JPS63203306A - Manufacture of fiber reinforced resin material - Google Patents

Manufacture of fiber reinforced resin material

Info

Publication number
JPS63203306A
JPS63203306A JP62037140A JP3714087A JPS63203306A JP S63203306 A JPS63203306 A JP S63203306A JP 62037140 A JP62037140 A JP 62037140A JP 3714087 A JP3714087 A JP 3714087A JP S63203306 A JPS63203306 A JP S63203306A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
fibers
short fibers
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62037140A
Other languages
Japanese (ja)
Inventor
Norio Kosuge
小菅 詔雄
Tadao Kaneko
金子 忠男
Tsuneo Kaneshiro
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62037140A priority Critical patent/JPS63203306A/en
Publication of JPS63203306A publication Critical patent/JPS63203306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce continuously a fiber reinforced material with high strength or high electric conductivity by kneading the mixture of the bundled object composed of short fibers for reinforcement and short fibers of thermoplastic resin, with the powder or pellet of thermoplastic resin at a temperature equal to melting temperature or higher. CONSTITUTION:A bundled object composed of short fibers for reinforcement and short fiber of thermoplastic resin is made. As the short fiber for reinforcement, e.g. carbon fiber or alumina fiber is used, and as the short fiber of thermoplastic resin, e.g. polyethylene fiber or polypropylene fiber is used. Said bundled object is desired to have 0.04-0.18 bulk specific gravity and the spherical shape of 10mm or less of diameter from the point of view of continuous feeding. Next, the powder or pellet of the thermoplastic resin is mixed with said bundled object at desired ratio, and this mixture is kneaded at the temperature equal to its melting temperature or higher. Consequently, the bundled condition of the fiber dispersed uniformly in the thermoplastic resin as a matrix, may be undone.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、繊維強化樹脂材料、詳しくは熱可塑性樹脂マ
トリックス中に補強用繊維が均一に分散された高強度あ
るいは高導電性を有する繊維強化樹脂材料を製造する方
法に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to fiber-reinforced resin materials, specifically fiber-reinforced fibers having high strength or high conductivity in which reinforcing fibers are uniformly dispersed in a thermoplastic resin matrix. The present invention relates to a method of manufacturing a resin material.

「従来の技術」 合成樹脂等の樹脂マトリックス中に、補強用繊維を分散
させた繊維強化樹脂材料は広く用いられているが、例え
ば炭素繊維やアラミド繊維のような比較的比重の小さい
繊維や、比重の大きい金泥繊維であっても繊維径が小さ
くて、かつ短く切断された繊維(チョプドストランド)
では、かさ比重が10”〜10゛1と非常に軽いために
、比重が1前後の樹脂の粉末やペレットと〆昆合する際
、分離しゃ、ずいという問題があった。
"Prior Art" Fiber-reinforced resin materials in which reinforcing fibers are dispersed in a resin matrix such as synthetic resin are widely used. Even if the gold clay fiber has a high specific gravity, the fiber diameter is small and the fiber is cut short (chopped strand).
Since it has a very light bulk specific gravity of 10" to 10"1, there is a problem in that it cannot be separated when combined with resin powder or pellets having a specific gravity of around 1.

そこで樹脂マトリックス中に補強用繊維を高濃度で分散
させる方法が種々試みられている。
Therefore, various methods of dispersing reinforcing fibers at high concentrations in a resin matrix have been attempted.

すなわち、容器の底部に回転翼を有するミキサーに炭素
繊維のチョツプドストランドと熱可塑性樹脂の粉末とを
入れ、炭@繊維を開繊しながら熱可塑性4MTf!粉末
と混合したのち、加熱プレス機を用いてシート状の成形
物を得る方法が、例えば特開昭58−46508号公報
に開示されている。
That is, chopped carbon fiber strands and thermoplastic resin powder are placed in a mixer with rotary blades at the bottom of the container, and while the charcoal and fibers are opened, the thermoplastic 4MTf! For example, Japanese Patent Laid-Open No. 58-46508 discloses a method in which a sheet-like molded product is obtained using a hot press after mixing with powder.

