JPS6320201Y2 - - Google Patents

Info

Publication number
JPS6320201Y2
JPS6320201Y2 JP2565282U JP2565282U JPS6320201Y2 JP S6320201 Y2 JPS6320201 Y2 JP S6320201Y2 JP 2565282 U JP2565282 U JP 2565282U JP 2565282 U JP2565282 U JP 2565282U JP S6320201 Y2 JPS6320201 Y2 JP S6320201Y2
Authority
JP
Japan
Prior art keywords
transmission line
transmission
inductance
impedance
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2565282U
Other languages
Japanese (ja)
Other versions
JPS58129756U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2565282U priority Critical patent/JPS58129756U/en
Publication of JPS58129756U publication Critical patent/JPS58129756U/en
Application granted granted Critical
Publication of JPS6320201Y2 publication Critical patent/JPS6320201Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【考案の詳細な説明】 本考案は海水中で信号伝送を行なうインダクタ
ンス補償型伝送装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an inductance-compensated transmission device for transmitting signals in seawater.

従来の使い棄てブイ等の信号伝送装置に於て
は、発振装置を取付けた伝送線を巻枠に巻き付け
て海中に浮揚させ、順次に巻枠から伝送線を繰り
出すようにしているが巻枠に巻きつけられた伝送
線の長さが変化するにつれ伝送線のインダクタン
スが変化する。このため伝送帯域に影響を生じる
ことがある。
In conventional signal transmission devices such as disposable buoys, the transmission line with an oscillator attached is wrapped around a reel and floated in the sea, and the transmission line is sequentially let out from the reel. As the length of the wrapped transmission line changes, the inductance of the transmission line changes. This may affect the transmission band.

これを第1図に示す伝送装置の概略図により詳
細に説明する。図において、1は伝送線、2は伝
送線1の巻枠を示し、また3は交流信号の出力端
子、4は発振器、5は増幅器、6は送信側の交流
信号と直流電源の分離回路、7は直流電源、8は
受信側の交流信号と直流電源の分離回路、9は交
流負荷インピーダンスZ1(Ω)、更に10は海水1
1中の接地電極を示す。
This will be explained in detail with reference to the schematic diagram of the transmission device shown in FIG. In the figure, 1 is a transmission line, 2 is a winding frame of the transmission line 1, 3 is an output terminal for an AC signal, 4 is an oscillator, 5 is an amplifier, 6 is a separation circuit for the AC signal and DC power supply on the transmission side, 7 is a DC power supply, 8 is a separation circuit for the receiving side AC signal and DC power supply, 9 is an AC load impedance Z 1 (Ω), and 10 is seawater 1
The ground electrode in 1 is shown.

このような伝送装置においては、伝送線1を巻
枠2に巻くことにより巻数の2乗に比例し巻枠2
の透磁率に比例したインダクタンスL(H)が生じ、
そのインピーダンスはjωL(Ω)となる。この伝
送特性は伝送線1の直流抵抗をR0(Ω)とする
と、 Z1/R0+jωL+Z1 となり、伝送線1が長くなることによる巻数の
増加又は伝送周波数の高域化により(Z1+R0)<
jωLとなり伝送特性は Z1/R0+jωL+Z1≒Z1/jωL となる。従つて伝送線の繰り出し長さ(インダ
クタンスの変化)及び伝送周波数により伝送特性
が変化するようになる。
In such a transmission device, by winding the transmission line 1 around the winding frame 2, the winding frame 2 is proportional to the square of the number of windings.
An inductance L(H) proportional to the magnetic permeability of is generated,
Its impedance is jωL (Ω). When the DC resistance of the transmission line 1 is R 0 (Ω), this transmission characteristic becomes Z 1 /R 0 +jωL + Z 1 , and as the transmission line 1 becomes longer, the number of turns increases, or the transmission frequency becomes higher, (Z 1 +R 0 )<
jωL, and the transmission characteristic becomes Z 1 /R 0 +jωL+Z 1 ≒Z 1 /jωL. Therefore, the transmission characteristics change depending on the length of the transmission line (change in inductance) and the transmission frequency.

