熱されていない洗浄水を保有している。洗浄水52は、分離操作で使用されるとともに、膜モジュール、配管、容器類の予熱、循環液の循環系からの抜出し、分離膜の温水洗浄などに用いことができる。洗浄水ポンプ14−Aをその供給に用いる。
洗浄液容器13−Bに受け入れた洗浄液56あるいは希薄液57、またはイオン交換水を循環液槽に洗浄液調節弁33および洗浄液供給機構23を通じて加える液を充填する。洗浄液ポンプ14−Bはその供給に用いる。なお希薄液57は、最終残液を取り出す際に発生する、最終残液が洗浄用温水59で希薄になった液である。
The washing water storage tank 13 holds heated washing water 59 that has been heated or washing water that has not been heated as the washing water 52. The washing water 52 is used in the separation operation, and can be used for preheating membrane modules, piping and containers, extracting the circulating fluid from the circulation system, and washing the separation membrane with warm water. A washing water pump 14-A is used for the supply.
The cleaning liquid 56 or dilute liquid 57 received in the cleaning liquid container 13 -B or ion exchange water is filled with a liquid to be added to the circulating liquid tank through the cleaning liquid control valve 33 and the cleaning liquid supply mechanism 23. The cleaning liquid pump 14-B is used for the supply. The dilute liquid 57 is a liquid that is generated when the final residual liquid is taken out and is diluted with the warm water 59 for cleaning.

透過液容器15は、約20リットルから30リットル程度の容積を持つ容器で、秤2の上に載せ、膜モジュールからの透過液53を受け入れる。その受入れた透過液の一部は最終透過液として系外に抜出し、透過液の多くは、洗浄液56として多段向流操作の途中あるいはその前後で保管し、透過液容器15から洗浄液容器13−Bに移して洗浄液として用いる。   The permeate container 15 is a container having a volume of about 20 to 30 liters and is placed on the scale 2 to receive the permeate 53 from the membrane module. A part of the received permeate is withdrawn out of the system as a final permeate, and most of the permeate is stored as a cleaning liquid 56 during or before and after the multistage countercurrent operation, and from the permeate container 15 to the cleaning liquid container 13-B. To be used as a cleaning solution.

膜モジュールの上側の透過液ノズルからの透過液は、透過液用配管/ホース16を通じて、透過液槽に送ることができる。透過液のサンプリング用、前述の透過液配管/ホース16と同様に用いる事ができ、循環液槽の重量異常低、循環液濃度異常高、透過液取得運転停止、一時停止などの際に、透過液あるいは膜モジュール内に貯留していた透過液を抜出す目的でも用いる。透過液のサンプリングは、ホースなどから実施できる。   The permeate from the permeate nozzle on the upper side of the membrane module can be sent to the permeate tank through the permeate pipe / hose 16. Can be used in the same way as the permeate piping / hose 16 described above for permeate sampling. Permeate when circulating fluid tank weight is abnormally low, circulating fluid concentration is abnormally high, permeate acquisition is stopped, or temporarily stopped. It is also used for the purpose of extracting the permeate stored in the liquid or the membrane module. The permeate sampling can be performed from a hose or the like.

制御盤は、循環液温度、循環液槽内液量、循環液濃度の管理、監視、制御、警報の発信をおこない、秤の値を表示、記録し、pH計、糖度計の測定値を表示記録する。
また透過液の糖度の合計値を表示し、透過液糖度の合計値を計算し、透過液重量の変化から透過液流量を計算し、透過液取得量の目標管理を補助する。冷却水58の熱交換器(冷却器)5−Aへの、あるいは加熱用水60の加熱用熱交換器5−Bへの供給を制御することで循環液の温度を調節する。膜モジュール6−B、6−Cの上流および下流圧力は2個の圧力計7でそれぞれ指示され、圧力調節弁9でモジュール出口の圧力がメカニカルに調節され、その調節弁の設定はモジュールの主に上流側の圧力計7でのモジュールの運転状態で管理を行う。
The control panel controls, monitors, controls, and transmits alarms for circulating fluid temperature, circulating fluid tank volume, circulating fluid concentration, displays and records the scale value, and displays the measured values of the pH meter and saccharimeter Record.
Further, the total value of the sugar content of the permeate is displayed, the total value of the permeate sugar is calculated, the permeate flow rate is calculated from the change of the permeate weight, and the target management of the permeate acquisition amount is assisted. The temperature of the circulating fluid is adjusted by controlling the supply of the cooling water 58 to the heat exchanger (cooler) 5-A or the heating water 60 to the heating heat exchanger 5-B. The upstream and downstream pressures of the membrane modules 6-B and 6-C are indicated by two pressure gauges 7 respectively, and the pressure at the module outlet is mechanically adjusted by the pressure regulating valve 9, and the setting of the regulating valve is the main of the module. The management is performed in the operating state of the module in the pressure gauge 7 on the upstream side.

原液の供給機構(図示せず)は原液を循環液槽1に供給する手段として用いる。例えば、循環液との混合を図ることを想定すればラインミキサーの使用やポンプ類など公知の機器を組み合わせることができる。なお、供給機構には、漏斗なども含む。高粘度流体の場合、圧力調節弁9から出た循環液/返送液の一部を原液の供給機構に導き、原液と循環液/返送液および/または洗浄水あるいは洗浄液あるいは透過液と十分混合した後あるいは混合しながら循環液槽に供給することができる。また原液の希釈液を洗浄液あるいは循環液と同等の液として循環液を槽に加えることもできる。この原液供給時には同時に常温あるいは加熱した洗浄水あるいは洗浄水の供給により循環液濃度を維持すべく制御することができる。この原液供給時には同時に加熱した洗浄水の供給について、循環液濃度を維持すべく制御する。   A stock solution supply mechanism (not shown) is used as means for feeding the stock solution to the circulating fluid tank 1. For example, it is possible to combine known devices such as use of a line mixer and pumps, assuming that mixing with the circulating fluid is attempted. The supply mechanism includes a funnel. In the case of a high-viscosity fluid, a part of the circulating fluid / return fluid that has exited from the pressure control valve 9 is guided to the stock solution supply mechanism, and is sufficiently mixed with the stock solution and circulating fluid / return fluid and / or washing water, washing fluid, or permeate. It can be supplied to the circulating fluid tank later or while mixing. In addition, the diluting solution of the stock solution can be added to the tank as a cleaning solution or a solution equivalent to the circulating solution. At the same time as the stock solution is supplied, it can be controlled to maintain the circulating solution concentration by supplying normal or heated washing water or washing water. At the time of supplying the stock solution, the supply of cleaning water heated at the same time is controlled to maintain the circulating fluid concentration.

循環液の抜き出し機構22は、分離処理が完了した後の循環液を系外に抜出す場合、分離処理を途中で中断するために、一旦別の場所に抜出す場合などに利用する。循環液の抜き出し機構22は、配管に付属したものを用いる事は不可欠ではなく、循環液槽に貯めた循環液を直接別の容器などに取出しても、循環液槽そのものを容器として抜出すこともできる。循環液のうち膜モジュールや配管内の液は、洗浄用温水59などで押し出すことにより抜き出すことができる。その際生じる希薄になった循環液を、先行バッチ貯槽31に供給し、次のバッチで、洗浄水に代えて使用したり、原料溶液の希釈液57として使用することができる。これにより精製された残液中の目的物質2の損失を抑制し、使用する純水などに使用量を削減すると同時に、回収する残液の不要な希釈を防止することが可能になる。残液用容器12に抜き出した最終残液は一旦保存後、循環使用あるいは系外に抜き出す。 また、洗剤洗浄時の液の抜出しにも用いる場合がある。洗剤洗浄は、分離膜、膜モジュール、昇圧ポンプその他関係装置の洗浄も循環液槽を用いて行う場合がある。洗剤としては酵素洗剤などを用いる事ができる。   The circulating fluid extraction mechanism 22 is used when extracting the circulating fluid after the separation process is completed, or when extracting the circulating liquid once to another place in order to interrupt the separation process. It is not indispensable to use the circulating fluid extraction mechanism 22 attached to the piping. Even if the circulating fluid stored in the circulating fluid tank is directly taken out to another container, the circulating fluid tank itself is extracted as a container. You can also. Among the circulating liquid, the liquid in the membrane module and the piping can be extracted by pushing it out with the hot water 59 for cleaning. The diluted circulating liquid generated at that time can be supplied to the preceding batch storage tank 31 and used in the next batch in place of the washing water or used as the diluting liquid 57 of the raw material solution. As a result, loss of the target substance 2 in the purified residual liquid can be suppressed, and the amount used for pure water to be used can be reduced, and at the same time, unnecessary dilution of the recovered residual liquid can be prevented. The final residual liquid extracted into the residual liquid container 12 is once stored and then circulated or extracted outside the system. Moreover, it may be used also for extracting liquid during washing with detergent. In the detergent cleaning, the separation membrane, the membrane module, the booster pump and other related devices may also be cleaned using a circulating liquid tank. As the detergent, an enzyme detergent or the like can be used.

洗浄液の供給機構23は、洗浄液を循環液槽に供給する機構を制御することで循環液の濃度、循環液槽内の液量を制御する。
透過液の抜出し機構24は透過液の循環系から外への抜出しについて、停止状態と可能状態を制御する機構で、三方弁による流路選択、弁の開閉などを用いる事ができる。
透過液の流量測定機構25は透過液容器と中に入った透過液の合計重量とその際の時刻を記録することにより流量を測定する機能であるが、流量そのものを測定する機構を用いてもよい。
The cleaning liquid supply mechanism 23 controls the mechanism for supplying the cleaning liquid to the circulating liquid tank, thereby controlling the concentration of the circulating liquid and the amount of liquid in the circulating liquid tank.
The permeate extraction mechanism 24 is a mechanism for controlling the stop state and the possible state of the permeate extraction from the circulation system, and can use flow path selection by a three-way valve, opening / closing of the valve, and the like.
The permeate flow rate measuring mechanism 25 is a function for measuring the flow rate by recording the total weight of the permeate contained in the permeate container and the time at that time, but the mechanism for measuring the flow rate itself may also be used. Good.