また、炭素繊維等の導電性の連続繊維を複数本にして、
加熱融解したエチレン−酢酸ビニル共重合体と炭化水素
系ワックスとの混合物中に含浸したのち冷却し、これを
2〜10龍の長さの集束物にしたものを熱可塑性樹脂の
ベレットあるいは粉末と混合し、混練してベレット状の
成形物を得る方法が、例えば特開昭61−29505号
公報に開示されている。
In addition, by making multiple conductive continuous fibers such as carbon fiber,
It is impregnated into a mixture of heated and melted ethylene-vinyl acetate copolymer and hydrocarbon wax, cooled, and made into a bundle of 2 to 10 lengths, which is then made into a pellet or powder of thermoplastic resin. A method of mixing and kneading to obtain a pellet-like molded product is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-29505.

「発明が解決しようとする問題点」 前記特開昭58−46508号公報に開示された方法は
、現在熱可塑性樹脂の成形方法として最も普及している
射出成形法を適用する場合に、シート状成形物を一度粉
砕または切断しないと、射出成形機の供給機に補給でき
ないという問題があり、またベレット状の成形物を作る
場合は、さらに数工程を経なければならないという欠点
がある。
"Problems to be Solved by the Invention" The method disclosed in Japanese Patent Application Laid-open No. 58-46508 is difficult to solve when applying the injection molding method, which is currently the most popular molding method for thermoplastic resins. There is a problem in that the feeder of the injection molding machine cannot be replenished unless the molded product is crushed or cut once, and when a pellet-shaped molded product is made, several additional steps are required.

一方前記特開昭61−29505号公報に開示された方
法は、使用する繊維が連続繊維でなければならず、比較
的短繊維の不達Vt#a維を集束しても、これを連続的
に含浸処理することは殆ど不可能であるという欠点があ
る。
On the other hand, in the method disclosed in JP-A No. 61-29505, the fibers used must be continuous fibers, and even if relatively short unreachable Vt#a fibers are collected, they cannot be continuously processed. It has the disadvantage that it is almost impossible to impregnate it.

本発明は、かぐの如き従来の問題点を解決することを目
的とする。
The present invention aims to solve the problems of conventional systems such as Kaguno.

「問題点を解決するための手段」 本発明は、補強用短繊維と熱可塑性+n脂の短繊維から
なる集束物と、熱可塑性樹脂の粉末またはベレットとの
混合物を前記熱可塑性樹脂の粉末またはベレットの融解
温度以上の温度で混練することを特徴とする繊維強化樹
脂材料の製造方法である。
"Means for Solving the Problems" The present invention provides a mixture of a bundle of reinforcing short fibers and short fibers of thermoplastic + n fat, and thermoplastic resin powder or pellets. This is a method for producing a fiber-reinforced resin material characterized by kneading at a temperature higher than the melting temperature of the pellet.

以下に、本発明の製造方法について説明する。The manufacturing method of the present invention will be explained below.

本発明において用いる補強用短繊維の種類としては、例
えば炭素繊維、アルミナ繊維、炭化ケイsuh維および
ステンレス、アルミニウム、銅等の金属繊維等の無機繊
維ならびにアラミド繊維等の有機繊維をあげることがで
きる。
Examples of the reinforcing short fibers used in the present invention include inorganic fibers such as carbon fibers, alumina fibers, silicon carbide fibers, and metal fibers such as stainless steel, aluminum, and copper, and organic fibers such as aramid fibers. .

前記短繊維の長さは、特に限定しないが、1〜20fi
の範囲のものが好ましく、もちろん長繊維のストランド
を短く切断加工したものも使用できる。
The length of the short fibers is not particularly limited, but is 1 to 20 fi.
It is preferable to use a fiber in the range of 1 to 10, and of course long fiber strands cut into short lengths can also be used.

