JP2829323B2 - Equipment for manufacturing fiber-reinforced resin molding materials - Google Patents

Equipment for manufacturing fiber-reinforced resin molding materials

Info

Publication number
JP2829323B2
JP2829323B2 JP1322694A JP32269489A JP2829323B2 JP 2829323 B2 JP2829323 B2 JP 2829323B2 JP 1322694 A JP1322694 A JP 1322694A JP 32269489 A JP32269489 A JP 32269489A JP 2829323 B2 JP2829323 B2 JP 2829323B2
Authority
JP
Japan
Prior art keywords
fiber bundle
die
fiber
resin
molten resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1322694A
Other languages
Japanese (ja)
Other versions
JPH03183531A (en
Inventor
進一 小出
学 野村
敬 西本
稔 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18146572&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2829323(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1322694A priority Critical patent/JP2829323B2/en
Publication of JPH03183531A publication Critical patent/JPH03183531A/en
Application granted granted Critical
Publication of JP2829323B2 publication Critical patent/JP2829323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的強度、耐熱性等に優れた繊維強化樹
脂成形材料の製造装置に関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for producing a fiber-reinforced resin molding material having excellent mechanical strength, heat resistance and the like.

[従来の技術] 各種の強繊維強化樹脂は、近年、自動車,家電等を初
めとする種々の分野において利用されるようになってき
た。
[Related Art] In recent years, various types of strong fiber reinforced resins have been used in various fields such as automobiles and home appliances.

一方、従来の繊維強化樹脂からなる成形材料は、スタ
ンパブルシートを除き、、押出機内において強化繊維を
樹脂中に混練し、万遍なく分散させた上で押し出し、そ
の後、ペレツト化するなどして製品化していた。このと
き、押出機内における混練、移送及び押出機より押し出
す際の樹脂の流動性を考慮すると、強化繊維はなるべく
短く切断して用いる必要があった。このため、曲げ、衝
撃等に対する強度が十分でなく、強化繊維の利点を十分
活しきれないという問題があった。また、強化繊維の混
入により押出機のスクリュー等の摩耗も激しくなるとい
う問題があった。
On the other hand, conventional molding materials made of fiber-reinforced resin, excluding the stampable sheet, knead the reinforcing fibers into the resin in an extruder, disperse them uniformly, extrude them, and then pelletize them. Had been commercialized. At this time, in consideration of the fluidity of the resin at the time of kneading, transferring in the extruder and extruding from the extruder, the reinforcing fibers had to be cut as short as possible. For this reason, there is a problem that the strength against bending, impact and the like is not sufficient, and the advantages of the reinforcing fiber cannot be fully utilized. In addition, there is a problem that abrasion of a screw of an extruder becomes severe due to mixing of reinforcing fibers.

そこで、このような問題を解決するため、混練工程及
び押出工程を介することなく繊維強化熱可塑性樹脂を生
産する方法が注目され、次の〜のような方法が提案
されている。
Therefore, in order to solve such a problem, a method of producing a fiber-reinforced thermoplastic resin without going through a kneading step and an extrusion step has attracted attention, and the following methods have been proposed.

あらかじめ、繊維束に樹脂粉末を付着させ、その後
加熱溶融させる方法(特公昭52−3985号など)。
A method in which a resin powder is attached to a fiber bundle in advance and then heated and melted (Japanese Patent Publication No. 52-3985).

ロービングをダイ内に引き込み、溶融樹脂を含浸さ
せた後、引き抜く方法(特公昭52−10140号、同64−784
8号など)。
A method in which the roving is drawn into a die, impregnated with a molten resin, and then pulled out (JP-B Nos. 52-10140 and 64-784).
No. 8).

ダイ内部で繊維束に溶融樹脂を含浸させる際、繊維
束の側面を押圧しながら含浸する方法(特開平1−1784
11号)。
When impregnating the fiber bundle with the molten resin inside the die, a method of impregnating the fiber bundle while pressing the side surface of the fiber bundle is disclosed in
No. 11).

繊維束を複数の供給口からダイ内部に供給し、溶融
樹脂を含浸させる方法(USP Re.32772号)。
A method in which fiber bundles are supplied into the die from a plurality of supply ports and impregnated with molten resin (USP Re.32772).

[発明が解決しようとする課題] しかしながら、上述した〜の方法には次のような
解決すべき課題がある。
[Problems to be Solved by the Invention] However, the above-mentioned methods have the following problems to be solved.

すなわち、の方法は、製造工程が非常に大掛りとな
って、製造コストが大幅に高くなるため実用化すること
が困難であった。
In other words, the method of (1) requires a very large manufacturing process and significantly increases the manufacturing cost, so that it has been difficult to commercialize the method.

