JPS6320142A - Cast steel slab having excellent hydrogen inducing crack resistance - Google Patents

Cast steel slab having excellent hydrogen inducing crack resistance

Info

Publication number
JPS6320142A
JPS6320142A JP61161916A JP16191686A JPS6320142A JP S6320142 A JPS6320142 A JP S6320142A JP 61161916 A JP61161916 A JP 61161916A JP 16191686 A JP16191686 A JP 16191686A JP S6320142 A JPS6320142 A JP S6320142A
Authority
JP
Japan
Prior art keywords
slab
occupied area
continuous casting
amn
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61161916A
Other languages
Japanese (ja)
Other versions
JPH069733B2 (en
Inventor
Yoshimori Fukuda
義盛 福田
Shozo Mizoguchi
溝口 庄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61161916A priority Critical patent/JPH069733B2/en
Publication of JPS6320142A publication Critical patent/JPS6320142A/en
Publication of JPH069733B2 publication Critical patent/JPH069733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a continuous casting slab having excellent hydrogen inducing crack resistance characteristic, without any soaking diffusion heat-treatment by selecting the specific continuous casting condition and molten steel composition under consideration of occupied area rate for P and Mn in the continuous casting slab. CONSTITUTION:A sample 12 having sectional face of casting direction at a center part or suitable position of the width direction for the continuous casting slab 10 with the molten steel composition, and containing the last solidified part 11, desirable at least 40mm length toward the casting direction and 20mm height toward the thickness direction, is extracted. By executing the macro- analyzer treatment for this sample, the occupied area rate of >0.04% P and >1.5% Mn are found and applied to the relational expression log(AP)<=-0.4Xlog(AMn)-1.2 (where, AP and AMn show the occupied area rate at Y and X axis for P and Mn, respectively). In this case satisfying the relational expression, the slab without any diffusion heat-treatment, is sent to a rolling process as it is, it does not develop the hydrogen inducing crack after rolling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油井管その他に用いられる耐水素誘起割れ性
に優れた鋼鋳片に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a steel slab with excellent resistance to hydrogen-induced cracking used for oil country tubular goods and other products.

(従来の技術) 従来の連続鋳造鋳片(以下連鋳vj片という)の品質評
価の仕方としては、サルファープリント法、マクロエッ
チ法等があり、一般的には、前者の方が利用されている
(Prior art) Conventional methods for evaluating the quality of continuously cast slabs (hereinafter referred to as continuous cast slabs) include the sulfur print method and the macro etch method, but the former is generally used. There is.

このサルファープリント法では、鋳片の特に中心部近傍
の偏析状態が簡便に評価できるため、品種別の判定基準
として連続鋳造では広く利用されてきた。特に−殻構造
物、造船材等の鋼板を製造する場合、この方法はきわめ
て優れた方法であった。
This sulfur print method allows easy evaluation of the segregation state of slabs, especially near the center, and has been widely used in continuous casting as a criterion for determining product types. In particular, this method was an extremely excellent method when manufacturing steel plates for shell structures, shipbuilding materials, etc.

しかしながら次のような場合には有効な手段とならない
のが現状であった。水素誘起割れの原因としては、S以
外の元素であるP、Mn  等の凝固最終部近傍で起こ
る偏析と、鋼板の割れとの関係が極めて強く、従来のサ
ルファープリント法、マクロエッチ法での評定では、不
正確である。
However, the current situation is that it is not an effective means in the following cases. The cause of hydrogen-induced cracking is that there is a strong relationship between segregation of elements other than S, such as P and Mn, near the final stage of solidification, and cracking of the steel plate. That's inaccurate.

そのだめ現状では、上記のような割れが問題となる鋼種
の製造については、鋳片段階で均熱拡散処理または、ブ
レイクダウン均熱拡散処理あるいは、高温加熱拡散処理
等を実施し、全ての元素の拡散処理後圧延する方法がと
られてきた。
Therefore, at present, when manufacturing steel types that are prone to cracking as described above, soaking diffusion treatment, breakdown soaking diffusion treatment, high-temperature heating diffusion treatment, etc. are carried out at the slab stage to ensure that all elements are removed. A method of rolling after diffusion treatment has been adopted.

(発明が解決し」:うとする問題点) 」1記のような水素誘起割れと偏析量との関係は明らか
にされておらず、成分調整、ロールピッチの短縮化、凝
固組織の等軸晶化を実施しているが、必ずしも目的の鋳
片を得るに至っていない。
(Problems to be Solved by the Invention) The relationship between hydrogen-induced cracking and the amount of segregation as described in item 1 has not been clarified. However, the desired slabs have not necessarily been obtained.

本発明者らは鋳片におけるP、Mnの偏析状態と割れ特
性の関係を調査した結果、P>0.04%、Mn > 
1−、5 %の濃度以上の面積率と、 割れ特性に密接
な関係があることを知った。
The present inventors investigated the relationship between the segregation state of P and Mn in slabs and cracking characteristics, and found that P > 0.04%, Mn >
I learned that there is a close relationship between the area ratio with a concentration of 1-5% or higher and the cracking characteristics.