循環液の濃度測定機構26として、連続的に糖度を測定できるタイプの糖度計が用いられる。
洗浄液供給量の制御による循環液濃度維持機構27は、洗浄液56、あるいは洗浄水52の供給を自動弁で制御することで循環液の濃度を調節する機構である。この操作と循環液濃度を膜による濃縮と透過液の循環液槽への返送を制御することができる。循環液の濃度が過大になった場合や、循環液槽内の液量の不足が予測される場合は、透過液槽などへの抜き出しをやめ、循環内に透過液を透過液返送弁34の開閉制御により、循環液量を確保できる。循環液に原液などの濃度の高い液を混合し、洗浄水52あるいは洗浄液56を循環液槽に添加することによって、循環液濃度や循環液量を確保することもできる。
As the circulating fluid concentration measuring mechanism 26, a sugar meter of the type capable of continuously measuring the sugar content is used.
The circulating fluid concentration maintaining mechanism 27 by controlling the supply amount of the cleaning fluid is a mechanism for adjusting the concentration of the circulating fluid by controlling the supply of the cleaning fluid 56 or the cleaning water 52 with an automatic valve. This operation and the concentration of the circulating fluid can be controlled by the membrane and the return of the permeate to the circulating fluid tank. When the concentration of the circulating fluid becomes excessive or when the amount of liquid in the circulating fluid tank is predicted to be insufficient, the extraction to the permeate tank is stopped, and the permeate is returned to the permeate return valve 34 in the circulation. The amount of circulating fluid can be secured by opening / closing control. It is also possible to secure the circulating fluid concentration and the circulating fluid amount by mixing the circulating fluid with a high concentration liquid such as a stock solution and adding the cleaning water 52 or the cleaning fluid 56 to the circulating fluid tank.

透過液の濃度測定機構28は透過液の濃度を糖度によって測定する機能で、ここでは連続式糖度計を用いた。これにより刻々発生する透過液の糖度は測定・監視でき、それらの瞬間値と透過液の重量増加のデータを組み合わせることで、各段で得た透過液中の糖度分などの内容物を把握する事ができる。また透過液容器中に水中ポンプを入れ、そこからとりだした透過液の糖度と、透過液の重量測定値の積により、目標とするその段での透過液中に取出したい着目物質の合計量を把握する事ができる。   The permeate concentration measuring mechanism 28 has a function of measuring the permeate concentration based on the sugar content. Here, a continuous saccharimeter was used. As a result, the sugar content of the permeate generated every moment can be measured and monitored, and the content of the sugar content in the permeate obtained at each stage is grasped by combining these instantaneous values and the data on the weight increase of the permeate. I can do things. Also, put the submersible pump in the permeate container, and calculate the total amount of the target substance to be taken out in the permeate at the target stage by the product of the sugar content of the permeate taken out from it and the weight measurement value of the permeate. I can grasp it.

循環液の温度維持機構29は、冷却用熱交換器5−Aへの冷却水58の供給、あるいは加熱用熱交換器5−Bへの加熱用水60の供給を制御することによって、循環液の温度を所望の温度に維持調整する機構である。この加熱は、電熱ヒーターなどによる循環液の過熱に変えることが可能である。   The circulating fluid temperature maintenance mechanism 29 controls the supply of the cooling water 58 to the cooling heat exchanger 5-A or the heating water 60 to the heating heat exchanger 5-B, thereby controlling the circulating fluid. This is a mechanism for maintaining and adjusting the temperature at a desired temperature. This heating can be changed to overheating of the circulating fluid by an electric heater or the like.

小型水中ポンプは、透過液容器中に投入し、容器中の透過液を糖度計との間で循環して糖度を測定する。これにより1段分など一回の操作で得た透過液の糖度の合計量を把握することができる。   The small submersible pump is put into a permeate container and measures the sugar content by circulating the permeate in the container with a saccharimeter. Thereby, the total amount of sugar content of the permeate obtained by one operation such as one step can be grasped.

洗浄液調節弁33は、循環液槽中の液量や糖度を測定、制御する目的で、添加する洗浄水、洗浄液の循環液槽への受け入れを制御する。   The cleaning liquid control valve 33 controls the addition of the cleaning water to be added and the cleaning liquid to the circulating liquid tank for the purpose of measuring and controlling the amount of liquid and the sugar content in the circulating liquid tank.

〔時間差的多段向流法と連続法の組み合わせ〕
多段向流分離操作を時間差的多段向流分離操作と連続多段向流分離操作を組み合わせて使用してもよい。
より具体的には、原料溶液供給段前後を連続多段向流操作で行い、連続多段操作の前段部分、後段部分に適宜時間差的多段法を適用するものである。
[Combination of time-difference multistage countercurrent method and continuous method]
A multistage countercurrent separation operation may be used in combination of a time-differential multistage countercurrent separation operation and a continuous multistage countercurrent separation operation.
More specifically, before and after the raw material solution supply stage is performed by a continuous multistage countercurrent operation, and a time-differential multistage method is appropriately applied to the front part and the rear part of the continuous multistage operation.

原料溶液供給段前後を連続的に実施することで、原料溶液を連続的多段向流分離操作に供給する事が可能となる。その結果、原料状態で不安定な物質を即座に分離処理することが可能になり、透過液や原料溶液の貯蔵装置を削減でき、開始段近くの各段や、最終段近くの各段で時間差的多段向流操作を実施することで、1装置を複数段用に用いることによる分離装置台数の削減が可能であり、時間差的多段向流法と連続的多段向流法可能である By continuously performing before and after the raw material solution supply stage, the raw material solution can be supplied to the continuous multi-stage countercurrent separation operation. As a result, substances that are unstable in the raw material state can be immediately separated, and the storage device for the permeate and raw material solution can be reduced, with a time difference between each stage near the start stage and each stage near the final stage. Multi-stage countercurrent operation can reduce the number of separators by using one apparatus for multiple stages, and can perform time-differential multistage countercurrent method and continuous multistage countercurrent method.

<循環液の濃縮>
循環液濃縮用の膜装置は目的物質1が透過しにくいもので、目的物質1や目的物質2の入った混合物を濃縮することを目的として設置することができる。目的物質1と目的物質2を分離するために使用する分離膜での分離を円滑に実行するために、この分離膜装置の運転圧力の制御と独立して、循環液濃縮膜装置の運転圧力制御により、洗浄液や循環液が何らかの事情で希薄になった場合などの対応ができる。
<Concentration of circulating fluid>
The membrane device for concentrating the circulating fluid is difficult to permeate the target substance 1 and can be installed for the purpose of concentrating the mixture containing the target substance 1 and the target substance 2. In order to smoothly perform separation at the separation membrane used for separating the target substance 1 and the target substance 2, the operation pressure control of the circulating liquid concentration membrane apparatus is performed independently of the control of the operation pressure of the separation membrane apparatus. Therefore, it is possible to cope with the case where the cleaning liquid or the circulating liquid becomes diluted for some reason.

<透過液の管理>
透過液濃度を管理することにより、適切な各段の運転が可能になる、すなわち、計画量の糖度分を透過液中に取出すために、透過液中の糖度などの濃度指標を測定し、必要分になるまで、透過液を取得し、場合によっては、洗浄液の追加、洗浄水や洗浄媒液の追加や、洗浄工程の終了を判断する事ができ、またこれらにより、自動運転するための指標とする事ができる。
<Management of permeate>
By controlling the permeate concentration, it is possible to operate each stage appropriately. That is, in order to extract the sugar content of the planned amount into the permeate, it is necessary to measure the concentration index such as the sugar content in the permeate. The permeated liquid is obtained until the minute is reached, and in some cases, it is possible to determine the addition of cleaning liquid, the addition of cleaning water or cleaning medium liquid, and the end of the cleaning process, and these can be used as indicators for automatic operation. Can be.

<低分子不純物の除去>
低分子不純物などの目的物質3を目的物質1と目的物質2との混合物から予め分離した後、目的物質1と目的物質2を分離することも可能である。具体的には、不純物等を含む原液を目的物質1および2をおおむね阻止する濃縮用膜に供給し、水分や低分子物質を分離するものである。分離するタイミングは、原料溶液供給段あるいはその周辺の段でよい。その結果、濃縮用膜の透過液から、不純物等を抜出す事ができ、これにより目的物質1を抜出す最終透過液にも、目的物質2を抜出す最終残液にも不純物等の混入を抑制した分離が可能になる。なお、濃縮用膜で分離する物質は、不純物だけでなく、有用な目的物質3であっても良い。逆に分子量の大きい物質をあらかじめ目的物質1と目的物質2との混合物から分離することで、目的物質1と目的物質2の分離を容易にしたり、分離後の目的物質の価値を高めたりすることができる。
<Removal of low molecular impurities>
It is also possible to separate the target substance 1 and the target substance 2 after separating the target substance 3 such as a low-molecular impurity from the mixture of the target substance 1 and the target substance 2 in advance. Specifically, a stock solution containing impurities and the like is supplied to a concentrating membrane that generally blocks the target substances 1 and 2, thereby separating water and low-molecular substances. The separation timing may be at the raw material solution supply stage or its peripheral stage. As a result, impurities and the like can be extracted from the permeate of the concentrating membrane, so that impurities can be mixed into the final permeate to extract the target substance 1 and the final residual liquid from which the target substance 2 is extracted. Suppressed separation is possible. Note that the substance to be separated by the concentration membrane may be not only the impurity but also the useful target substance 3. On the contrary, by separating a substance having a high molecular weight from a mixture of the target substance 1 and the target substance 2 in advance, the target substance 1 and the target substance 2 can be easily separated or the value of the target substance after separation is increased. Can do.