の方法は、熱可塑性樹脂の溶融粘度が高いため、熱硬
化性樹脂のように繊維束中に樹脂がうまく含浸せず、繊
維の開繊,分散が十分行なわれないという問題があっ
た。
In the method (2), since the melt viscosity of the thermoplastic resin is high, the resin does not impregnate the fiber bundle as well as the thermosetting resin, and there is a problem that the fibers are not sufficiently opened and dispersed.

の方法は、繊維束の側面を単にロッド等に押し付け
るだけなので、繊維束にかかるテンションが不十分であ
った。このため、開繊,分散が十分でなく、特に引き出
し速度を高めたときにこの現象が顕著であり、生産性の
向上の観点からすると問題があった。
In the method described above, the tension applied to the fiber bundle was insufficient because the side surface of the fiber bundle was simply pressed against a rod or the like. For this reason, opening and dispersion are not sufficient, and this phenomenon is remarkable especially when the drawing speed is increased, and there is a problem from the viewpoint of improving productivity.

の方法は、繊維束の供給口が異なるため、供給位置
により溶融樹脂の含浸程度が異なり、製品の品質にばら
つきを生じるという問題があった。
In the method (1), since the supply port of the fiber bundle is different, the degree of impregnation of the molten resin is different depending on the supply position, and there is a problem that the quality of the product varies.

本発明の繊維強化樹脂形成材料と製造装置は、上記課
題にかんがみてなされたもので、繊維の開繊,分散を十
分行ないながら溶融状態の熱可塑性樹脂を含浸させるこ
とにより、機械的強度が高く耐熱性に優れた繊維強化樹
脂成形材料の製造を確実に実施できるようにすることを
目的としている。
The fiber-reinforced resin-forming material and the manufacturing apparatus of the present invention have been made in view of the above problems, and have high mechanical strength by impregnating with a molten thermoplastic resin while sufficiently performing fiber opening and dispersion. It is an object of the present invention to ensure that a fiber-reinforced resin molding material having excellent heat resistance can be manufactured.

[課題を解決するための手段] 上記目的を達成するため、本発明の繊維強化樹脂成形
材料の製造装置は、溶融した熱可塑性樹脂中に繊維束を
連続的に通過させ、繊維束に溶融樹脂を含浸させた後、
ダイスより引き出し、樹脂を硬化させることによって繊
維強化樹脂成形材料を製造する方法において、前記繊維
束に溶融樹脂を含浸させる際に、繊維束を、ロッドの中
心を通る直線に対し少なくとも一側が所定の角度だけ傾
斜した状態でロッドに巻き掛けるようにしている。そし
て、好ましくは繊維束を、ロッドの中心を通る直線に対
し少なくとも一側が10度以上の傾斜角を有した状態でロ
ッドに巻き掛けるようにしている。また、必要に応じて
繊維束が波形を形成するよう、該繊維束を複数のロッド
に接触させるようにしている。
Means for Solving the Problems In order to achieve the above object, the apparatus for producing a fiber-reinforced resin molding material of the present invention continuously passes a fiber bundle through a molten thermoplastic resin, After impregnation,
In a method for producing a fiber-reinforced resin molding material by drawing out from a die and curing a resin, when impregnating the fiber bundle with a molten resin, the fiber bundle is at least one side with respect to a straight line passing through the center of the rod. The rod is wound around the rod at an angle. Preferably, the fiber bundle is wound around the rod with at least one side having an inclination angle of 10 degrees or more with respect to a straight line passing through the center of the rod. Further, the fiber bundle is brought into contact with a plurality of rods so that the fiber bundle forms a waveform as needed.

また、本発明の繊維強化樹脂成形材料の製造装置は、
繊維束が通過するダイと、このダイ内部に熱可塑性溶融
樹脂を供給する溶融樹脂供給部と、前記ダイ内部に設け
られ、繊維束を、ロッドの中心を通る直線に対し少なく
とも一側が所定の角度だけ傾斜した状態でロッドに巻き
掛けるロッドと、溶融樹脂を含浸した繊維束をダイより
引き出す引出し手段とを備えた構成としてある。そし
て、必要に応じロッドを、繊維束の引出し方向に直線状
に配置した構成してある。
Further, the manufacturing apparatus of the fiber-reinforced resin molding material of the present invention,
A die through which the fiber bundle passes, a molten resin supply unit for supplying a thermoplastic molten resin to the inside of the die, and a fiber bundle provided inside the die, wherein at least one side of the fiber bundle is at a predetermined angle with respect to a straight line passing through the center of the rod. It is configured to include a rod that is wound around the rod in an inclined state, and a pull-out unit that pulls out a fiber bundle impregnated with the molten resin from a die. The rods are arranged linearly in the drawing direction of the fiber bundle as needed.