即ち、第2図に示すように、横軸にとつた伝送
線1の繰り出し長さに応じて縦軸にとつたインダ
クタンスが変化してしまい、第3図に示すように
縦軸にとつた伝送損失が変化してしまう。また第
4図に示すように横軸にとつた周波数が高くなる
につれ、縦軸にとつた伝送損失が増大すると云う
問題があつた。また送受信側に交流・直流分離回
路が必要で回路構成が複雑になると云う欠点があ
つた。
In other words, as shown in Fig. 2, the inductance shown on the vertical axis changes depending on the length of the transmission line 1 taken on the horizontal axis, and as shown in Fig. 3, the inductance shown on the vertical axis changes. Losses change. Furthermore, as shown in FIG. 4, there is a problem in that as the frequency on the horizontal axis increases, the transmission loss on the vertical axis increases. Another drawback is that it requires AC/DC separation circuits on the transmitting and receiving sides, making the circuit configuration complicated.

本考案は、このような従来の欠点を除去するも
ので伝送線の繰り出し長さが変化しても伝送特性
が変化しにくいように伝送線を2芯にし、交流信
号伝送線と平行に定電圧直流電源供給用伝送線を
配置したものである。以下本考案の一実施例を図
面により詳細に説明する。
The present invention eliminates these conventional drawbacks.The transmission line is made of two cores so that the transmission characteristics do not change easily even if the length of the transmission line changes, and a constant voltage is applied in parallel to the AC signal transmission line. It is equipped with transmission lines for DC power supply. An embodiment of the present invention will be described in detail below with reference to the drawings.

第5図は本考案インダクタンス補償型伝送装置
の一実施例を示す概略図で、第1図と同じ機能部
品には同一の参照符号を付した。図において、1
2は交流信号用伝送線、13は直流電源用伝送
線、14は定電圧直流電源で、伝送線12と伝送
線13はペアーで同じ巻数だけ巻枠2に巻かれ、
海中に浮揚し信号の伝送を行なう。伝送線12と
伝送線13の繰り出しもペアーで行なわれる。
FIG. 5 is a schematic diagram showing an embodiment of the inductance compensation type transmission device of the present invention, in which the same functional parts as in FIG. 1 are given the same reference numerals. In the figure, 1
2 is a transmission line for AC signals, 13 is a transmission line for DC power supply, 14 is a constant voltage DC power supply, and the transmission lines 12 and 13 are wound as a pair around the winding frame 2 by the same number of turns.
It floats underwater and transmits signals. The transmission lines 12 and 13 are also fed out in pairs.

このようにすると、第1図に示す従来装置と異
なり伝送線13のため交流信号に対して伝送線1
2と伝送線13は伝送線12を1次巻線とし、伝
送線13を2次巻線としたトランスとして動作
し、交流信号を伝送する上で問題となる伝送損失
に関連するのは1次巻線(伝送線12)側のイン
ピーダンスであるがこれを第6図により説明す
る。
By doing this, unlike the conventional device shown in FIG. 1, since the transmission line 13 is
2 and the transmission line 13 operate as a transformer with the transmission line 12 as the primary winding and the transmission line 13 as the secondary winding. The impedance on the winding (transmission line 12) side will be explained with reference to FIG.

第6図は交流信号に着目した第5図の等価回路
であり15は伝送線12による1次側巻線、16
は伝送線12の直流抵抗R0(Ω)、17は伝送線
13による2次巻線、18は電源回路の交流イン
ピーダンスと伝送線13の直流抵抗の直列接続イ
ンピーダンスZ2(Ω)である。又伝送線12によ
る1次巻線及び伝送線13による2次巻線は各々
巻数の2乗に比例する自己インダクタンスL(H)を
もちかつ1次,2次巻線間には相互インダクタン
スM(H)をもつ。
FIG. 6 is an equivalent circuit of FIG. 5 focusing on AC signals, where 15 is the primary winding formed by the transmission line 12, and 16 is the equivalent circuit of FIG.
is the DC resistance R 0 (Ω) of the transmission line 12, 17 is the secondary winding of the transmission line 13, and 18 is the series connection impedance Z 2 (Ω) of the AC impedance of the power supply circuit and the DC resistance of the transmission line 13. The primary winding of the transmission line 12 and the secondary winding of the transmission line 13 each have a self-inductance L(H) proportional to the square of the number of turns, and a mutual inductance M(H) between the primary and secondary windings. H).