前記短繊維の引張強度について、特に限定はしないが、
50 kg / m ”以上の短繊維であることが好ま
しい。
The tensile strength of the short fibers is not particularly limited, but
It is preferable that the short fibers have a weight of 50 kg/m'' or more.

本発明において用いる熱可塑性樹脂の短繊維の種類とし
ては、例えばポリエチレン繊維、ポリプロピレン繊維等
をあげることができる。
Examples of the short fibers of the thermoplastic resin used in the present invention include polyethylene fibers, polypropylene fibers, and the like.

前記短繊維の長さは、待に限定しないが1〜20amの
範囲のものが使用できる。
The length of the short fibers is not limited to length, but can be from 1 to 20 am.

本発明におし)で樹脂マトリックスとして用いる熱可塑
性樹脂の粉末またはベレットのMW4および大きさとし
ては、特に限定されず、広く使われるものとして例えば
ポリエチレン、ポリプロピレン、ポリスチレン、ナイロ
ン、ポリアセタール、ポリエチレンテレフタレート、ポ
リカーボネート等をあげることができる。
The MW4 and size of the thermoplastic resin powder or pellet used as the resin matrix in the present invention are not particularly limited, and widely used ones include polyethylene, polypropylene, polystyrene, nylon, polyacetal, polyethylene terephthalate, Examples include polycarbonate.

前記樹脂の融解温度が前記熱可塑性樹脂の短繊維の融解
温度よりも低くない温度であると後述するa練の工程に
おいて熱可塑性樹脂マトリックス中に補強用繊維が均一
に分散するので好ましい。
It is preferable that the melting temperature of the resin is not lower than the melting temperature of the short fibers of the thermoplastic resin, since the reinforcing fibers will be uniformly dispersed in the thermoplastic resin matrix in the a-kneading process described below.

つぎに、本発明の製造方法の各工程について説明する。Next, each step of the manufacturing method of the present invention will be explained.

まず、前記補強用短繊維と熱可塑性樹脂の短繊維からな
る集束物を作る。
First, a bundle consisting of the reinforcing short fibers and thermoplastic resin short fibers is made.

ここに「集束」とは、短繊維が相互にからみ合った状態
をいう。゛ 前記集束物は、常法により、または例えば、特願昭60
−253724号「炭素繊維集束物の製造方法」に記載
されている如く、内部に旋回気流を生じさせた円筒容器
内に短繊維の綿状集合体を混入し、気流と共に旋回させ
る方法により形成することができる。
Here, "bundling" refers to a state in which short fibers are entangled with each other.゛The above-mentioned bundle can be produced by a conventional method or, for example, by
As described in No. 253724 "Method for producing carbon fiber bundles," a flocculent aggregate of short fibers is mixed into a cylindrical container in which a swirling airflow is generated, and the fibers are swirled together with the airflow. be able to.

円筒容器の内部に旋回気流を生しさせるためには、円筒
容器の側面にその接線方向に設けた気流送入管から気流
を送入すればよく、送入された気流は円筒容器の内壁に
沿って旋回したのち、フィルターを設けた気流出口から
外部へ排出される。
In order to generate a swirling airflow inside a cylindrical container, it is sufficient to send airflow from an airflow inlet pipe provided on the side of the cylindrical container in a tangential direction, and the introduced airflow hits the inner wall of the cylindrical container. After turning around, the air is discharged to the outside through an air outlet equipped with a filter.

このほか通常のサイクロンタイプの装置を使用してもよ
い。
In addition, a normal cyclone type device may be used.

得られる集束物の形状は、操作条件に応じ大別して短繊
維が一方向に揃った円柱状のもの、または短繊維が丸ま
った球形のマリモ状のものとなる。
Depending on the operating conditions, the shape of the resulting bundle can be roughly divided into a cylindrical shape in which the short fibers are aligned in one direction, or a spherical marimo-like shape in which the short fibers are curled.