以下、本発明の装置例を図面にもとづいて詳細に説明
する。
Hereinafter, an example of the apparatus of the present invention will be described in detail with reference to the drawings.

第1図は、装置全体の平面図であり、10はダイ、20は
ダイ10へ熱可塑性溶融樹脂を供給する押出機、30は繊維
束Fのロール、40はダイ10に引き込まれる繊維束Fに一
定の張力を与えるテンションロール群、50はダイ10から
引き出された溶融樹脂含浸繊維束の冷却手段、60は繊維
束の引き出しロール、70は引き出された繊維束をカット
するペレタイザである。
FIG. 1 is a plan view of the entire apparatus, in which 10 is a die, 20 is an extruder for supplying a thermoplastic molten resin to the die 10, 30 is a roll of a fiber bundle F, and 40 is a fiber bundle F drawn into the die 10. , A cooling unit for the fiber bundle impregnated with the molten resin drawn from the die 10, a drawing roll 60 for drawing the fiber bundle, and a pelletizer 70 for cutting the drawn fiber bundle.

本装置は、三本のそれぞれ独立した繊維束Fに、溶融
樹脂を同時に含浸させる例を示している。
This apparatus shows an example in which three independent fiber bundles F are simultaneously impregnated with a molten resin.

第2図は、第1図のI−I断面でありダイの縦断面を
示している。ダイ10は予熱部11と含浸部13からなってい
る。予熱部11は繊維束Fへの溶融樹脂含浸に先立って繊
維束Fを予熱しておくための予熱領域を形成しており、
外周部には、ヒータ12が設けてある。この予熱部11の長
さは、繊維束Fと溶融樹脂の親和性が良くなるように通
過速度に応じて適宜決定する。なお、ヒータ12の加熱温
度を調整することによっても、繊維束の通過速度に適し
た予熱状態とできる。
FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 and shows a vertical cross section of the die. The die 10 includes a preheating section 11 and an impregnating section 13. The preheating unit 11 forms a preheating region for preheating the fiber bundle F prior to impregnation of the fiber bundle F with the molten resin,
A heater 12 is provided on the outer peripheral portion. The length of the preheating portion 11 is appropriately determined according to the passing speed so that the affinity between the fiber bundle F and the molten resin is improved. The preheating state suitable for the passing speed of the fiber bundle can be obtained by adjusting the heating temperature of the heater 12.

含浸部13は、繊維束Fに溶融した熱可塑性樹脂を含浸
させるための領域である。この含浸部13の入口側は予熱
部11の出口側と連結している。また、含浸部13の入口側
は熱可塑性樹脂を溶融して押し出す押出機20と接続して
いる。
The impregnating section 13 is an area for impregnating the fiber bundle F with a molten thermoplastic resin. The inlet side of the impregnating section 13 is connected to the outlet side of the preheating section 11. Further, the inlet side of the impregnating section 13 is connected to an extruder 20 that melts and extrudes a thermoplastic resin.

すなわち、含浸部13の入口側は一種のマニホールドを
形成している。一方、含浸部13の出口側は錐状になって
おり、溶融樹脂を含浸した繊維束Fを収束し所定の線径
となるようにしてある。
That is, the inlet side of the impregnation section 13 forms a kind of manifold. On the other hand, the outlet side of the impregnating section 13 has a conical shape, so that the fiber bundle F impregnated with the molten resin is converged to have a predetermined wire diameter.

なお、予熱部11の出口と含浸部13の入口の関係は、必
ずしも直線状である必要はなく、繊維束Fが折れない状
態であれば角度をもたせてもよい。
Note that the relationship between the outlet of the preheating unit 11 and the inlet of the impregnation unit 13 does not necessarily need to be linear, and may be angled as long as the fiber bundle F is not broken.

この含浸部13には、繊維束Fを開繊しかつ分散させる
ためのロッド14(14a,・・14e)が、繊維束Fの進行方
向と交差した状態で該進行方向に複数本配置してある。
繊維束Fは、これらロッド14に、じくざぐ状に巻き掛け
てある。詳述すれば、繊維束Fは、第3図で示すよう
に、隣接するロッド14の中心軸c間を結ぶ直線Hに対
し、少なくとも一側が所定の角度αだけ、例えば10度以
上、好ましくは20度以上傾斜した状態でロッド14にじく
ざぐ状に巻き掛けてある。
A plurality of rods 14 (14a,... 14e) for opening and dispersing the fiber bundle F are arranged in the impregnating part 13 in the traveling direction of the fiber bundle F while intersecting the traveling direction of the fiber bundle F. is there.
The fiber bundle F is wound around these rods 14 in a zigzag manner. More specifically, as shown in FIG. 3, at least one side of the fiber bundle F is at a predetermined angle α with respect to a straight line H connecting the center axes c of the adjacent rods 14, for example, 10 degrees or more, preferably It is wound around the rod 14 in a state of being inclined at least 20 degrees.