したがつて1次巻線(伝送線12)側電圧VT1
と電流IT1の関係はトランスの原理から次式のよ
うになる。
Therefore, the voltage on the primary winding (transmission line 12) side V T1
The relationship between I and current I T1 is expressed by the following equation based on the principle of a transformer.

VT1=1/nkVT2+jω1−k2/k2MIT2 IT1=1/jωMVT2+n/kIT2 ここで VT2は2次巻線17の誘起電圧 IT2は2次巻線17に流れる電流 nは1次巻線15と2次巻線17の巻数比 kは比例定数でM=kLの関係にある。 V T1 = 1/nkV T2 +jω1-k 2 /k 2 MI T2 I T1 = 1/jωMV T2 +n/kI T2 where V T2 is the induced voltage in the secondary winding 17 I T2 flows into the secondary winding 17 The current n is the turns ratio between the primary winding 15 and the secondary winding 17, and k is a proportionality constant with the relationship M=kL.

本考案の回路では伝送線12と伝送線13は1
つの巻枠2に同時に巻かれており1次巻線と2次
巻線の巻数比は同じでかつ漏れ磁束もほとんどな
いのでn=1,k≒1となる。従つて VT1=VT2 IT1≒1/jωLVT2+IT2 となり2次巻線17の負荷インピーダンスZ2
用いて式を変形し、1次巻線15側のインピーダ
ンスZT1は ZT1=VT1/IT1=1/1/jωL+1/Z2 となる。この結果トランスの1次側インピーダ
ンスZT1は伝送線12の自己インダクタンスによ
るインピーダンスjωLと2次側負荷インピーダン
スZ2との並列接続となる。
In the circuit of the present invention, the transmission line 12 and the transmission line 13 are one
Since the coils are simultaneously wound around two winding frames 2, the turns ratio of the primary winding and the secondary winding are the same, and there is almost no leakage flux, n=1 and k≒1. Therefore, V T1 = V T2 I T1 ≒ 1/jωLV T2 + I T2 , and by modifying the equation using the load impedance Z 2 of the secondary winding 17, the impedance Z T1 on the primary winding 15 side becomes Z T1 = V T1 /I T1 = 1/1/jωL+1/Z 2 . As a result, the primary impedance Z T1 of the transformer becomes a parallel connection of the impedance jωL due to the self-inductance of the transmission line 12 and the secondary load impedance Z 2 .

従つてZ2≪jωLの条件にすると ZT1≒Z2 となりトランスの1次側インピーダンスは伝送
線12の自己インダクタンス(伝送線12の繰り
出し長さ)にほとんど関係なく出来る。第7図は
トランスの1次側インピーダンスの効果を示すグ
ラフであり横軸は伝送線12と伝送線13の繰り
出し長さ、縦軸はトランスの1次側インピーダン
スZT1を示し点線で示した従来例の単線の場合に
比べ大巾に改善されていることが理解される。
Therefore, under the condition that Z 2 ≪jωL, Z T1 ≒Z 2 and the primary impedance of the transformer is almost independent of the self-inductance of the transmission line 12 (the extended length of the transmission line 12). FIG. 7 is a graph showing the effect of the primary impedance of the transformer. The horizontal axis is the length of the transmission line 12 and the transmission line 13, and the vertical axis is the primary impedance Z T1 of the transformer. It can be seen that this is a significant improvement compared to the single-line case in the example.

Z2≪jωLの条件は本考案の如く伝送線13に直
流定電圧電源を接続することにより容易に実現出
来、このときの伝送特性は Z1/Z1+ZT1+R0≒Z1/Z1+Z2+R0 となり伝送線12の繰り出し長さに依存しない
ようになる。
The condition of Z 2 ≪jωL can be easily achieved by connecting a DC constant voltage power supply to the transmission line 13 as in the present invention, and the transmission characteristics at this time are Z 1 /Z 1 +Z T1 +R 0 ≒Z 1 /Z 1 +Z 2 +R 0 and becomes independent of the length of the transmission line 12.