なお、前記集束物を形成する際に、補強用短繊維と熱可
塑性樹脂の短繊維のほかに、引張弾度が40kt/ws
m”以下で引張伸度が2%以下の短繊維をあらかしめ配
合しておくと後述する混練の工程において、まず前記引
張強度が40kg/關2以下で引張伸度が2%以下の短
繊維が最初に破壊されて集束物の集束状態の一部が解か
れるため樹脂マトリ7クス中への補強繊維の均一分散を
良くするす1果がある。
In addition, when forming the bundle, in addition to reinforcing short fibers and thermoplastic resin short fibers, a material with a tensile elasticity of 40 kt/ws
If short fibers with a tensile strength of 2% or less and a tensile strength of 2% or less are mixed in advance, in the kneading process described later, first the short fibers with a tensile strength of 40kg/2 or less and a tensile elongation of 2% or less are mixed. is first destroyed and part of the bundled state of the bundled material is released, which has the effect of improving uniform dispersion of the reinforcing fibers into the resin matrix 7.

前記引張強度が40 kg / a鳳”以下で引張伸度
が2%以下の短繊維の種類は、例えば炭素繊維、セラミ
ック繊維等の如き比較的脆いものが好ましく、長さは1
〜20龍の範囲のものが好ましい。
The type of short fibers having a tensile strength of 40 kg/a or less and a tensile elongation of 2% or less is preferably relatively brittle, such as carbon fiber or ceramic fiber, and the length is 1.
A range of ~20 dragons is preferred.

また、前記短繊維の引張強度が40 kg / 龍’を
超え、あるいは引張伸度が2%を超えるものを用いると
、混練の工程においてこの短繊維が先きに破壊されない
ため樹脂マトリックス中への補強繊維の分散が均一にな
らず、分散させるために余分な力をかけることにより補
強繊維自体が短かく切断され、得られる成形物の強度や
導電性が劣化する。
In addition, if the short fibers have a tensile strength of more than 40 kg/dragon' or a tensile elongation of more than 2%, the short fibers will not be destroyed first in the kneading process, so they will not be absorbed into the resin matrix. The reinforcing fibers are not dispersed uniformly, and when extra force is applied to disperse them, the reinforcing fibers themselves are cut into short pieces, which deteriorates the strength and conductivity of the resulting molded product.

本発明における前記集束物のかさ比重や大きさは、特に
定めないが、熱可塑性樹脂と混合、混練する装置の種類
により最適ながさ比重や大きさは異る。
The bulk specific gravity and size of the bundle in the present invention are not particularly defined, but the optimal bulk specific gravity and size vary depending on the type of device for mixing and kneading with the thermoplastic resin.

一般に使用されている単軸押出機や2軸押出機では、連
続供給性の面からかさ比重が0.04〜0.18で直径
が10龍以下の球形のものが好ましい。
Generally used single-screw extruders and twin-screw extruders are preferably spherical with a bulk specific gravity of 0.04 to 0.18 and a diameter of 10 dragons or less from the viewpoint of continuous feeding.

つぎに、前記集束物と熱可塑性樹脂の粉末またはペレッ
トを所望の割合で混合し、その混合物を前記熱可塑性t
!4脂の粉末またはペレットの融解温度以上の温度で混
練する。
Next, the aggregate and thermoplastic resin powder or pellets are mixed in a desired ratio, and the mixture is mixed with the thermoplastic resin powder or pellets.
! 4 Knead at a temperature higher than the melting temperature of the fat powder or pellets.

混練方法としては、例えば押出機のホッパーに集束物と
熱可塑性樹脂の粉末またはペレットの混合物を投入する
と前記混合物はホッパー下部に連設されたスクリューの
回転によってシリンダー内部に装入されて圧縮される。
As a kneading method, for example, when a mixture of aggregate and thermoplastic resin powder or pellets is put into a hopper of an extruder, the mixture is charged into a cylinder and compressed by rotation of a screw connected to the bottom of the hopper. .