<多段向流操作のための各段用洗浄液濃度分布の調整>
原料溶液を望まれる最終透過液と最終残液に分離するためには、洗浄液が一定の範囲にあることが必要であり、そのために事前に実施した運転で得た分離液を保管しておくか、別の方法で準備したものを洗浄液として利用する。
<Adjustment of concentration distribution of cleaning liquid for each stage for multi-stage countercurrent operation>
In order to separate the raw material solution into the desired final permeate and final residual liquid, it is necessary for the cleaning liquid to be within a certain range. A solution prepared by another method is used as a cleaning solution.

洗浄液は分離処理されていない原料溶液から調整することができる。具体的な方法としては、あらかじめ洗浄液を原料溶液の希釈液としておき、多段向流分離操作により後段に分離しにくい物質が蓄積した液をつくり、前段に分離を重ねた液を作る方法がある。   The cleaning liquid can be prepared from a raw material solution that has not been separated. As a specific method, there is a method in which a cleaning liquid is used as a diluting solution of a raw material solution in advance, a liquid in which substances that are difficult to separate is accumulated by a multi-stage countercurrent separation operation, and a liquid in which separation is repeated in the previous stage.

より具体的には、あらかじめ洗浄液を原料溶液の希釈液として準備し、開始時の被処理液を原料溶液の希釈液とし、この被処理液に対して、向流多段分離操作を実施し、透過液を得る。得られた透過液を濃縮するなどにより新たに被処理液を用意し、分離操作をすすめる。最終残液に関しては、その組成が所望の組成になったことをもって、可能な量を系外に得る。同様に、第1段から得る最終透過液は、第1段の透過液を必要に応じて濃縮し所望の組成になったところで、系外に抜出す。   More specifically, the cleaning liquid is prepared in advance as a diluent for the raw material solution, the starting liquid to be processed is used as the raw material solution diluent, a countercurrent multistage separation operation is performed on the liquid to be processed, and the permeation is performed. Obtain a liquid. A new liquid to be treated is prepared by, for example, concentrating the obtained permeate, and separation operation is promoted. Regarding the final residual liquid, a possible amount is obtained out of the system when the composition has reached the desired composition. Similarly, the final permeate obtained from the first stage is withdrawn out of the system when the first stage permeate is concentrated as necessary to obtain a desired composition.

最終残液が所望の組成を満足しない場合、最終残液全量を次サイクルの原料溶液供給段、あるいは原料溶液供給段と最終段の間の循環液に混合することが好ましい。一方、最終透過液が所望の組成を満足しない場合は、他の段の透過液や循環液と混合させるか、全量系外に抜出さず開始時の被処理液としての運用を続ける方法、ここで得た透過液を原料溶液供給段あるいは、第1段と原料溶液供給段の間で原料溶液にかえて、あるいは洗浄液として、循環液に混合することができる。   When the final residual liquid does not satisfy the desired composition, it is preferable to mix the total amount of the final residual liquid into the raw solution supply stage of the next cycle or the circulating liquid between the raw solution supply stage and the final stage. On the other hand, if the final permeate does not satisfy the desired composition, it can be mixed with other stages of permeate or circulating liquid, or can continue to be used as the liquid to be treated at the start without being discharged out of the system. The permeate obtained in (1) can be mixed with the circulating liquid instead of the raw material solution supply stage, or between the first stage and the raw material solution supply stage, or as a cleaning liquid.

運転開始から最終残液と最終透過液の少なくとも一方を系外に出す場合、原料溶液は、原料溶液供給段のほかに、必要に応じて原料溶液供給段に近い段の循環液、あるいは透過液に混合して供給する事が望ましい。   When at least one of the final residual liquid and the final permeate is taken out of the system from the start of operation, the raw material solution is not only the raw material solution supply stage but, if necessary, the circulating liquid in the stage close to the raw material solution supply stage, or the permeate. It is desirable to mix and supply.

<原料溶液の供給>
原料溶液供給量や供給方法は、供給するサイクル間で同じ繰り返しであってもよいし、取り扱い容器の容量などの運転条件や処理量の増加・削減や処理の停止を含めた運転状態に対応して供給を行ってもよい。また供給は一度に実施する必要はなく、一部の連続する複数段に対して、一連の分離操作に並行して原料溶液を供給してもよく、連続操作においても単数や複数の供給段や流量を固定してもよいし、液量あるいは分析値や物性値などから選んだ測定値に対応してそれらを変化させてもよい。
<Supply of raw material solution>
The raw material solution supply amount and supply method may be the same between the supply cycles, and correspond to the operation conditions including the operating conditions such as the capacity of the handling container, the increase / reduction of the processing amount, and the stop of the processing. May be supplied. Further, the supply does not need to be performed at one time, and the raw material solution may be supplied in parallel to a series of separation operations to some continuous plural stages. The flow rate may be fixed, or may be changed in accordance with the measurement value selected from the liquid amount or the analysis value or physical property value.

なお、本件発明は、図6に開示した設備に限定されることはなく、公知の時間差的多段向流装置を適用することも可能である。例えば図7のような設備を使用することができる。   In addition, this invention is not limited to the installation disclosed in FIG. 6, It is also possible to apply a well-known time-difference multistage countercurrent apparatus. For example, equipment as shown in FIG. 7 can be used.

図7に示す設備は、中央部にある洗浄操作を行うための撹拌機構を備えた循環液槽104を有し、槽104の上方に処理原液槽101、複数の洗浄液槽102(個々の洗浄液槽において、目的物質1と目的物質2の濃度比率が異なる洗浄液がはいり、洗浄液槽102の数は任意に定める。)、洗浄水槽103を備え、槽101〜103中の液体は、各槽の下方に設けられた制御弁108によって流量を調節されながら循環液槽104に供給される。循環液槽104内に供給された液は、前記の撹拌機構により混合され、膜分離に供される。   The equipment shown in FIG. 7 includes a circulating liquid tank 104 equipped with a stirring mechanism for performing a cleaning operation in the center, and a processing stock solution tank 101 and a plurality of cleaning liquid tanks 102 (individual cleaning liquid tanks) are provided above the tank 104. In this embodiment, cleaning liquids having different concentration ratios of the target substance 1 and the target substance 2 are added, and the number of the cleaning liquid tanks 102 is arbitrarily determined.) The cleaning water tank 103 is provided, and the liquids in the tanks 101 to 103 are disposed below each tank. The flow rate is adjusted by the provided control valve 108 and supplied to the circulating liquid tank 104. The liquid supplied into the circulating liquid tank 104 is mixed by the stirring mechanism and used for membrane separation.

循環液槽105で混合された被処理液は、ポンプ109により膜処理装置107に送られる。透過液は、ポンプ110により透過液貯留槽106を通じて系外に送られるか、次サイクルの前段、または前々段以前の膜分離の洗浄液として供されるため、洗浄液槽102のいずれかに送られる。   The liquid to be processed mixed in the circulating liquid tank 105 is sent to the film processing apparatus 107 by the pump 109. The permeate is sent out of the system through the permeate reservoir 106 by the pump 110, or is supplied to one of the wash baths 102 because it is used as a membrane separation wash before the next cycle or before the previous cycle. .

膜分離装置107の残液は、次段または次々段の膜分離に供されるため、循環液槽105へ返送され、洗浄液、洗浄水と混合される。残液中の目的物質2の濃度が目的物質1と比して充分に高い場合には、残液は残液貯留槽105に送られる。なお、循環液、透過液は、液面制御弁LC、レベルセンサーLSにより液量が制御される。   Since the remaining liquid of the membrane separation device 107 is used for the subsequent or subsequent membrane separation, it is returned to the circulating liquid tank 105 and mixed with the cleaning liquid and the cleaning water. When the concentration of the target substance 2 in the residual liquid is sufficiently higher than that of the target substance 1, the residual liquid is sent to the residual liquid storage tank 105. The circulating fluid and permeate are controlled by the liquid level control valve LC and the level sensor LS.

膜分離装置107には、装置の運転圧力を調整する圧力調節弁や、循環液温度を調節する熱交換器や温度調節弁があり、冷却水、電源などの溶液が供給される。   The membrane separation device 107 has a pressure control valve that adjusts the operating pressure of the device, a heat exchanger that adjusts the circulating fluid temperature, and a temperature control valve, and is supplied with solutions such as cooling water and power.

図1記載の装置を用いて、以下に実施例1としてポリエチレングリコール(PEG)200の時間差的多段向流分離装置を用いた分離方法と各測定データについて開示する。
<1 PEG200分離の内容>
市販のトリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコールなどを含むPEG200(三洋化成工業株式会社製)の分画を行った。PEG200はこれらの物質の混合物である。これをトリエチレングリコールが最大濃度の混合物と、ペンタエチレングリコールが最大濃度の混合物に分離した。
Using the apparatus shown in FIG. 1, a separation method using a time-differential multistage countercurrent separation apparatus for polyethylene glycol (PEG) 200 and each measurement data are disclosed as Example 1 below.
<Contents of 1 PEG200 separation>
Fractionation of PEG200 (manufactured by Sanyo Chemical Industries, Ltd.) containing commercially available triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol and the like was performed. PEG 200 is a mixture of these substances. This was separated into a mixture having the maximum concentration of triethylene glycol and a mixture having the maximum concentration of pentaethylene glycol.

<2 装置の説明>
<分離膜> 使用した分離膜はPCI Membranes社製B1タイプ膜モジュール6−Aに0.9m2のAFC80、膜モジュール6−B,6−Cに0.9m2のAFC30を各1本装着し、総計3本の膜モジュールを用いた。AFC80はPEG200中の成分を実質的に透過しないため、多段向流操作前に行う濃縮用の膜として使用したナノフィルトレーション膜である。AFC30はPEG200中の各物質の分画用に用いたナノフィルトレーション膜である。
<2 Device Description>
<Separation membrane> separation membrane used was PCI Membranes manufactured B1 type membrane module 6-A to the 0.9m 2 AFC80, membrane module 6-B, the AFC30 of 0.9 m 2 to 6-C mounted one each A total of three membrane modules were used. Since AFC80 does not substantially permeate the components in PEG200, it is a nanofiltration membrane used as a membrane for concentration performed before the multistage countercurrent operation. AFC30 is a nanofiltration membrane used for fractionation of each substance in PEG200.