即ち本発明は、耐水素誘起割れ特性に優れた均熱拡散熱
処理省略型の連続鋳造鋳片を提供するものである。
That is, the present invention provides a continuously cast slab that has excellent hydrogen-induced cracking resistance and does not require soaking diffusion heat treatment.

(問題点を解決するだめの手段) 本発明者らは、後記した溶鋼成分の連鋳鋳片を、新たな
偏析評価方法にもとすき評価し、これらを圧延して成品
としたものの水素誘起割れ特性を調査した。その結果第
1図に示すように、PとMnの偏析と成品の割れ特性と
の間に、一定の関係を見いたした。
(Another means to solve the problem) The present inventors evaluated continuous cast slabs of the molten steel composition described below using a new segregation evaluation method, and the hydrogen-induced The cracking characteristics were investigated. As a result, as shown in FIG. 1, a certain relationship was found between the segregation of P and Mn and the cracking characteristics of the product.

図中○印は割れなし、X印は割れありを示した。In the figure, ○ marks indicate no cracks, and X marks indicate cracks.

すなわち、Pの偏析状態とMnの偏析状態によつて、(
コ)式により決定され、APを(])式で満たされる範
囲に制御することにより、水素誘起割れが発生しないこ
とを見い出した。
That is, depending on the segregation state of P and the segregation state of Mn, (
It has been found that hydrogen-induced cracking does not occur by controlling AP within a range that is determined by equation () and is satisfied by equation (]).

log(AP)≦−0,4χIog(AMn) −1.
]2 ・・−・−(]、)ここにいう占有面積率A、P
、AMnとは、連鋳鋳片の鋳造方向の断面における厚み
方向の最終凝固部、および■偏析部を含む40X20m
+nの試片内におけるP)0.04%の面積の占める比
率およびMn>1.5%の面積の占める比率を示す。
log(AP)≦−0, 4χIog(AMn) −1.
]2 ・・−・−(],)The occupied area ratio A, P here
, AMn is 40 x 20 m including the final solidified part in the thickness direction and the segregated part in the cross section of the continuously cast slab in the casting direction.
The ratio of the area occupied by P) 0.04% and the ratio occupied by the area of Mn>1.5% in the +n specimen are shown.

ところで本発明におけるP、Mn  の偏析面積率の算
定は、特に限定されないが、だとえは特開昭57− ]
、 42551号公報によるマイクロアナライザー処理
で行なうのが便利である。
By the way, the calculation of the segregation area ratio of P and Mn in the present invention is not particularly limited, but it is disclosed in Japanese Patent Application Laid-Open No. 1983-1992.
It is convenient to carry out the microanalyzer processing according to Japanese Patent Publication No. 42551.

(作用) 第1図からMn偏析部の面積が小さくなれば、P偏析部
の面積は多少大きくなってもよいととがわかる。
(Function) It can be seen from FIG. 1 that if the area of the Mn segregation part becomes smaller, the area of the P segregation part may become somewhat larger.

本発明によると、連鋳鋳片の中心部(最終凝固部)の試
片(40χ20論)を取りだし、この部分を例えば、特
開昭57−142551号による5〇μm ビーム径の
マイクロアナライザーで全面分析し、試片内のP + 
Mn  の偏析濃度別の占有面積率をもって、P 、 
Mnの偏析状況を評価することが望ましい。また、Pの
測定誤差を加味し、10チ以内の誤差にするため、X線
照射時間を、100m5ec  以上にすることが望ま
しい。
According to the present invention, a specimen (40x20 theory) of the central part (final solidification part) of a continuously cast slab is taken out, and this part is analyzed over the entire surface with a microanalyzer with a beam diameter of 50 μm according to Japanese Patent Application Laid-Open No. 57-142551. Analyze and P + in the specimen
With the occupied area ratio for each segregation concentration of Mn, P,
It is desirable to evaluate the segregation status of Mn. Furthermore, in order to take into account the measurement error of P and keep the error within 10 inches, it is desirable to set the X-ray irradiation time to 100 m5ec or more.

即ち第2図に示すように、連鋳鋳片]0の長手方向(以
下り方向という)の断面は、通常厚み方向の最終凝固位
置11が線状を呈しておシ、従って最終凝固部を含む所
望面積12を試料とする。
That is, as shown in Fig. 2, the cross section in the longitudinal direction (hereinafter referred to as the "downward direction") of the continuously cast slab 0 shows that the final solidification position 11 in the thickness direction usually has a linear shape. A desired area 12 containing the sample is taken as a sample.

試片12は、連鋳鋳片のL方向断面積の40X20゜以
上の面積をもつものとするが、好壕しくは第3図に示す
ように、中心偏析と■偏析を共通にもつ視野にすると効
率的で好ましい。
The specimen 12 shall have an area of 40 x 20° or more of the cross-sectional area in the L direction of the continuously cast slab, but it is preferable to have a trench in a field of view that has central segregation and segregation in common, as shown in Figure 3. This is efficient and preferable.