この時、集束物中に引張強度が4Q kg / m ”
以下で引張伸度が2%以下の短繊維をを配合したものを
用いた場合は、この短繊維がまず破壊され、つぎに熱可
塑性樹脂の粉末またはペレットが相互摩擦により発熱す
ると共に電気ヒーター等によってあらかじめ熱可塑性樹
脂の粉末またはペレットの融解温度以上の温度に保持さ
れたシリンダー内部の高温部を通過する時に、集束物中
の熱可塑性樹脂の短繊維が融解して完全に集束物の集束
状態が解かれ、樹脂マトリックス中に補強用短繊維が均
一に分散される。
At this time, the tensile strength in the bundle is 4Q kg/m”
When using a blend of short fibers with a tensile elongation of 2% or less, the short fibers are first destroyed, and then the thermoplastic resin powder or pellets generate heat due to mutual friction, and an electric heater etc. When the thermoplastic resin powder or pellets pass through a high-temperature section inside the cylinder, which is kept at a temperature higher than the melting temperature of the thermoplastic resin powder or pellets, the thermoplastic resin short fibers in the bundle melt and the bundle becomes completely bundled. is unraveled, and the reinforcing short fibers are uniformly dispersed in the resin matrix.

「作用」 樹脂材料中に分散させて補強するための短繊維を、あら
かしめ熱可塑性樹脂の短繊維とともに集束しておいてか
ら熱可塑性樹脂の粉末またはペレットと混合したのち、
熱可塑性樹脂の粉末またはペレットの融解温度以上の温
度で混練するので、前記混合の工程で十分に繊維が樹脂
中に分散され、しかるのち混練の工程でマトリックスで
ある熱可塑性樹脂中に均一に分散された繊維の集束状態
が解かれる。
"Operation" Short fibers to be dispersed and reinforced in a resin material are bundled together with short fibers of thermoplastic resin, and then mixed with thermoplastic resin powder or pellets.
Since the kneading is carried out at a temperature higher than the melting temperature of the thermoplastic resin powder or pellets, the fibers are sufficiently dispersed in the resin in the mixing process, and then uniformly dispersed in the thermoplastic resin matrix in the kneading process. The bundled state of the fibers is released.

1一実施例」 以下に、本発明の実施例について説明する。11 Examples” Examples of the present invention will be described below.

実施例1 引張強度が82kg/wm2 で引張伸度が2.0%の
ピッチ系炭素繊維を長さ3 asに切ったもの60重N
部と、融解4度が125℃で直径86.+1mのポリエ
チレン繊維(加島産業■製)を長さ3關に切ったもの3
0重量部と、引張強度が35 kg / ws ”で引
張伸度が1.3%のピッチ系炭素繊維を長さ3龍に切っ
たもの10重量とからなる直径2.0鶴、かさ比重0.
08の集束物2 kgと融解温度が136°Cの高密度
ポリエチレン樹脂ペレット (三井石油化学工業is製
)4kgをあらかじめ混合したのち、200℃に加熱さ
れたスクリュ一式単軸押出機(バレル径30mm、L/
D=30、圧縮比3.2)の投入ホッパーに投下し、混
練されてストランド状に押出されたものを水冷し、ペレ
ット化した。
Example 1 Pitch-based carbon fiber with a tensile strength of 82 kg/wm2 and a tensile elongation of 2.0% was cut into a length of 3 as, 60 weight N.
and a diameter of 86.5 degrees at a melting point of 4 degrees and 125 degrees Celsius. +1m polyethylene fiber (manufactured by Kashima Sangyo ■) cut into 3 lengths 3
0 parts by weight and 10 parts by weight of pitch-based carbon fiber cut into 3 lengths with a tensile strength of 35 kg/ws" and a tensile elongation of 1.3%, with a diameter of 2.0 and a bulk specific gravity of 0. ..
08 bundle and 4 kg of high-density polyethylene resin pellets (manufactured by Mitsui Petrochemical Industry IS) with a melting temperature of 136°C were mixed in advance, and the mixture was heated to 200°C using a single-screw extruder (barrel diameter 30 mm). ,L/
The mixture was put into a charging hopper with D=30 and compression ratio of 3.2), kneaded and extruded into a strand, which was then cooled with water and pelletized.