<測定機能> 循環液の濃度測定機構26、透過液の糖度測定機構用の糖度計28には、アタゴ社CM−780を用いた。取得した透過液の糖度はポンプにより糖時計と容器間を循環させて測定した。 <Measurement Function> Atago CM-780 was used for the circulating fluid concentration measurement mechanism 26 and the sugar content meter 28 for the sugar content measurement mechanism of the permeate. The sugar content of the obtained permeate was measured by circulating between the sugar clock and the container using a pump.

<運転の概要>
あらかじめ前サイクルからの透過液に見立て、表1の洗浄液であるPEG200水溶液初サイクルの1段から8段分を用意する。これらを循環液槽に入れ、圧力調節弁を全開のままで昇圧ポンプ4を起動し、膜モジュール、配管等に残存する液を抜出しつつ、循環を継続する。AFC30の全ての透過液を循環液槽に返送した。その後AFC80の透過液を容器に抜出し、循環液の糖度が17%になるようにPEG200原液を攪拌しながら加えた。あわせて分離膜AFC80からの透過液を系外に取り出して濃縮を進めた。 濃縮運転は、40Barで行い、その間AFC30からの透過液はすべて循環液槽に返送した。
このとき循環液の温度は約50℃になるように間接冷却および間接加熱で調節する。
<Overview of operation>
In preparation for the permeated liquid from the previous cycle, the first to eighth stages of the first cycle of the aqueous PEG200 solution, which is the cleaning liquid in Table 1, are prepared. These are put in a circulating liquid tank, and the pressure increasing valve 4 is started with the pressure control valve fully opened, and the circulation is continued while extracting the liquid remaining in the membrane module, piping and the like. All the permeated liquid of AFC30 was returned to the circulating liquid tank. Thereafter, the permeated solution of AFC80 was drawn out into a container, and the PEG200 stock solution was added with stirring so that the sugar content of the circulating solution was 17%. At the same time, the permeate from the separation membrane AFC80 was taken out of the system and concentrated. Concentration operation was performed at 40 Bar, during which all permeate from AFC 30 was returned to the circulating fluid tank.
At this time, the temperature of the circulating liquid is adjusted by indirect cooling and indirect heating so as to be about 50 ° C.

ひとつのサイクルは、第1段の準備、第1,2,3段と進め、5段目では1.62kgの原料溶液51を加えて、第10段まで進めた。10段まで実施し、初回のサイクルの最終残液を抜出し、その一部は次サイクルで最終段およびその前段で循環液に混合した。第2サイクルの事前濃縮、1段、2段…と第2サイクルを終え、同様に第3サイクル、第4サイクル…とすすめ、第9サイクルまで実施した。   In one cycle, the first stage was prepared, proceeding to the first, second, and third stages. In the fifth stage, 1.62 kg of the raw material solution 51 was added and the process proceeded to the tenth stage. Up to 10 stages were carried out, and the final residual liquid of the first cycle was extracted, and a part thereof was mixed with the circulating liquid in the final stage and the preceding stage in the next cycle. The pre-concentration of the second cycle, the first stage, the second stage, and the second cycle were completed, and the third cycle, the fourth cycle, and so on were similarly promoted until the ninth cycle.

初回のサイクルで目標とした透過液量と透過液中の糖度分(糖度相当重量分)、すなわち透過液重量(kg)×透過液の糖度計読み値(%)÷100の値を本来糖類は入っていないが、屈折率の影響等が糖に類似した透過液中の溶解物質量を示すことを利用した指数として用い、運転においては所定の値を確保するように、膜モジュール入口出口の圧力計7を見ながら、運転圧力の調整を行った。すなわち透過液の重量(kg)と透過液の糖度(%)の推移をみて、その透過液量が目標値に達したときに、その時の糖度分が目標値に近くなるように運転圧力を調節した。
また運転の結果糖度分が目標値に達しない場合は、AFC80から透過液を取得することで、透過液中の溶解物質量を増やして透過液中の溶解物質量を増やした。
The target sugar amount in the first cycle and the sugar content in the permeate (weight equivalent to sugar content), that is, permeate weight (kg) x permeate sugar content reading (%) ÷ 100 Although not included, the pressure at the membrane module inlet / outlet is used as an index using the fact that the influence of the refractive index indicates the amount of dissolved substance in the permeate similar to sugar, and to ensure a predetermined value in operation. The operating pressure was adjusted while looking at the total 7. In other words, the transition of the permeate weight (kg) and permeate sugar content (%), and when the permeate amount reaches the target value, the operating pressure is adjusted so that the sugar content at that time is close to the target value. did.
Further, when the sugar content did not reach the target value as a result of the operation, the amount of dissolved substance in the permeate was increased by acquiring the permeate from AFC80, thereby increasing the amount of dissolved substance in the permeate.

<初サイクル>
<第1段>
初回のサイクルの説明に戻る。循環液から透過液を得、同時に循環液濃度である循環液の糖度が17%になるように、あらかじめ用意した第1段用の洗浄液を供給した。この洗浄液は、一旦洗浄液槽に入れ、洗浄液ポンプ、制御弁を通じて循環液槽に供給される。表1には、第1段に用意した洗浄液量と同液中のPEG200の重量を示した。第1段用の洗浄液は、後述する第3段透過液用の容器に用意した。第1段用の洗浄液がほぼ空に近くなったところで、次の段に移る。
運転圧力は32Bar程度に調整した。各サイクルおよび段の運転を通じて循環液温度は約50℃を維持した。
<First cycle>
<First stage>
Return to the description of the first cycle. The permeated liquid was obtained from the circulating liquid, and at the same time, the first stage cleaning liquid prepared in advance was supplied so that the circulating liquid concentration was 17%. This cleaning liquid is once put in the cleaning liquid tank and supplied to the circulating liquid tank through the cleaning liquid pump and the control valve. Table 1 shows the amount of PEG 200 in the same amount of the cleaning solution prepared in the first stage. The cleaning liquid for the first stage was prepared in a container for the third stage permeate to be described later. When the cleaning liquid for the first stage is almost empty, the process moves to the next stage.
The operating pressure was adjusted to about 32 Bar. The circulating fluid temperature was maintained at about 50 ° C. throughout each cycle and stage operation.

<第2段><第3段><第4段>
第2段用の洗浄液は第4段透過液用の容器に用意し、第2段透過液を得た。
第3段用の洗浄液は第5段透過液用の容器に用意し、第3段透過液を得た。
第4段用の洗浄液は第6段透過液用の容器に用意し、第4段透過液を得た。
<Second stage><Thirdstage><Fourthstage>
The cleaning liquid for the second stage was prepared in a container for the fourth stage permeated liquid to obtain a second stage permeated liquid.
The cleaning liquid for the third stage was prepared in a container for the fifth stage permeate to obtain a third stage permeate.
The cleaning liquid for the fourth stage was prepared in a container for the sixth stage permeated liquid to obtain the fourth stage permeated liquid.

Figure 2011173035
Figure 2011173035

<第5段>
第5段に入る前に、一旦運転圧力を10Bar以下程度に調整した後、原料溶液51とイオン交換水を循環液に加え、糖度17%に調整した後、第5段用の洗浄液を第8段透過液用容器に用意し、第5段透過液を得た。運転圧力は32Bar程度に調整した。
<5th stage>
Before entering the fifth stage, once the operating pressure is adjusted to about 10 Bar or less, the raw material solution 51 and ion-exchanged water are added to the circulating liquid to adjust the sugar content to 17%, and then the fifth stage cleaning liquid is added to the eighth stage. A fifth stage permeate was obtained by preparing in a stage permeate container. The operating pressure was adjusted to about 32 Bar.

<第6段、第7段、第8段>
第6段用の洗浄液を第8段透過液用容器に用意し、第6段透過液を得た。
第7段用の洗浄液を第8段透過液用容器に用意し、第7段透過液を得た。
第8段用の洗浄液を第8段透過液用容器に用意し、第8段透過液を得た。
<6th stage, 7th stage, 8th stage>
The sixth stage cleaning liquid was prepared in the eighth stage permeate container to obtain a sixth stage permeate.
The seventh-stage cleaning liquid was prepared in the eighth-stage permeate container to obtain a seventh-stage permeate.
The eighth stage cleaning liquid was prepared in the eighth stage permeate container to obtain an eighth stage permeate.

<第9段、第10段>
第9段は、洗浄水を循環液槽に供給しながら、予定量の第9段透過液を得た。
第10段は、洗浄水を循環液槽に供給しながら、予定量の第10段透過液を得た。
<9th stage, 10th stage>
In the ninth stage, a predetermined amount of the ninth stage permeate was obtained while supplying wash water to the circulating liquid tank.
In the 10th stage, a predetermined amount of the 10th stage permeate was obtained while supplying the wash water to the circulating liquid tank.

<初回サイクル補足>
初回サイクルにおいて、循環液量が減り、運転し難いと判断した場合は、適宜処理原液を循環液に加え、同時に必要な洗浄液(あるいは洗浄水)を加え、循環液糖度17%を確保しながら、運転を継続し、最終残液を得、透過液容器に、1段から10段の透過液を得る。
<First cycle supplement>
In the first cycle, when it is judged that the amount of circulating fluid decreases and it is difficult to operate, the processing stock solution is appropriately added to the circulating fluid, and at the same time, the necessary cleaning fluid (or cleaning water) is added, while ensuring a circulating fluid sugar content of 17%, The operation is continued to obtain a final residual liquid, and 1 to 10 stages of permeate are obtained in the permeate container.