このようにすると、繊維束Fに比較的大きな張力がか
かり、繊維束Fの開繊,分散を効率的に行なうことがで
きる。特に、繊維束Fの引き出しを高速で行なう場合に
効果的である。
In this case, a relatively large tension is applied to the fiber bundle F, and the fiber bundle F can be efficiently opened and dispersed. This is particularly effective when the fiber bundle F is pulled out at a high speed.

ロッド14は、一本以上あればよいが、繊維束Fの引き
出しを高速で行なう場合には複数本(三本以上)とする
ことが好ましい。
The number of the rods 14 may be one or more. However, when the fiber bundle F is pulled out at a high speed, it is preferable to use a plurality of rods (three or more).

また、ロッド14の断面形状は、円形,楕円形あるいは
多角形状のものでもよく,その太さ(径)も繊維束Fの
材質、量等種々の要素を考慮して決定することができ
る。
Further, the cross-sectional shape of the rod 14 may be circular, elliptical or polygonal, and its thickness (diameter) can be determined in consideration of various factors such as the material and amount of the fiber bundle F.

ロッド14の配置は、繊維束Fの進行方向に直線状に配
置するほか、ロッド14への繊維束Fの巻掛け角度が所定
角度以上となるのであればどのような態様であってもよ
く、例えば千鳥状に配置したり、鉤形状に配置したりし
てもよい。
The rod 14 may be arranged linearly in the traveling direction of the fiber bundle F, or may be in any form as long as the winding angle of the fiber bundle F around the rod 14 is equal to or greater than a predetermined angle. For example, they may be arranged in a staggered manner or in a hook shape.

これらロッド14(14A,…,14e)を内蔵する含浸部13の
広さは、繊維束Fが隣接する繊維束と干渉せず、しかも
十分開繊でき溶融樹脂が確実に含浸する広さであればよ
い。
The width of the impregnating portion 13 containing the rods 14 (14A,..., 14e) is not limited as long as the fiber bundle F does not interfere with the adjacent fiber bundle, and can be sufficiently opened to reliably impregnate the molten resin. I just need.

次に、上述の実施例装置を用いて行なう繊維強化樹脂
成形材料の製造方法について説明する。
Next, a method for producing a fiber-reinforced resin molding material using the above-described apparatus will be described.

本方法に使用される繊維束の種類としては、ガラス繊
維,炭素繊維,炭化珪素繊維などの無機繊維、金属繊
維、有機繊維などがある。また、繊維束の断面積は4×
10-3〜4mm2、開繊性からすると0.1〜1mm2とすることが
好ましい。
Types of fiber bundles used in the present method include inorganic fibers such as glass fibers, carbon fibers, and silicon carbide fibers, metal fibers, and organic fibers. The cross-sectional area of the fiber bundle is 4 ×
10 -3 to 4 mm 2, it is preferable that the 0.1 to 1 mm 2 From openability.

さらに、この繊維束を構成する個々の繊維の直径は1
〜100μ、柔軟性からすると3〜50μとすることが好ま
しく、これら繊維の束を構成する本数は10〜10000本、
開繊性からすると100〜5000本とすることが好ましい。
Furthermore, the diameter of each fiber constituting the fiber bundle is 1
~ 100μ, from the viewpoint of flexibility is preferably 3 ~ 50μ, the number of these fiber bundles constituting 10 to 10,000,
From the viewpoint of spreadability, the number is preferably set to 100 to 5,000.

このような繊維束Fは、引出しロール60に引き取られ
ることにより、ロール30からテンションロール群40、ダ
イ10、冷却手段50を通過してペレタイザに供給される。
Such a fiber bundle F is drawn by the drawer roll 60, and is supplied from the roll 30 to the pelletizer through the tension roll group 40, the die 10, and the cooling means 50.

すなわち、繊維束Fは、テンションロール群40で一定
の張力を与えられた状態でダイ10の予熱部11に引き込ま
れ、ここでヒータ12によりい予め加熱される。次いで、
繊維束Fはダイ10の含浸部13に引き込まれ、ロッド14に
所定の角度で巻き掛けられ張力を与えられる。これによ
り、繊維束Fは開繊と分散を行ない、繊維と繊維の間に
溶融した熱可塑性樹脂を浸み込ませる。
That is, the fiber bundle F is drawn into the preheating unit 11 of the die 10 while being given a constant tension by the tension roll group 40, and is heated in advance by the heater 12 here. Then
The fiber bundle F is drawn into the impregnated portion 13 of the die 10, wound around the rod 14 at a predetermined angle, and given tension. As a result, the fiber bundle F is opened and dispersed, and the molten thermoplastic resin is impregnated between the fibers.