このペレットを190℃に加熱されたホットプレスにて
15cm X 15c+a x厚さ1論−の成形板を作
り、その引張強度と体積固有抵抗を測定し、第1表に示
す結果を得た。
A molded plate of 15 cm x 15 cm x 1 x thickness was made using a hot press heated to 190° C., and its tensile strength and volume resistivity were measured, and the results shown in Table 1 were obtained.

実施例2 引張強度が290に+r/m2のアラミド繊維(デュポ
ン面製)を長さ3鶴に切ったもの60重量部と、融解温
度が125℃でU径86μmのポリエチレン繊維(加島
産業側製)を長さ31!こ切ったもの3(lffi置部
と、引張強度が35kg/am” で引張伸度が1,3
%のピッチ系炭素繊維を長さ3鰭に切ったもの10重量
部とからなる直径2.0 w、かさ比重0.06の集束
物2klrと融解温度が136℃の高密度ポリエチレン
樹脂ペレット (三井石油化学工業■製)4kgをあら
かじめ混合したのち実施例1と同様の装置、方法で同じ
大きさの成形板を作り、特性試験を行い第1表に示す結
果を得た。
Example 2 60 parts by weight of aramid fiber (manufactured by Dupont Co., Ltd.) with a tensile strength of 290+r/m2 cut into 3 lengths and polyethylene fiber (manufactured by Kashima Sangyo Co., Ltd.) with a melting temperature of 125°C and a U diameter of 86 μm. ) with length 31! Cut into pieces 3 (lffi placement part, tensile strength is 35 kg/am" and tensile elongation is 1.3
% pitch-based carbon fiber cut into 3 fin lengths, 10 parts by weight, a bundle of 2 klr with a diameter of 2.0 W and a bulk specific gravity of 0.06, and high-density polyethylene resin pellets with a melting temperature of 136°C (Mitsui) After pre-mixing 4 kg of the mixture (manufactured by Petrochemical Industry ■), a molded plate of the same size was made using the same equipment and method as in Example 1, and a characteristic test was conducted to obtain the results shown in Table 1.

実施例3 直径8μmのステンレス繊維(東京製綱■製)を長さ3
Nに切ったもの40重量部と、融解温度が125℃で直
径86μmのポリエチレン繊維(用品産業n製)を長さ
3龍に切ったもの55重量部と、引張強度が30kir
/w”で引張伸度が1.1%のピッチ系炭素繊維を長さ
3龍に切ったもの5重量部とからなる直径2.3fl、
かさ比重0.15の集束物2嘘と融解温度が136℃の
高密度ポリエチレン樹脂ペレット (三井石油化学工業
nli)4%gをあらかじめ混合したのち実施例1と同
様の装置、方法で同じ大きさの成形板を作り、特性試験
を行い第1表に示す結果を得た。
Example 3 Stainless fiber with a diameter of 8 μm (manufactured by Tokyo Rope Co., Ltd.) was made into a length of 3
40 parts by weight of polyethylene fibers cut into N-shaped pieces, 55 parts by weight of polyethylene fibers (manufactured by Yogi Sangyo N) with a melting temperature of 125°C and a diameter of 86 μm cut into 3-length pieces, and a tensile strength of 30 kir.
/w'' and tensile elongation of 1.1% pitch-based carbon fiber cut into 3 lengths and 5 parts by weight, 2.3fl in diameter,
After pre-mixing 4% of high-density polyethylene resin pellets (Mitsui Petrochemical Industries, Ltd.) with a bulk density of 0.15 and a melting temperature of 136°C, the same size was prepared using the same equipment and method as in Example 1. A molded plate was made and a characteristic test was conducted to obtain the results shown in Table 1.