<最終残液の取扱い>
第10段で得た最終残液の一部は、サイクルの10段目で循環液に混合し、残りの液は系外に取出する。
<Handling of final residual liquid>
Part of the final residual liquid obtained in the 10th stage is mixed with the circulating liquid in the 10th stage of the cycle, and the remaining liquid is taken out of the system.

<第2サイクル>
<被処理液の準備>
初回サイクルで得た第1、第2、および第3透過液の全量を循環液容器に順次入れ、AFC80により濃縮し、循環液濃度を17%とした。各透過液は、循環液槽に直接投入したが、一旦洗浄液槽に入れた後、濃縮をすすめて所定の被処理液を得ても良い。
<Second cycle>
<Preparation of liquid to be treated>
The total amounts of the first, second, and third permeates obtained in the first cycle were sequentially put into a circulating fluid container and concentrated by AFC80 to make the circulating fluid concentration 17%. Each permeate is directly fed into the circulating liquid tank, but once it is put into the washing liquid tank, it may be concentrated to obtain a predetermined liquid to be treated.

<第1段>
洗浄液として初回サイクルの第4透過液を用い、第2サイクル第1段の透過液を得た。第1段の透過液中にあらかじめ設定した目標糖度分が得られた時点で、第1段を終える。設定した目標の透過液量をこえても設定糖度分が得られない場合は、容器の余裕がある範囲で、目標の糖度分を得るようにする。第1段から第4段については第2サイクル以降この方針で実施した。 なお、循環液の糖度17%程度の濃度における運転圧力は約24Bar、循環液温度は約50℃を維持した。
表1に目標の透過液量と目標の糖度分を記載した。
<First stage>
The first cycle of the fourth permeate was used as the cleaning solution, and a second cycle first stage permeate was obtained. When the target sugar content set in advance in the first stage permeate is obtained, the first stage is completed. If the set sugar content cannot be obtained even if the set target permeate amount is exceeded, the target sugar content is obtained within a range where there is room in the container. The first stage to the fourth stage were carried out with this policy after the second cycle. The operating pressure at a concentration of the circulating fluid having a sugar content of about 17% was maintained at about 24 Bar, and the circulating fluid temperature was maintained at about 50 ° C.
Table 1 shows the target permeate amount and target sugar content.

<第2段、第3段、第4段>
第2段用の洗浄液は初回サイクルの第4段と第5段の透過液の一部を用い、第2段透過液を第1段と同様の方法で得た。
第3段用の洗浄液は初回サイクルの第5段と第6段の透過液の一部を用い、第3段透過液を第1段と同様の方法で得た。
第4段用の洗浄液は初回サイクルの第6段の透過液の残りを用い、処理する原料溶液加えながら、洗浄水を加えながら糖度17%程度を維持し、所定の糖度分が得られるまで運転し、第4段透過液を得た。糖度17%程度の運転においては32Bar程度とした。
<Second stage, third stage, fourth stage>
The second stage permeate was obtained in the same manner as the first stage, using a part of the permeate of the fourth and fifth stages of the first cycle as the second stage cleaning liquid.
The third stage permeate was obtained in the same manner as in the first stage, using a part of the permeate of the fifth stage and the sixth stage as the cleaning liquid for the third stage.
The fourth stage cleaning liquid uses the remainder of the sixth stage permeated liquid in the first cycle, and while maintaining the raw water solution to be processed, the washing water is added and the sugar content is maintained at about 17%, and the operation is continued until a predetermined sugar content is obtained. As a result, a fourth-stage permeate was obtained. In operation with a sugar content of about 17%, it was set to about 32 Bar.

<第5段>
循環液槽内の液量が約20kg(循環液槽は30リットル用で、膜モジュールおよび配管内の液量は約10kg分程度で合計液量約30kg)になるように、処理する原料溶液を徐々に加えながら、糖度17%程度になるように洗浄水を供給した後、15分程度循環運転を実施した後、前サイクル7段目の透過液を洗浄液として、5段目透過液を得た。
<5th stage>
The raw material solution to be processed is adjusted so that the amount of liquid in the circulating liquid tank is about 20 kg (the circulating liquid tank is for 30 liters, the amount of liquid in the membrane module and piping is about 10 kg, and the total liquid volume is about 30 kg). While gradually added, washing water was supplied so as to have a sugar content of about 17%, and after circulating operation for about 15 minutes, a fifth-stage permeate was obtained using the seventh-stage permeate as a washing liquid. .

<第6段、第7段、第8段> <6th stage, 7th stage, 8th stage>

その後第1サイクルと同様に6,7,8段を実行し、第6段透過液、第7段透過液、第8段透過液を得た。
その後第1サイクルと同様に、洗浄水を用いて、第9段透過液、第10段透過液をえた。
Thereafter, steps 6, 7, and 8 were performed in the same manner as in the first cycle to obtain a sixth-stage permeate, a seventh-stage permeate, and an eighth-stage permeate.
After that, similarly to the first cycle, the ninth-stage permeate and the tenth-stage permeate were obtained using washing water.

<その後の実施例1における運転方針>
<第3サイクル以降の運転>
第3サイクル以降の運転も第2サイクルと同様に第7サイクルまで進め、各サイクルで供給する原料溶液量は表2に示した量とした。原料溶液供給を減らした後の第8サイクル、第9サイクルは、9段まで運転した。
<Operation policy in subsequent Example 1>
<Operation after the third cycle>
The operation after the third cycle was advanced to the seventh cycle in the same manner as the second cycle, and the amount of the raw material solution supplied in each cycle was set to the amount shown in Table 2. The eighth and ninth cycles after reducing the raw material solution supply were operated up to 9 stages.

<液体クロマトグラフによる分離状況の把握>
以下の条件により最終透過液および最終残液の液体クロマトグラフチャートを得た。
カラム:日立GL.W520−S水系SEC分析カラム
溶離液:H2
流量:0.3mL/分
サンプル注入量:50μL(30℃)
測定時間:50分
検知器:RID
<Understanding separation status by liquid chromatograph>
A liquid chromatograph chart of the final permeate and the final residual liquid was obtained under the following conditions.
Column: Hitachi GL. W520-S aqueous SEC analysis column
Eluent: H 2 O
Flow rate: 0.3 mL / min Sample injection volume: 50 μL (30 ° C.)
Measurement time: 50 minutes Detector: RID

<実施例1における最終透過液、最終残液の分析結果>
各サイクルの運転により得た最終透過液、最終残液の液体クロマトグラフによるチャートにより分離状況を判断した。図8のチャートはPEG関連物質を標準物質として測定したものである。図8(A)はジエチレングリコール、図8(B)はPEG200混合物、図8(C)はPEG300混合物のものである。標準物質としてのジエチレングリコールは約32分にピークがある。またPEG200混合物は、約30.2分に最も高いピークがあり、その両脇である29.5分と31分にピークがある。サンプルが平均分子量200のポリエチレングリコール混合液であることと、ジエチレングリコールのピークから判断して、ジエチレングリコール(分子量106)が32分、トリエチレングリコール(分子量150)が31分、テトラエチレングリコール(分子量194)が30.2分、ペンタエチレングリコール(分子量238)が29.5分にそれぞれピークをもつと判断できる。加えて、平均分子量300のポリエチレングリコールの混合物では、最大級のピークが、28.8分と28.2分の2箇所にあり、これらをヘキサエチレングリコール(分子量282)とヘプタエチレングリコール(分子量326)とするとそれらの平均がPEG300の平均分子量300と近く、各物質の滞留時間と分子量が矛盾なく並ぶ。
<Analytical result of final permeate and final residual liquid in Example 1>
The state of separation was judged from the chart of the final permeate obtained by the operation of each cycle and the final residual liquid using a liquid chromatograph. The chart in FIG. 8 is obtained by measuring a PEG-related substance as a standard substance. FIG. 8A shows diethylene glycol, FIG. 8B shows a PEG200 mixture, and FIG. 8C shows a PEG300 mixture. Diethylene glycol as a standard substance has a peak at about 32 minutes. The PEG200 mixture has the highest peak at about 30.2 minutes, and peaks at both sides of 29.5 and 31 minutes. Judging from the fact that the sample is a polyethylene glycol mixture having an average molecular weight of 200 and the peak of diethylene glycol, diethylene glycol (molecular weight 106) is 32 minutes, triethylene glycol (molecular weight 150) is 31 minutes, tetraethylene glycol (molecular weight 194) Can be determined to have a peak at 30.2 minutes and pentaethylene glycol (molecular weight 238) at 29.5 minutes. In addition, in the mixture of polyethylene glycol having an average molecular weight of 300, the largest peaks are at 28.8 minutes and 28.2 minutes, which are hexaethylene glycol (molecular weight 282) and heptaethylene glycol (molecular weight 326). ), The average of them is close to the average molecular weight 300 of PEG300, and the residence time and molecular weight of each substance are aligned consistently.

上述の液体クロマトグラフでの各物質に対応する滞留間を参照して、最終透過液と最終残液のチャートを見ると、図9と図10はサイクル5から9のそれぞれ最終残液と最終透過液の液体クロマトグラフのチャートであり、図9の各チャートの最終残液の最大のピークは、ペンタエチレングリコールに相当する滞留時間にあり、トリエチレングリコール部は、最大ピークの25%程度以下しかなく、トリエチレングリコール分が低減されたポリエチレングリコールが得られている。逆に図10に示したクロマトチャートによる最終透過液の最大のピークは、31分付近にありトリエチレングリコールであることを示し、そのチャートでのペンタエチレングリコールの滞留時間に相当するチャートの高さは、最大ピークの25%程度以下しかなくペンタエチレングリコール分が低減されたポリエチレングリコールが得られている。   Referring to the retention period corresponding to each substance in the liquid chromatograph described above, looking at the chart of the final permeate and the final residual liquid, FIGS. 9 and 10 show the final residual liquid and the final permeation in cycles 5 to 9, respectively. The maximum peak of the final residual liquid in each chart of FIG. 9 is at the residence time corresponding to pentaethylene glycol, and the triethylene glycol portion is about 25% or less of the maximum peak. There is no polyethylene glycol having a reduced triethylene glycol content. Conversely, the maximum peak of the final permeate according to the chromatographic chart shown in FIG. 10 is around 31 minutes, indicating that it is triethylene glycol, and the height of the chart corresponding to the residence time of pentaethylene glycol on that chart. Is about 25% or less of the maximum peak, and polyethylene glycol having a reduced pentaethylene glycol content is obtained.