押出機20において溶融され、含浸部13に供給される熱
可塑性樹脂の種類は、特に制限されず、成形材料の用途
等に応じ、種々のものを用いることができる。また、含
浸部13に供給される溶融熱可塑性樹脂の温度と圧力は、
樹脂が繊維束中に十分含浸でき、しかも樹脂の劣化と漏
洩を生じない範囲とする。
The type of thermoplastic resin that is melted in the extruder 20 and supplied to the impregnation section 13 is not particularly limited, and various types can be used according to the use of the molding material and the like. Further, the temperature and pressure of the molten thermoplastic resin supplied to the impregnation section 13 are:
The range is such that the resin can be sufficiently impregnated into the fiber bundle and the resin does not deteriorate and leak.

開繊,分散し溶融樹脂を束中に十分含浸しない繊維束
Fは、ダイ10の出力において再び収束されダイ10の外に
引き出される。引き出された繊維束Fは、冷却手段50で
冷却された後ペレタイザ60に送られ、このペレタイザ60
において細かく切断されペレット化される。
The fiber bundle F which is opened and dispersed and does not sufficiently impregnate the bundle with the molten resin is converged again at the output of the die 10 and drawn out of the die 10. The drawn fiber bundle F is cooled by the cooling means 50 and then sent to the pelletizer 60, where the pelletizer 60 is cooled.
And finely cut into pellets.

[実施例と比較例] 実施例1 ・ダイス:50mφ押出機の先端に取り付け、含浸部に四本
のロッドを直線状に配置。
[Examples and Comparative Examples] Example 1-Die: A 50 mφ extruder was attached to the tip of an extruder, and four rods were linearly arranged in the impregnated part.

・繊維束:アミノミランで表面処理された繊維径13μの
ガラス繊維を170本束ねたガラスロービング。
-Fiber bundle: Glass roving in which 170 glass fibers with a fiber diameter of 13μ surface-treated with amino milane are bundled.

・予熱温度:200℃ ・熱可塑性樹脂:ポリプロピレンと酸変性ポリプロピレ
ン(1重量部)をブレンドして溶融。
-Preheating temperature: 200 ° C-Thermoplastic resin: Polypropylene and acid-modified polypropylene (1 part by weight) are blended and melted.

・溶融温度:240℃ ・ロッド:四本 6mm(直径)×3mm(長さ) ・傾斜角度:25度 上記条件下において、テンションロール群で繊維束の
量を調整しつつダイ内に送り込み含浸を行ない、冷却後
ペレタイダで長さ15mmのペレットを得た。
・ Melting temperature: 240 ° C ・ Rod: 4 6mm (diameter) x 3mm (length) ・ Inclination angle: 25 ° Under the above conditions, the fiber bundle is fed into the die while adjusting the amount of fiber bundle with the tension roll group, and impregnated. After cooling, pellets having a length of 15 mm were obtained with a pelletizer.

実施例2 熱可塑性樹脂をスチレン−無水マレイン酸共重合体と
した以外は、実施例1と同様にしてペレットを得た。
Example 2 Pellets were obtained in the same manner as in Example 1 except that the thermoplastic resin was a styrene-maleic anhydride copolymer.

実施例3 熱可塑性樹脂をポリカーボネートとし、溶融温度を30
0℃とした以外は、実施例1と同様にしてペレットを得
た。
Example 3 The thermoplastic resin was polycarbonate and the melting temperature was 30.
A pellet was obtained in the same manner as in Example 1 except that the temperature was changed to 0 ° C.

実施例4 ダイの含浸部におけるロッドの配置を,第4図に示す
ようにした以外は、実施例1と同様にしてペレットを得
た。
Example 4 Pellets were obtained in the same manner as in Example 1 except that the arrangement of the rods in the impregnated part of the die was changed as shown in FIG.

実施例5 熱可塑性樹脂をスチレン−無水マレイン酸共重合体と
した以外は、実施例4と同様にしてペレットを得た。
Example 5 Pellets were obtained in the same manner as in Example 4 except that the thermoplastic resin was a styrene-maleic anhydride copolymer.

実施例6 熱可塑性樹脂をポリカーボネートとした以外は、実施
例4と同様にしてペレットを得た。
Example 6 Pellets were obtained in the same manner as in Example 4 except that the thermoplastic resin was polycarbonate.