比較例1 引張強度が82kg/m” のピッチ系炭素繊維を長さ
3龍に切ったものを集束して直径2.0mm、かさ比重
0.09の集束物を作り、この集束物2 kgと融解温
度が136℃の高密度ポリエチレン樹脂ペレット(三井
石油化学工業■製)4kirをあらかじめ混合したのち
実施例1と同様の装置、方法で同じ大きさの成形板を作
り、特性試験を行い第1表に示す結果を得た。
Comparative Example 1 Pitch-based carbon fibers with a tensile strength of 82 kg/m" were cut into 3 lengths and bundled to make a bundle with a diameter of 2.0 mm and a bulk specific gravity of 0.09. After pre-mixing 4kir of high-density polyethylene resin pellets (manufactured by Mitsui Petrochemical Industries, Ltd.) with a melting temperature of 136°C, a molded plate of the same size was made using the same equipment and method as in Example 1, and a characteristic test was conducted. The results shown in the table were obtained.

比較例2 引張強度が290 kg / 龍’のアラミド繊維(デ
ュポン側層)を長さ3flに切ったもを集束して直径2
.1fl、かさ比ff10.08の集束物を作り、この
集束物2 kgと融解温度が136℃の高密度ポリエチ
レン樹脂ペレット (三井石油化学工業側製)4kgを
あらかじめ混合したのち実施例1と同様の装置、方法で
同じ大きさの成形板を作り、特性試験を行い第1表に示
す結果を得た。
Comparative Example 2 Aramid fibers (DuPont side layer) with a tensile strength of 290 kg/Ryu' were cut into 3 fl lengths and bundled into a diameter of 2
.. A bundle of 1 fl and a bulk ratio ff of 10.08 was made, and 2 kg of this bundle was mixed with 4 kg of high-density polyethylene resin pellets (manufactured by Mitsui Petrochemical Industries) with a melting temperature of 136°C. Molded plates of the same size were made using the same equipment and method, and characteristic tests were conducted to obtain the results shown in Table 1.

比較例3 直径8μmのステンレス繊維(東京製綱■製)を長さ3
fiに切った物を集束して直径2.Ofl、かさ比重0
.15の集束物を作り、この集束物2 ktrと融解温
度が136℃の高密度ポリエチレン樹脂ペレット (三
井石油化学工業側製)4kgをあらかじめ混合したのち
実施例1と同様の装置、方法で同じ大きさの成形板を作
り、特性試験を行い第1表に示す結果を得た。
Comparative Example 3 Stainless steel fiber with a diameter of 8 μm (manufactured by Tokyo Rope Co., Ltd.) was made with a length of 3
Gather the pieces cut to fi to a diameter of 2. Ofl, bulk specific gravity 0
.. After premixing this bundle 2 ktr with 4 kg of high-density polyethylene resin pellets (manufactured by Mitsui Petrochemical Industries) with a melting temperature of 136°C, the same size was prepared using the same equipment and method as in Example 1. A molded plate was made, and a characteristic test was conducted to obtain the results shown in Table 1.

第1表 「発明の効果」 以上述べた如く、本発明の繊維強化樹脂材料の製造方法
により、高価な長繊維を用いることなく短繊維を補強用
に用いて高強度あるいは高導電性を有する繊維強化樹脂
材料を連続的に製造することができる。
Table 1 "Effects of the Invention" As stated above, the method for producing fiber-reinforced resin materials of the present invention allows fibers with high strength or high conductivity to be produced by using short fibers for reinforcement without using expensive long fibers. Reinforced resin materials can be produced continuously.