Figure 2011173035
Figure 2011173035

実施例2、実施例3、及び比較例は、共に、60重量%の物質1(トリエチレングリコール)と40重量%の物質2(ペンタエチレングリコール)の混合物を対象原料として、その25重量%水溶液を多段向流操作で分離するものである。物質1は透過率が0.69、物質2は透過率が0.4を示す物質である。対象原料を、最終透過液における物質1の含有率が実施例2では90%、実施例3では85%に、最終残液における物質1の含有率が実施例2では10%、実施例3では20%となるよう分離した。   In both Example 2, Example 3, and Comparative Example, a 25 wt% aqueous solution of a mixture of 60 wt% substance 1 (triethylene glycol) and 40 wt% substance 2 (pentaethylene glycol) was used as a target raw material. Are separated by a multistage countercurrent operation. Substance 1 has a transmittance of 0.69, and substance 2 has a transmittance of 0.4. The target raw material is 90% in Example 2 with a content of substance 1 in the final permeate, 85% in Example 3, and 10% in Example 2 with a content of Substance 1 in the final residual liquid. Separated to 20%.

分離膜としては、PCI Membranes社のAFC30、濃縮を行う膜として、RO膜であるPCI Membranes社のAFC80を使用した。その他、特に記載のない条件は、実施例1と同様の条件で実施した。   As a separation membrane, AFC30 of PCI Membranes was used, and as a membrane for concentration, AFC80 of PCI Membranes, which is an RO membrane, was used. Other conditions not specifically described were performed under the same conditions as in Example 1.

<実施例2の装置および運転>
図5は実施例2では図5に開示した装置を用いた。
実施例2の一連の多段向流分離操作は、濃縮段(表3に記載せず)を含めて21段階の膜分離操作からなる。濃縮段を除いた20段は、定常状態において原料溶液の物質1と物質2との合計の100重量流量単位に対して、各段からの残液中の物質1と物質2との合計で146重量流量単位とする第1の多段向流分離手段6段と246重量流量単位とする第2の多段向流分離手段14段を、残液中の物質1と物質2との濃度合計が25重量%程度となるように確保しながら運転した。原料は6段目の開始前に希釈水と共に約25重量%水溶液として供給し、第1段においては次段からの透過液を物質1、物質2のいずれも透過しないRO膜やNF膜を用いて約360重量流量単位程度水分を除去し、2段目から18段目までの適切に選んだ段では、洗浄液として次々段の透過液を洗浄液として用い、各段の濃度調整のために、必要に応じてRO膜による濃縮、または透過液に水分を補給する操作を行い、濃縮操作部最後の二段においては、新鮮な洗浄水526および555重量流量単位を供給し、各段の残液濃度25重量%水溶液とする運転を継続した場合の運転結果である。
<Device and Operation of Example 2>
FIG. 5 uses the apparatus disclosed in FIG. 5 in the second embodiment.
The series of multi-stage countercurrent separation operations of Example 2 consists of a 21-stage membrane separation operation including a concentration stage (not shown in Table 3). The 20 stages excluding the concentration stage have a total of 146 substances 1 and 2 in the residual liquid from each stage with respect to the total 100 weight flow units of substances 1 and 2 in the raw material solution in the steady state. The first multistage countercurrent separating means having six weight flow units and the second multistage countercurrent separating means having 246 weight flow units have a total concentration of 25% by weight of substance 1 and substance 2 in the residual liquid. We drove while securing it to be about%. The raw material is supplied as an about 25 wt% aqueous solution together with dilution water before the start of the sixth stage. In the first stage, an RO membrane or NF membrane that does not allow the permeated liquid from the next stage to permeate either Substance 1 or Substance 2 is used. Approximately 360 weight flow units are removed, and the second through eighteenth stages are appropriately selected, and the next stage permeate is used as the washing liquid as the washing liquid. Necessary for adjusting the concentration of each stage. Depending on the concentration, the RO membrane is reconstituted or the permeate is replenished with water. In the last two stages of the concentration operation section, fresh washing water 526 and 555 weight flow units are supplied, and the residual liquid concentration in each stage. It is a driving | running result at the time of continuing the driving | running made into 25 weight% aqueous solution.

<実施例2の結果>
表3は、上記の運転条件における結果をまとめたものである。表中F、C、Pは物質1と物質2との合計の重量流量単位(除水分)を示し、Fは供給液中の値、Cは各段の残液、Pは各段の透過液中の値である。第1段においては、表3に示されるPより多量の物質1と物質2とに相当する透過液を取得し、その第1段のPの値に相当する分の透過液を系外に抜き出し、残りの透過液を第1段に戻す運転が可能である。最終段においても表3のCの値に相当する残液より多くの残液を取得し、その最終段のCの値の相当する分の残液を系外に抜き出し、残りの残液を最終段に戻す運転が可能である。
<Results of Example 2>
Table 3 summarizes the results under the above operating conditions. In the table, F, C and P indicate the total weight flow unit (moisture removal) of substance 1 and substance 2, F is the value in the supply liquid, C is the residual liquid in each stage, and P is the permeate in each stage. Medium value. In the first stage, a larger amount of permeate corresponding to the substances 1 and 2 than P shown in Table 3 is obtained, and the permeate corresponding to the value of P in the first stage is extracted out of the system. The operation of returning the remaining permeate to the first stage is possible. Even in the final stage, more residual liquid is obtained than the residual liquid corresponding to the value of C in Table 3, the residual liquid corresponding to the value of C in the final stage is drawn out of the system, and the remaining residual liquid is finally obtained. Operation to return to the stage is possible.

Xc,Ypはそれぞれ各段の残液と透過液中の、物質1と物質2と合計の重量流量に対する物質1の重量流量の比率(物質1/(物質1+物質2))である。   Xc and Yp are the ratio of the mass flow rate of the substance 1 to the total mass flow rate of the substances 1 and 2 in the residual liquid and permeate of each stage (substance 1 / (substance 1 + substance 2)).

Figure 2011173035
Figure 2011173035

<実施例3の装置および運転>
実施例3では図6に開示した装置を用いた。
実施例3の一連の多段向流洗浄分離操作は、濃縮段(表4−1,4−2に記載せず)を含めて11段階の膜分離操作からなる。各段における物質1と物質2の流量単位及び重量分率を表4−1に、物質1、物質2及び水を含む処理液の重量流量単位を表4−2に示す。濃縮段を除いた10段は、定常状態において供給原料溶液の物質1と物質2との合計の100重量流量単位に対して、各段からの残液中の物質1と物質2との合計で438重量流量単位とする第1の多段向流洗浄分離手段として4段と838重量流量単位とする第2の多段向流洗浄分離手段として6段を、残液中の物質1と物質2との濃度合計が25重量%程度となるように確保しながら運転するものである。原料は5段目の開始前に希釈水と共に約25重量%水溶液として供給した。第1段には、次段からの透過液を物質1、物質2のいずれも透過しないRO膜やNF膜を用いて約304重量流量単位程度水分を除去してから洗浄液として供給した。2段目から10段目までの適切に選んだ段では、次の段の透過液を洗浄液として用い、各段の濃度調整のために、必要に応じてRO膜による濃縮、または透過液に水分を補給する操作を行った。第2の多段向流分離操作部の最後段においては、新鮮な洗浄水809重量流量単位を供給した。表4−3は、各段の残液濃度を25重量%水溶液とする運転を継続した場合の、最終透過液、最終残液における各成分濃度及び合計濃度を示す。
<Equipment and operation of Example 3>
In Example 3, the apparatus disclosed in FIG. 6 was used.
The series of multi-stage countercurrent washing / separation operations of Example 3 includes 11 stages of membrane separation operations including a concentration stage (not shown in Tables 4-1 and 4-2). The flow rate units and weight fractions of the substances 1 and 2 at each stage are shown in Table 4-1, and the weight flow units of the treatment liquid containing the substances 1, 2 and water are shown in Table 4-2. Ten stages excluding the concentration stage are the sum of substance 1 and substance 2 in the residual liquid from each stage with respect to the total 100 weight flow units of substance 1 and substance 2 in the feedstock solution in the steady state. 4 stages as the first multistage countercurrent washing and separating means with 438 weight flow units and 6 stages as the second multistage countercurrent washing and separating means with 838 weight flow units, and the substances 1 and 2 in the residual liquid The operation is performed while ensuring that the total concentration is about 25% by weight. The raw material was supplied as an aqueous solution of about 25% by weight with dilution water before the start of the fifth stage. In the first stage, the permeated liquid from the next stage was supplied as a cleaning liquid after removing moisture of about 304 weight flow units using an RO membrane or NF membrane that did not pass through either Substance 1 or Substance 2. In appropriately selected stages from the second stage to the tenth stage, the permeated liquid of the next stage is used as a cleaning liquid, and concentration adjustment by RO membrane or moisture in the permeated liquid as necessary for the concentration adjustment of each stage. An operation to replenish was performed. In the last stage of the second multistage countercurrent separation operation section, fresh washing water 809 weight flow unit was supplied. Table 4-3 shows the concentration of each component and the total concentration in the final permeate and the final residual liquid when the operation of setting the residual liquid concentration in each stage to a 25% by weight aqueous solution is continued.