比較例1 二軸混練機(TEM−35)を用い、ポリプロピレンと酸
変性ポリプロピレンをブレドンした後定量供給機にて、
ボッパーロへ定量供給した。また、アミノシラン処理さ
れたガラス繊維(チョップストラッド)を定量供給機
で、樹脂が溶融した後のサイドフィード口へ供給し、混
練を実施し、ペレットを得た。
Comparative Example 1 Using a twin-screw kneader (TEM-35), polypropylene and acid-modified polypropylene were blended and then fed with a fixed-rate feeder.
A fixed amount was supplied to Bopparo. Further, the aminosilane-treated glass fiber (chop strad) was supplied to a side feed port after the resin was melted by a quantitative feeder, and kneading was performed to obtain pellets.

比較例2 樹脂として、スチレン−マレイン酸共重合体を用いた
以外は、比較例1と同じ条件でペレットを得た。
Comparative Example 2 Pellets were obtained under the same conditions as in Comparative Example 1, except that a styrene-maleic acid copolymer was used as the resin.

比較例3 樹脂として、ポリカーボネートを用いた以外は、比較
例1と同じ条件でペレットを得た。
Comparative Example 3 Pellets were obtained under the same conditions as in Comparative Example 1 except that polycarbonate was used as the resin.

比較例4 ロッドを除いたダイを用いた以外は、実施例1と同様
にしてペレットを得た。
Comparative Example 4 Pellets were obtained in the same manner as in Example 1 except that a die except for a rod was used.

比較例5 ダイの含浸部におけるロッドの配置を第5図に示すよ
うにした以外は、実施例1と同様にしてペレットを得
た。
Comparative Example 5 Pellets were obtained in the same manner as in Example 1 except that the arrangement of the rods in the impregnated part of the die was changed as shown in FIG.

実施例1〜6、比較例1〜5で得られたペレットを用
い、射出成形機(東芝IS−90B)にて、テストピースを
作成し、その物性を評価した。
Using the pellets obtained in Examples 1 to 6 and Comparative Examples 1 to 5, test pieces were prepared using an injection molding machine (Toshiba IS-90B), and their physical properties were evaluated.

結果を第1表に示す。 The results are shown in Table 1.

実施例1、実施例4及び比較例4、比較例5におい
て、繊維束(ガラスロービング)の引抜き速度(生産
量)を変えて、ロービングの開繊度(樹脂の含浸度)及
び得られたペレットでの射出成形品中の繊維の分散状況
を比較した。
In Example 1, Example 4, Comparative Example 4 and Comparative Example 5, the drawing speed (production amount) of the fiber bundle (glass roving) was changed, and the degree of opening of the roving (the degree of resin impregnation) and the obtained pellets were changed. Of the fibers in the injection molded articles was compared.

ポリプロ(40wt%)/ガラスロービング(60wt%)で
実施した。
The test was performed with polypropylene (40 wt%) / glass roving (60 wt%).

この結果を第2表に示す。 Table 2 shows the results.

次に実施例1及び比較例5のストランド中の繊維の開
繊度及び分散度の状態を第6図及び第7図に示す。
Next, the state of the degree of fiber opening and the degree of dispersion of the fibers in the strands of Example 1 and Comparative Example 5 are shown in FIGS.

実施例7 ガラス繊維束の代わりに、繊維径8μのステンレス繊
維950本の繊維束を用いた以外は、実施例1と同様にし
てペレットを得た。
Example 7 A pellet was obtained in the same manner as in Example 1 except that a fiber bundle of 950 stainless steel fibers having a fiber diameter of 8 µm was used instead of the glass fiber bundle.

比較例6 ガラス繊維束の代わりに、繊維径8μのステンレス繊
維束を用いた以外は、比較例4と同様にしてペレットを
得た。
Comparative Example 6 A pellet was obtained in the same manner as in Comparative Example 4, except that a stainless steel fiber bundle having a fiber diameter of 8 µm was used instead of the glass fiber bundle.

比較例7 ガラス繊維束の代わりに、繊維径8μmのステンレス
繊維束を用いた以外は、比較例5と同様にしてペレット
を得た。
Comparative Example 7 A pellet was obtained in the same manner as in Comparative Example 5, except that a stainless steel fiber bundle having a fiber diameter of 8 µm was used instead of the glass fiber bundle.

比較例8 ガラスのチョップストライドの代わりに、繊維径8
μ,長さ6mmのステンレス繊維のカット品を用いた以外
は、比較例1と同様にしてペレットを得た。
Comparative Example 8 Instead of glass chop stride, fiber diameter 8
A pellet was obtained in the same manner as in Comparative Example 1 except that a cut product of a stainless steel having a μ and a length of 6 mm was used.

それぞれ得られたペレットを用い射出成形により、14
0mm×140mm×3mmの角板を成形し、その外観をチェック
するとともに、その角板を用いて、体積固有抵抗値を測
定した。
Each of the resulting pellets was injection molded to give 14
A square plate of 0 mm × 140 mm × 3 mm was molded, its appearance was checked, and the volume resistivity was measured using the square plate.