Claims (2)

【特許請求の範囲】[Claims] (1)補強用短繊維と熱可塑性樹脂の短繊維からなる集
束物と、熱可塑性樹脂の粉末またはペレットとの混合物
を前記熱可塑性樹脂の粉末またはペレットの融解温度以
上の温度で混練することを特徴とする繊維強化樹脂材料
の製造方法。
(1) Kneading a mixture of reinforcing short fibers and thermoplastic resin short fibers and thermoplastic resin powder or pellets at a temperature higher than the melting temperature of the thermoplastic resin powder or pellets. A method for producing a characteristic fiber-reinforced resin material.
(2)熱可塑性樹脂の粉末またはペレットの融解温度が
熱可塑性樹脂の短繊維の融解温度よりも低くない温度で
ある特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the melting temperature of the thermoplastic resin powder or pellet is not lower than the melting temperature of the short thermoplastic resin fibers.
JP62037140A 1987-02-19 1987-02-19 Manufacture of fiber reinforced resin material Pending JPS63203306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037140A JPS63203306A (en) 1987-02-19 1987-02-19 Manufacture of fiber reinforced resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037140A JPS63203306A (en) 1987-02-19 1987-02-19 Manufacture of fiber reinforced resin material

Publications (1)

Publication Number Publication Date
JPS63203306A true JPS63203306A (en) 1988-08-23

Family

ID=12489310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037140A Pending JPS63203306A (en) 1987-02-19 1987-02-19 Manufacture of fiber reinforced resin material

Country Status (1)

Country Link
JP (1) JPS63203306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098103A1 (en) * 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
WO2017073483A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
JP2017113983A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098103A1 (en) * 2012-12-21 2014-06-26 東レ株式会社 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
JP5633660B1 (en) * 2012-12-21 2014-12-03 東レ株式会社 Fiber-reinforced thermoplastic resin molded article, fiber-reinforced thermoplastic resin molding material, and method for producing fiber-reinforced thermoplastic resin molding material
KR20150099710A (en) * 2012-12-21 2015-09-01 도레이 카부시키가이샤 Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
US9505928B2 (en) 2012-12-21 2016-11-29 Toray Industries, Inc. Fiber-reinforced thermoplactic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method of manufacturing fiber-reinforced thermoplastic-resin molding material
US9605148B2 (en) 2012-12-21 2017-03-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin molding material
US9605149B2 (en) 2012-12-21 2017-03-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin molding material and method of manufacturing fiber-reinforced thermoplastic-resin molding material
WO2017073483A1 (en) * 2015-10-30 2017-05-04 東レ株式会社 Fibre-reinforced thermoplastic resin moulded article, and fibre-reinforced thermoplastic resin moulding material
JP6123956B1 (en) * 2015-10-30 2017-05-10 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
US10584218B2 (en) 2015-10-30 2020-03-10 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, and fiber-reinforced thermoplastic resin molding material
JP2017113983A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin

Similar Documents

Publication Publication Date Title
US5397608A (en) Plastic article containing electrically conductive fibers
US5433906A (en) Composite of small carbon fibers and thermoplastics and method for making same
US20100025879A1 (en) Highly Filled Composite Containing Resin and Filler
EP2546409B1 (en) Carbon-fiber chopped strand and manufacturing method of the same
JP7473127B2 (en) Carbon Fiber Assembly
KR20100139088A (en) Method for producing a phase-change material composition
US3712776A (en) Apparatus for the continuous production of glass fiber reinforced thermoplastic
JPS63203306A (en) Manufacture of fiber reinforced resin material
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
US5939001A (en) Process for manufacturing objects from fiber-reinforced thermoplasts
JPH10264152A (en) Manufacture of fiber reinforced resin pellet
US20040238798A1 (en) Electriplast moldable composite capsule
JPS63132036A (en) Manufacture of fiber reinforced composite material
JPH0365311A (en) Carbon fiber chop
JPH0526642B2 (en)
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
JPS6327207A (en) Manufacture of resin material mixed with fiber
US4107250A (en) Process for making fiber-reinforced thermoplastic pellets
EP0358798A1 (en) Composite particle comprising resin particle and fibers and method of producing same
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JP2646027B2 (en) Molding material
JPS6213306A (en) Bundled carbon staple fiber chip
JP2832206B2 (en) Thread composite material for thermoplastic resin molding material, molding material from the composite material, and method for producing the composite material
JP2985788B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin molding material
JPH03261513A (en) Fiber molded body for reinforcing and its manufacture