Figure 2011173035
Figure 2011173035

Figure 2011173035
Figure 2011173035

Figure 2011173035
Figure 2011173035

比較例Comparative example

第2の多段向流分離工程を用いず、第1の多段向流分離工程の最初の段に原液を供給して、9段の多段向流分離手段を使用した結果を、比較例として表5に記載する。   Table 5 shows, as a comparative example, the results of using the nine-stage multi-stage countercurrent separation means by supplying the stock solution to the first stage of the first multistage countercurrent separation process without using the second multistage countercurrent separation process. It describes.

運転方法の概要は、次の通りである。原料溶液の物質1と物質2の濃度合計が25重量%程度となるように添加する水量を調整しながら装置の第1段に供給し、1段目の透過液を得る。それと同時に第1段で得た透過液の一部を原料溶液の希釈液として用い、2段目の透過液を洗浄液として加える。第1段から2段目、3段目と順次残液の処理を進行させ、最終段には洗浄水を加え、最終段で得た透過液をその前段の洗浄液として加える。   The outline of the operation method is as follows. The first stage permeate is obtained by supplying the first stage of the apparatus while adjusting the amount of water to be added so that the total concentration of substance 1 and substance 2 in the raw material solution is about 25% by weight. At the same time, a part of the permeate obtained in the first stage is used as a diluent for the raw material solution, and the second stage permeate is added as a cleaning liquid. The remaining liquid is sequentially processed from the 1st stage to the 2nd stage and the 3rd stage, washing water is added to the final stage, and the permeate obtained in the final stage is added as a washing liquid for the preceding stage.

表5に記載した第1段から得る透過液は、1段目に投入する混合物の濃度の影響を受けるため、74重量%程度の物質1をふくむ物質1と物質2の混合物が得られるだけで、90重量%以上の物質1を含む混合物を得ること実質的に困難である。   Since the permeate obtained from the first stage described in Table 5 is affected by the concentration of the mixture charged in the first stage, only a mixture of substance 1 and substance 2 containing about 74% by weight of substance 1 is obtained. It is substantially difficult to obtain a mixture containing 90% by weight or more of substance 1.

Figure 2011173035
Figure 2011173035

本発明は、化学工業、精糖工業、発酵工業、アミノ酸工業などで得られた天然物、合成物質、分子相互の性質の違い、蒸気圧差などを用いた精製が困難な物質、熱安定性の低い物質を精製する際においても、性質の類似した不純物を含有する混合物から前記有価物を効率よく分離することを可能とするものであり、前記工業分野において産業上の利用可能性を有するものである。   The present invention is a natural product obtained in the chemical industry, the refined sugar industry, the fermentation industry, the amino acid industry, etc., a synthetic substance, a substance that is difficult to purify using a difference in properties between molecules, a difference in vapor pressure, etc., and a low thermal stability. When purifying a substance, the valuable material can be efficiently separated from a mixture containing impurities of similar properties, and has industrial applicability in the industrial field. .

1…循環液槽
2…秤
3…昇圧ポンプ入口配管
4…昇圧ポンプ
5−A…熱交換器(冷却器)
5−B…熱交換器(加熱器)
6−A,6−B,6−C… 膜モジュール
7…圧力計
8…pH計
9…圧力調節弁
10…循環液出口配管/ホース
11…分離膜洗浄液循環用温水容器
12…残液用容器
13…洗浄水貯槽
13−B…洗浄液容器
14−A…洗浄水ポンプ
14−B…洗浄液ポンプ
15…透過液容器
16…透過液用配管/ホース
22…循環液の抜出し機構
23…洗浄液の供給機構
24…透過液の抜出し機構
25…透過液の流量測定機構
26…循環液の濃度測定機構
27…洗浄液供給量の制御による循環液濃度維持機構
28…透過液の糖度測定機構用の糖度計
29…循環液の温度維持機構
30…返送用配管
31…先行バッチ貯槽
33…洗浄液調節弁
34・・・透過液返送弁
51…原料溶液
52…洗浄水
53…透過液
54…残液
55…返送透過液
56…洗浄液
57…希薄液
58…冷却水
59…洗浄用温水
60…加熱用水
61…対象液
62…洗浄液
63…透過液
64…残液
65…膜ユニット
66…圧力調節弁
67…循環ポンプ
68…透過液ポンプ
69…昇圧ポンプ
70…循環液タンク
71…透過液タンク
81…原料溶液
82…純水
83…最終透過液
84…最終残液
85…濃縮透過液
DESCRIPTION OF SYMBOLS 1 ... Circulating fluid tank 2 ... Scale 3 ... Booster pump inlet piping 4 ... Booster pump 5-A ... Heat exchanger (cooler)
5-B ... Heat exchanger (heater)
6-A, 6-B, 6-C ... Membrane module 7 ... Pressure gauge 8 ... pH meter 9 ... Pressure control valve 10 ... Circulating fluid outlet pipe / hose 11 ... Hot water container for circulating separation membrane cleaning liquid 12 ... Residual liquid container DESCRIPTION OF SYMBOLS 13 ... Washing water storage tank 13-B ... Cleaning liquid container 14-A ... Washing water pump 14-B ... Cleaning liquid pump 15 ... Permeate liquid container 16 ... Permeate liquid piping / hose 22 ... Circulating liquid extraction mechanism 23 ... Cleaning liquid supply mechanism DESCRIPTION OF SYMBOLS 24 ... Permeate extraction mechanism 25 ... Permeate flow measurement mechanism 26 ... Circulating fluid concentration measurement mechanism 27 ... Circulating fluid concentration maintenance mechanism by controlling the amount of cleaning liquid supplied 28 ... Glucometer for permeate sugar content measurement mechanism 29 ... Circulating fluid temperature maintenance mechanism 30 ... return piping 31 ... preceding batch storage tank 33 ... cleaning liquid control valve 34 ... permeate returning valve 51 ... raw material solution 52 ... cleaning water 53 ... permeate 54 ... residual liquid 55 ... return permeate 56 ... Washing Liquid 57 ... Dilute liquid 58 ... Cooling water 59 ... Washing hot water 60 ... Heating water 61 ... Target liquid 62 ... Cleaning liquid 63 ... Permeate liquid 64 ... Residual liquid 65 ... Membrane unit 66 ... Pressure control valve 67 ... Circulation pump 68 ... Permeate Pump 69 ... Booster pump 70 ... Circulating fluid tank 71 ... Permeate tank 81 ... Raw material solution 82 ... Pure water 83 ... Final permeate 84 ... Final residual solution 85 ... Concentrated permeate

Claims (13)