その結果を第3表及び第8図のグラフに示す。 The results are shown in Table 3 and the graph of FIG.

[発明の効果] 以上のように本発明の繊維強化樹脂成形材料の製造装
置によれば、繊維束中に熱可塑性溶融樹脂を十分含浸さ
せることができ、機械的強度が高く耐熱性に優れた繊維
強化樹脂成形材料を生産性よく得ることができる。
[Effects of the Invention] As described above, according to the apparatus for manufacturing a fiber-reinforced resin molding material of the present invention, a fiber bundle can be sufficiently impregnated with a thermoplastic molten resin, and has high mechanical strength and excellent heat resistance. A fiber-reinforced resin molding material can be obtained with high productivity.

また、本発明の製造装置によれば、上記繊維強化樹脂
成形材料の製造方法を確実に実施することができる。
Further, according to the production apparatus of the present invention, the method for producing the fiber-reinforced resin molding material can be reliably performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置の一実施例の全体図、第2図はダイ
の拡大断面図、第3図は繊維束をロッドに巻き掛けたと
きの拡大図、第4図はダイの他の実施例における拡大断
面図、第5図はダイの従来例における拡大断面図、第6
図は本発明方法によって製造した成形材料の強化繊維分
散状態を示す拡大写真模写図、第7図は従来方法によっ
て製造した成形材料の強化繊維分散状態を示す拡大写真
模写図第8図は強化繊維の含有量と体積固有抵抗値との
関係を示す図である。 10:ダイ、20:押出機 11:予熱部、12:ヒータ 13:合浸部、14:ロッド
1 is an overall view of one embodiment of the apparatus of the present invention, FIG. 2 is an enlarged sectional view of a die, FIG. 3 is an enlarged view of a fiber bundle wound around a rod, and FIG. FIG. 5 is an enlarged sectional view of a conventional example of a die, and FIG.
FIG. 7 is an enlarged photograph showing the state of dispersion of the reinforcing fibers of the molding material produced by the method of the present invention. FIG. 7 is an enlarged photograph showing the state of dispersion of the reinforcing fibers of the molding material produced by the conventional method. FIG. 3 is a diagram showing a relationship between the content of the iron oxide and the volume resistivity. 10: Die, 20: Extruder 11: Preheating section, 12: Heater 13: Soaking section, 14: Rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 敬 神奈川県相模原市宮下1丁目2番27号 大日本硝子工業株式会社内 (72)発明者 二川 稔 神奈川県相模原市宮下1丁目2番27号 大日本硝子工業株式会社内 (56)参考文献 特開 昭61−229534(JP,A) 特開 昭61−229535(JP,A) 特開 昭63−251228(JP,A) 特開 平2−255838(JP,A) (58)調査した分野(Int.Cl.6,DB名) B29C 70/14 B29C 70/50──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Nishimoto 1-2-27 Miyashita, Sagamihara-shi, Kanagawa Prefecture Dainippon Glass Industry Co., Ltd. (72) Inventor Minoru Futagawa 1-2-27 Miyashita, Sagamihara-shi, Kanagawa Prefecture (56) References JP-A-61-229534 (JP, A) JP-A-61-229535 (JP, A) JP-A-63-251228 (JP, A) JP-A-2- 255838 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B29C 70/14 B29C 70/50

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】繊維束が通過するダイと、 このダイ内部に熱可塑性溶融樹脂を供給する溶融樹脂供
給部と、 前記ダイ内部に、前記繊維束の進行方向と交差した状態
で該進行方向に複数本配置されたロッドと、 溶融樹脂を含浸した繊維束をダイより引き出す引出し手
段とを備えるとともに、 前記複数の各ロッドに対して前記繊維束を、隣接するロ
ッドの中心軸を結ぶ直線に対し少なくとも一側を10度以
上傾斜した状態でじぐざぐ状に巻き掛けた ことを特徴とする繊維強化樹脂成形材料の製造装置。
1. A die through which a fiber bundle passes, a molten resin supply section for supplying a thermoplastic molten resin to the inside of the die, and a die inside the die in a direction intersecting with the direction of travel of the fiber bundle. A plurality of rods, and a drawer for drawing out a fiber bundle impregnated with the molten resin from a die, and the fiber bundle for each of the plurality of rods, with respect to a straight line connecting the central axes of adjacent rods An apparatus for manufacturing a fiber-reinforced resin molding material, wherein at least one side is wound in a zigzag manner at an angle of 10 degrees or more.
JP1322694A 1989-12-14 1989-12-14 Equipment for manufacturing fiber-reinforced resin molding materials Expired - Lifetime JP2829323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322694A JP2829323B2 (en) 1989-12-14 1989-12-14 Equipment for manufacturing fiber-reinforced resin molding materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322694A JP2829323B2 (en) 1989-12-14 1989-12-14 Equipment for manufacturing fiber-reinforced resin molding materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12128698A Division JP3234877B2 (en) 1998-04-30 1998-04-30 Method for producing fiber reinforced resin pellets