第8図は上記伝送装置の伝送損失の効果を示す
グラフであり、横軸は伝送線12と伝送線13の
繰り出し長さ、縦軸は伝送損失を示し、点線で示
した従来例の単線の場合に比べ実線で示した本実
施例の場合の方が大巾に改善されていることが理
解される。
FIG. 8 is a graph showing the effect of transmission loss of the above-mentioned transmission device. The horizontal axis shows the length of the transmission line 12 and the transmission line 13, and the vertical axis shows the transmission loss. It can be seen that the case of this example shown by the solid line is much improved compared to the case of the case.

また第9図は周波数と伝送損失との関係を示す
グラフであり、点線で示した従来例の単線の場合
に比べ実線で示した本実施例の場合の方が大巾に
改善されていることが理解される。
FIG. 9 is a graph showing the relationship between frequency and transmission loss, and it shows that the case of this embodiment shown by the solid line is much improved compared to the case of the conventional single wire shown by the dotted line. is understood.

以上説明したように本考案はインダクタンス補
償用に交流信号用伝送線とは別に伝送線を用意し
交流インピーダンスの小さい回路を接続する必要
があるため、定電圧直流電源の伝送を同時に行な
う構造となる。従つて直流電源回路は独立してお
り送・受信側における交流信号と直流電源の分離
回路は不要となり、回路構成及び回路設計が簡単
となる効果がある。しかも分離回路による電圧降
下が生じないので直流電圧が有効に使用出来る効
果もある。さらにインダクタンス補償効果は巻枠
の材質に影響されないので巻枠の材質選択が簡単
になる等の効果もある。
As explained above, in this invention, it is necessary to prepare a transmission line separate from the AC signal transmission line for inductance compensation and connect a circuit with low AC impedance, so the structure is such that constant voltage DC power is transmitted at the same time. . Therefore, the DC power supply circuit is independent, and there is no need for a separation circuit between the AC signal and the DC power supply on the transmitting and receiving sides, which has the effect of simplifying the circuit configuration and circuit design. Moreover, since no voltage drop occurs due to the separation circuit, there is an advantage that DC voltage can be used effectively. Furthermore, since the inductance compensation effect is not affected by the material of the winding frame, there is also an effect that selection of the material of the winding frame becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単線伝送装置の概略構成図、第
2図は伝送線の繰り出し長さとインダクタンスと
の関係を示すグラフ、第3図は伝送線の繰り出し
長さと伝送損失の関係を示すグラフ、第4図は周
波数と伝送損失の関係を示すグラフ、第5図は本
考案インダクタンス補償型伝送装置の一実施例を
示す概略構成図、第6図は本考案による一実施例
の等価回路説明図、第7図は伝送線繰り出し長さ
と伝送線インピーダンスの関係を示すグラフ、第
8図は伝送線繰り出し長さと伝送損失の関係を示
すグラフ、第9図は周波数と伝送損失の関係を示
すグラフである。 1……伝送線、2……巻枠、3……出力端子、
4……発振装置、5……交流信号増幅器、6……
送信側交流信号と直流電源の分離回路、7……直
流電源、8……受信側交流信号と直流電源の分離
回路、9……負荷インピーダンス、10……接地
電極、11……海水、12……交流信号伝送線、
13……直流電源伝送線、14……定電圧直流電
源、15……1次巻線、16……1次巻線負荷イ
ンピーダンス、17……2次巻線、18……2次
巻線負荷インピーダンス。
FIG. 1 is a schematic diagram of a conventional single-wire transmission device, FIG. 2 is a graph showing the relationship between the length of the transmission line and inductance, and FIG. 3 is a graph showing the relationship between the length of the transmission line and transmission loss. Fig. 4 is a graph showing the relationship between frequency and transmission loss, Fig. 5 is a schematic configuration diagram showing an embodiment of the inductance compensation type transmission device of the invention, and Fig. 6 is an explanatory diagram of an equivalent circuit of an embodiment of the invention. , Figure 7 is a graph showing the relationship between transmission line length and transmission line impedance, Figure 8 is a graph showing the relationship between transmission line length and transmission loss, and Figure 9 is a graph showing the relationship between frequency and transmission loss. be. 1...Transmission line, 2...Reeling frame, 3...Output terminal,
4...Oscillation device, 5...AC signal amplifier, 6...
Separation circuit for transmitting side AC signal and DC power supply, 7... DC power supply, 8... Separation circuit for receiving side AC signal and DC power supply, 9... Load impedance, 10... Ground electrode, 11... Seawater, 12... ...AC signal transmission line,
13...DC power supply transmission line, 14...Constant voltage DC power supply, 15...Primary winding, 16...Primary winding load impedance, 17...Secondary winding, 18...Secondary winding load impedance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発振装置を取付けた伝送線を巻枠に巻き付けて
海中に浮揚させ、順次に巻枠から伝送線を繰り出
すようにした海水アースを用いた2芯伝送式使い
棄てブイ等の伝送装置において、交流信号用伝送
線とは別に交流インピーダンスの小さい直流電源
の伝送線をペアーで同じ巻数だけ巻枠に巻きつ
け、直流電源伝送線により信号伝送線の自己イン
ダクタンスを補償せしめたことを特徴とするイン
ダクタンス補償型伝送装置。
A transmission line with an oscillator attached is wrapped around a winding frame and floated in the sea, and the transmission line is sequentially let out from the winding frame.In a transmission device such as a two-core transmission type disposable buoy using a seawater ground, AC signals can be transmitted. The inductance compensation type is characterized in that, in addition to the transmission line for the signal transmission line, a pair of DC power transmission lines with low AC impedance are wound around the winding frame with the same number of turns, and the self-inductance of the signal transmission line is compensated by the DC power transmission line. Transmission device.
JP2565282U 1982-02-26 1982-02-26 Inductance compensated transmission device Granted JPS58129756U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2565282U JPS58129756U (en) 1982-02-26 1982-02-26 Inductance compensated transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2565282U JPS58129756U (en) 1982-02-26 1982-02-26 Inductance compensated transmission device