被処理液を残液と透過液に分離する分離手段を用いて、原料溶液中の目的物質1を最終透過液に、目的物質2を最終残液に分離する方法において、
(1)分離操作による残液を後段に送り、透過液を前段の被処理液および/または洗浄液として戻すように構成された多段向流分離操作を用いて行うこと、
(2)原料溶液を多段向流分離操作の、最初と最後の段を除く中間の段のいずれかに供給すること、
を特徴とする原料溶液の膜分離方法。
In the method of separating the target substance 1 in the raw material solution into the final permeate and the target substance 2 into the final residual liquid using a separation means for separating the liquid to be treated into the residual liquid and the permeate.
(1) Performing using a multistage countercurrent separation operation configured to send the residual liquid from the separation operation to the subsequent stage and return the permeate as the liquid to be treated and / or the cleaning liquid in the previous stage;
(2) supplying the raw material solution to one of the intermediate stages except the first and last stages of the multistage countercurrent separation operation;
A membrane separation method for a raw material solution.
前記多段向流分離操作を、複数の膜分離手段が直列に配列された装置を用いて行う、請求項1記載の原料溶液の膜分離方法。   The membrane separation method for a raw material solution according to claim 1, wherein the multistage countercurrent separation operation is performed using an apparatus in which a plurality of membrane separation means are arranged in series. 前記多段向流分離操作は、複数回のサイクルで行われ、
各サイクルは4段以上の段から構成され、各段の分離操作は被処理液と別途貯留された目的物質1の濃度の異なる複数の洗浄液を使用して行われ、前記洗浄液は前段へいくほど目的物質1の濃度、あるいは目的物質1の目的物質2に対する比率が高くなるように構成され、
各サイクルの最後の段の残液を最終残液として取り出すとともに、各段の透過液を別途設けられた貯留手段に貯留し、後のサイクルの分離操作において最初の段の被処理液として、あるいは前のサイクルで分離された段より前段の洗浄液として使用することにより供給する、
請求項1記載の原料溶液の膜分離方法。
The multistage countercurrent separation operation is performed in a plurality of cycles,
Each cycle is composed of four or more stages, and the separation operation of each stage is performed using a plurality of cleaning liquids having different concentrations of the target liquid 1 separately stored from the liquid to be processed. The concentration of the target substance 1 or the ratio of the target substance 1 to the target substance 2 is increased,
The residual liquid at the last stage of each cycle is taken out as the final residual liquid, and the permeated liquid at each stage is stored in a separately provided storage means, and as the first stage liquid to be processed in the separation operation of the subsequent cycle, or Supply by using it as a cleaning liquid before the stage separated in the previous cycle,
The method for membrane separation of a raw material solution according to claim 1.
前記多段向流分離操作の最前の2段を除く段より得られる透過液の一部または全部を、当該段より2つ以上前の段に被処理液として戻す、請求項1〜3のいずれかに記載の原料溶液の膜分離方法。   The part or all of the permeate obtained from the stage excluding the last two stages of the multi-stage countercurrent separation operation is returned to the stage two or more stages prior to the stage as the liquid to be treated. The membrane separation method of the raw material solution as described in 2. 4段以上の多段向流分離操作において、原料溶液を複数の段に分けて供給する、請求項1〜4のいずれかに記載の原料溶液の膜分離方法。   The raw material solution membrane separation method according to any one of claims 1 to 4, wherein the raw material solution is supplied in a plurality of stages in a multistage countercurrent separation operation of four or more stages. 前記多段向流分離操作における最初の段に供給する被処理液を処理前に濃縮する請求項1〜5のいずれかに記載の原料溶液の膜分離方法。   The raw material solution membrane separation method according to claim 1, wherein the liquid to be treated to be supplied to the first stage in the multistage countercurrent separation operation is concentrated before the treatment. 前記多段向流分離操作の最終段から分離される残液の少なくとも一部を、原料溶液供給段より後段のいずれかの段に供給する、請求項1〜6のいずれかに記載の原料溶液の膜分離方法。   The raw material solution according to any one of claims 1 to 6, wherein at least a part of the residual liquid separated from the final stage of the multistage countercurrent separation operation is supplied to any stage after the raw material solution supply stage. Membrane separation method. 少なくとも3種類の目的物質を含む原料溶液から、多段向流分離操作により、
(1)前記多段向流分離操作の最終透過液に目的物質1を分離する工程、
(2)前記多段向流分離操作の最終残液に目的物質2を分離する工程、
(3)前記多段向流分離操作のいずれかの段より、透過液または残液の全部または一部を前記多段分離操作とは別の分離手段に供給し、前記別の分離手段の最終透過液または最終残液に目的物質3を分離する工程、
を含む請求項1〜7のいずれかに記載の原料溶液の膜分離方法。
From a raw material solution containing at least three kinds of target substances, by a multistage countercurrent separation operation,
(1) a step of separating the target substance 1 from the final permeate of the multistage countercurrent separation operation;
(2) a step of separating the target substance 2 from the final residual liquid of the multistage countercurrent separation operation;
(3) From either stage of the multistage countercurrent separation operation, all or part of the permeate or residual liquid is supplied to a separation means different from the multistage separation operation, and the final permeate of the other separation means Or a step of separating the target substance 3 into the final residual liquid,
The membrane separation method of the raw material solution in any one of Claims 1-7 containing these.
最初の段の透過液の少なくとも一部を、次サイクルの被処理液の一部として使用することを特徴とする請求項3〜8のいずれかに記載の原料溶液の膜分離方法。   9. The raw material solution membrane separation method according to any one of claims 3 to 8, wherein at least part of the first stage permeate is used as part of the liquid to be treated in the next cycle. 最初の段の透過液は、前記透過液中の目的物質1が所定濃度以上、および/または透過液中の目的物質1の濃度の目的物質2の濃度に対する比率が所定比率以上となるまで次サイクルの被処理液として使用し、所定濃度、および/または所定比率以上となったら最終透過液として系外に取り出し、第2段の透過液を次サイクルの被処理液として使用する、請求項3〜8のいずれかに記載の原料溶液の膜分離方法。   The first stage of the permeate is the next cycle until the target substance 1 in the permeate has a predetermined concentration or more and / or the ratio of the concentration of the target substance 1 in the permeate to the concentration of the target substance 2 becomes a predetermined ratio or more. The liquid to be treated is taken out of the system as a final permeate when a predetermined concentration and / or a predetermined ratio is reached, and the second stage permeate is used as a liquid to be treated in the next cycle. The membrane separation method of the raw material solution in any one of 8. 多段向流操作の複数段での膜分離に同一の分離手段を用いることを特徴とする請求項3〜10のいずれかに記載の膜分離方法。   The membrane separation method according to any one of claims 3 to 10, wherein the same separation means is used for membrane separation in a plurality of stages of multistage countercurrent operation. 被処理液を残液と透過液に分離する分離手段を備え、原料溶液中の目的物質1を最終透過液に、目的物質2を最終残液に分離する膜分離装置であって、
(1)分離操作による残液を後段に送り、透過液を前段の被処理液および/または洗浄液として戻す多段向流分離操作を用い、
(2)原料溶液を多段向流分離操作の、最初と最後の段を除く中間の段のいずれかに供給する、
ように構成された、原料溶液の膜分離装置。
A membrane separation apparatus comprising a separation means for separating a liquid to be treated into a residual liquid and a permeate, and separating a target substance 1 in a raw material solution into a final permeate and a target substance 2 into a final residual liquid,
(1) Using a multistage countercurrent separation operation in which the residual liquid from the separation operation is sent to the subsequent stage and the permeate is returned as the liquid to be treated and / or the cleaning liquid in the previous stage.
(2) The raw material solution is supplied to one of the intermediate stages except the first and last stages of the multistage countercurrent separation operation.
A raw material solution membrane separator configured as described above.
直列に配列された複数の膜分離手段を有し、前記多段向流分離操作を前記複数の膜分離手段を用いて行う、請求項12記載の原料溶液の膜分離装置。   13. The raw material solution membrane separation apparatus according to claim 12, comprising a plurality of membrane separation means arranged in series, and performing the multistage countercurrent separation operation using the plurality of membrane separation means.
JP2010036974A 2010-02-23 2010-02-23 Method and apparatus for separation and recovery of target substances Active JP5398577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036974A JP5398577B2 (en) 2010-02-23 2010-02-23 Method and apparatus for separation and recovery of target substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036974A JP5398577B2 (en) 2010-02-23 2010-02-23 Method and apparatus for separation and recovery of target substances

Publications (2)

Publication Number Publication Date
JP2011173035A true JP2011173035A (en) 2011-09-08
JP5398577B2 JP5398577B2 (en) 2014-01-29

Family

ID=44686427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036974A Active JP5398577B2 (en) 2010-02-23 2010-02-23 Method and apparatus for separation and recovery of target substances

Country Status (1)

Country Link
JP (1) JP5398577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521079A (en) * 2013-09-03 2014-01-22 西安西热水务环保有限公司 Counter flow type offline cleaning device of electrodeionization membrane block
JP2014019603A (en) * 2012-07-18 2014-02-03 Kuraray Co Ltd Washing apparatus of silicon sludge and recovery method of silicon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208197A (en) * 1944-11-03 1965-09-28 Simon Franz Eugen Diffusion separation of fluids
JPS5378665A (en) * 1976-12-21 1978-07-12 Ebara Infilco Co Ltd Method of refining valuable substance contained liquid
JPS63205105A (en) * 1987-02-20 1988-08-24 Nitto Electric Ind Co Ltd Concentration of aqueous solution of low molecular weight organic compound by means of membrane
JPH04150923A (en) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd Method and device for concentrating solution by reverse osmosis membrane
JPH09276863A (en) * 1996-04-11 1997-10-28 Toray Ind Inc Reverse osmosis separation apparatus and method therefor
JP2004017035A (en) * 2002-06-12 2004-01-22 Nittetu Chemical Engineering Ltd Method of separating/recovering target substance
JP2008229559A (en) * 2007-03-22 2008-10-02 Tsukishima Kankyo Engineering Ltd Process and apparatus for separation of target substance using membrane separation
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208197A (en) * 1944-11-03 1965-09-28 Simon Franz Eugen Diffusion separation of fluids
JPS5378665A (en) * 1976-12-21 1978-07-12 Ebara Infilco Co Ltd Method of refining valuable substance contained liquid
JPS63205105A (en) * 1987-02-20 1988-08-24 Nitto Electric Ind Co Ltd Concentration of aqueous solution of low molecular weight organic compound by means of membrane
JPH04150923A (en) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd Method and device for concentrating solution by reverse osmosis membrane
JPH09276863A (en) * 1996-04-11 1997-10-28 Toray Ind Inc Reverse osmosis separation apparatus and method therefor
JP2004017035A (en) * 2002-06-12 2004-01-22 Nittetu Chemical Engineering Ltd Method of separating/recovering target substance
JP2008229559A (en) * 2007-03-22 2008-10-02 Tsukishima Kankyo Engineering Ltd Process and apparatus for separation of target substance using membrane separation
JP2010529905A (en) * 2007-06-14 2010-09-02 アレバ・エヌペ Apparatus and system for treating gas mixtures by permeation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019603A (en) * 2012-07-18 2014-02-03 Kuraray Co Ltd Washing apparatus of silicon sludge and recovery method of silicon
CN103521079A (en) * 2013-09-03 2014-01-22 西安西热水务环保有限公司 Counter flow type offline cleaning device of electrodeionization membrane block

Also Published As

Publication number Publication date
JP5398577B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP4805201B2 (en) Method and apparatus for separation of target substance using membrane separation
Luo et al. Refining sugarcane juice by an integrated membrane process: Filtration behavior of polymeric membrane at high temperature
CN110290854A (en) The component and related system of alcoholic solution are removed by forward osmosis
JP4832393B2 (en) Method and apparatus for separating polyglycerin using a membrane
JP6223681B2 (en) Method for producing lactic acid
CN107922220A (en) Make the method and related system of alcoholic solution dehydration via forward osmosis
CN103922953B (en) A kind of production technology of ornithine
US10843102B2 (en) Resinous compound crystallization using non-polar solvent sequence
CN101914037B (en) New process for producing high-purity iminodiacetonitrile
JP2016518821A (en) Recovery of 3-hydroxypropionic acid
CN104587836A (en) Process for the recovery of betaines from electrodialysis waste streams
Ding et al. Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation
US20160340750A1 (en) Method and plant for producing lactose crystals
JP5398577B2 (en) Method and apparatus for separation and recovery of target substances
CN104831002A (en) Sugar production clarifying production line
CN102018835A (en) Method for separating effective components in traditional Chinese medicine curculigo orchioides by membrane separation method
Brennan et al. Separations in food processing
JP4485738B2 (en) Method for separating and recovering target substances
CN107556162A (en) A kind of method of continuous extraction antierythrite
JP7093518B2 (en) Filtration device
CN108358774B (en) Method and apparatus for multiple recovery of components using pervaporation-crystallization coupling
JP3694871B2 (en) Separation and recovery method of target components
EP2008702A1 (en) Membrane filtration process and apparatus
WO2023147379A1 (en) Alcohol removal by dilution and concentration of alcoholic solutions
AU2023213941A1 (en) Alcohol removal by dilution and concentration of alcoholic solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5398577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250