Publications (2)

Publication Number Publication Date
JPH03183531A JPH03183531A (en) 1991-08-09
JP2829323B2 true JP2829323B2 (en) 1998-11-25

Family

ID=18146572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322694A Expired - Lifetime JP2829323B2 (en) 1989-12-14 1989-12-14 Equipment for manufacturing fiber-reinforced resin molding materials

Country Status (1)

Country Link
JP (1) JP2829323B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230943A (en) * 1990-02-06 1991-10-14 Polyplastics Co Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JP3330402B2 (en) * 1992-11-02 2002-09-30 旭化成株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JPH0732495A (en) * 1994-08-19 1995-02-03 Polyplastics Co Manufacture of long fiber-reinforced thermoplastic resin composition
US5948473A (en) * 1995-11-30 1999-09-07 Chisso Corporation Method and apparatus for preparing resin-impregnated structures reinforced by continuous fibers
US6251206B1 (en) 1997-06-10 2001-06-26 Chisso Corporation Method for opening and resin-impregnation to produce continuous fiber-reinforced thermoplastic resin composite material
JP3234877B2 (en) * 1998-04-30 2001-12-04 出光石油化学株式会社 Method for producing fiber reinforced resin pellets
JP2005040996A (en) * 2003-07-23 2005-02-17 Toyobo Co Ltd Organic fibre reinforced resin pellet, its manufacturing method and resin molded product
JP6337767B2 (en) * 2014-12-26 2018-06-06 三菱エンジニアリングプラスチックス株式会社 Carbon long fiber / polycarbonate resin composite material and carbon long fiber / polycarbonate resin composite pellet manufacturing method
JP6863581B2 (en) * 2017-06-15 2021-04-21 宇部エクシモ株式会社 Method for manufacturing long fiber reinforced thermoplastic resin linear material
EP3875533A4 (en) * 2018-11-02 2022-08-10 Prime Polymer Co., Ltd. Long fiber-reinforced propylene-based resin composition and long fiber-reinforced molded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229535A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet
JPS61229534A (en) * 1985-04-04 1986-10-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai Method and device for manufacturing fiber reinforced resin sheet
JPS63251228A (en) * 1987-04-08 1988-10-18 Teijin Ltd Filament winding method
NL8802768A (en) * 1988-11-10 1990-06-01 Stamicarbon METHOD FOR MANUFACTURING FLEXIBLE POLYMERS IMPROVED REINFORCEMENT MATERIALS, MANUFACTURED POLYMERS IMPROVED REINFORCEMENT MATERIALS, AND PREPARED MADE ON THESE REINFORCEMENT MATERIALS

Also Published As

Publication number Publication date
JPH03183531A (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US4037011A (en) Glass fiber reinforced thermoplastic composition and process for its preparation
JP3221749B2 (en) Manufacturing method of composite products
US5227238A (en) Carbon fiber chopped strands and method of production thereof
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
DE10111218A1 (en) Continuous fiber spreading, impregnation and extrusion bath for production of thermoplastic composite sections has a die with a specified conical section to reduce fiber breakage
EP1105277B1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
KR920001646B1 (en) Maruko chiaki
US6548167B1 (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP3234877B2 (en) Method for producing fiber reinforced resin pellets
EP0368312B1 (en) Carbon fiber chopped strands and method of production thereof
JPS63132036A (en) Manufacture of fiber reinforced composite material
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
KR102323052B1 (en) Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
JPH0365311A (en) Carbon fiber chop
JPH0416309A (en) Manufacture of glass fiber reinforced thermoplastic resin forming material
CH500060A (en) Grp pellets for feed stock in injection moulding machine
DE2816463A1 (en) Pellets for high mechanical strength moulded articles - comprising glass fibre bundles and oriented and non-oriented thermoplastic resins
JPH031907A (en) Production of fiber reinforced composite material
JPH0768544A (en) Impregnation of fiber bundle with resin
JPH0762246A (en) Production of filament-reinforced thermoplastic resin composition and its apparatus
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JPH05124036A (en) Production of fiber-reinforced resin body
EP0330932A2 (en) Method of manufacturing plastics articles reinforced with short fibres
DE69916218T2 (en) Long fiber reinforced thermoplastic resin material characterized by the addition of fillers and process for its production
JP2934017B2 (en) Method and apparatus for producing fiber reinforced resin product