Publications (2)

Publication Number Publication Date
JPS58129756U JPS58129756U (en) 1983-09-02
JPS6320201Y2 true JPS6320201Y2 (en) 1988-06-06

Family

ID=30037621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2565282U Granted JPS58129756U (en) 1982-02-26 1982-02-26 Inductance compensated transmission device

Country Status (1)

Country Link
JP (1) JPS58129756U (en)

Also Published As

Publication number Publication date
JPS58129756U (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US4622535A (en) Receiving circuit for a data transmission system
JPH0622340B2 (en) Line interface device
US4346340A (en) Method and means for controlling the flux density in the core of an inductor
JPS6320201Y2 (en)
US4791543A (en) High power switched power supply
JPH0233390Y2 (en)
JPH0711541B2 (en) Current detector
SU42A1 (en) Device for amplifying microphone current using self-induction
JPH03216559A (en) Current detector
JPS5919480Y2 (en) broadband transformer circuit
JPS54137626A (en) Broad-band transformer circuit
JPS5915461Y2 (en) pulse transformer
JPS6031319Y2 (en) power supply
JPS6236340Y2 (en)
SU1112299A1 (en) Device for converting current to voltage
JPS6123847Y2 (en)
JPS5910044B2 (en) Communication transformer
JPS5938734Y2 (en) Balanced unbalanced conversion transformer
SU374759A1 (en) DEVICE OF INDICATION OF EMPLOYMENT OF THE SUBSCRIBER TELEPHONE LINE
JPH0542481Y2 (en)
SU789829A1 (en) Electric signal measuring transducer with galvanic input-output isolation
JPH0447943Y2 (en)
JPH0453057Y2 (en)
JPH0544882Y2 (en)
JPS6134779Y2 (en)