第4図は取鍋p==Q、QQ5係で鋳造された鋳片の測
定例であるが、40X20−の試片を6倍に拡大したも
のである。図中で黒色のマーキングAは、P=O,01
%の等濃度域、斜線のマーキングBは、P=0.02チ
の等濃度域、マーキングCは、P−0,04係の等偏析
P濃度域である。
Fig. 4 shows a measurement example of a slab cast using a ladle p==Q, QQ5, and the 40x20- specimen is enlarged six times. In the figure, black marking A is P=O,01
%, the diagonal marking B is an equal concentration region of P=0.02, and the marking C is an equal concentration P concentration region of P-0.04.

即ちこのケースでは、40χ20調試片全面積中で、偏
析P濃度が0.04チ以上の面積率は、0.002係、
0.02チ以上の面積率は0.27係、0.01%以上
の面積率は5.67%の例を示している。
That is, in this case, the area ratio of the segregated P concentration of 0.04 or more in the total area of the 40x20 sample is 0.002
An example is shown in which the area ratio of 0.02 inches or more is 0.27%, and the area ratio of 0.01% or more is 5.67%.

第1図の供試鋼の溶鋼成分は、主としてC0,5係以下
、  Si 0.01−1.0%、 Mn 0.7−1
.5 ’$。
The molten steel composition of the test steel shown in Figure 1 is mainly C0.5 or less, Si 0.01-1.0%, Mn 0.7-1
.. 5'$.

Po、02係以下、So、O05チ以下、00.004
チを基本成分とし、さらに基本成分に必要に応じてCa
マOppm以下、 RgM 0.04%以下、 Nb 
O,01−0,5%、 VO,Ol−o、5%、 Cu
、 1%以下、 Cr1%以下1M01%以下、  Z
r 0.01−0.5%。
Po, 02 and below, So, 05 and below, 00.004
Ca is the basic component, and Ca is added to the basic component as necessary.
M Oppm or less, RgM 0.04% or less, Nb
O,01-0,5%, VO,Ol-o,5%, Cu
, 1% or less, Cr1% or less, 1M01% or less, Z
r 0.01-0.5%.

Ni l係以下、TiO,O1〜0.3%等の1種以上
を適宜含んだものである。
It appropriately contains at least one of Ni, TiO, and 1 to 0.3% of O.

Mnは、材料に要求される強度を確保するため、0.7
係乃至1.5%添加されるが、1.5係以上は、著しく
割れ感受性を強めるだめ、Pとの相関により制限される
Mn is 0.7 to ensure the strength required for the material.
It is added in an amount of 1.5% to 1.5%, but if it exceeds 1.5%, the cracking susceptibility is significantly increased, so it is limited due to the correlation with P.

ところで、前述して来た様なP>0.04係、Mn )
 1.5 % 以上の占有面積率に影響を与える因子は
、溶鋼成分では当然取鍋p%、Mn係であシ、次にその
溶鋼が固まる時の凝固条件(タンディシュ加熱度ΔT、
ロールピッチ]−p、 最終凝固部での溶鋼静圧P、鋳
片表面温度℃、シェル厚み)である。
By the way, as mentioned above, P > 0.04, Mn)
Factors that affect the occupied area ratio of 1.5% or more are of course the ladle p% and Mn ratio in the molten steel composition, and the solidification conditions when the molten steel solidifies (tundish heating degree ΔT,
roll pitch]-p, molten steel static pressure P at the final solidification part, slab surface temperature °C, shell thickness).

従って上述のP、Mn占有面積率を考慮して、前記連続
鋳造条件と溶鋼成分を選択することにより、本発明の鋳
片は製造される。特にロールピッチや最終凝固部での溶
鋼静圧等は、P、Mnの占有面積率を小さくするために
重要であり、そのため特願昭60− ]、 ’? ]、
 31.4号による稠密ロールや、特願昭60−230
091号によるウオーキングバーによる最適な凝固末期
圧下が有効である。
Therefore, the slab of the present invention is manufactured by selecting the continuous casting conditions and molten steel composition in consideration of the above-mentioned P and Mn occupied area ratios. In particular, the roll pitch and the static pressure of molten steel in the final solidification zone are important in order to reduce the occupied area ratio of P and Mn. ],
Dense roll according to No. 31.4, patent application 1986-230
Optimal final solidification reduction using a walking bar according to No. 091 is effective.

(実施例) C=0.075%、Mn = 1.03 %、Si =
 0.256φ、P、:0.0029係、S=O,0O
15係、v=0.31%、 Nb=o、o 411%、
 Ca/5==1.53の溶鋼を、105R連鋳機にて
、最終凝固部近傍をウオーキングバーで面支持しながら
鋳造した。
(Example) C=0.075%, Mn=1.03%, Si=
0.256φ, P: 0.0029 ratio, S=O, 0O
Section 15, v=0.31%, Nb=o, o 411%,
Molten steel with Ca/5==1.53 was cast in a 105R continuous caster while supporting the surface near the final solidification part with a walking bar.

その中心部近傍より40X20.の試片を取り出し、前
記→イクロアナライザー処理をほどこし、P)O○4係
、 Mn :) 1. ]5 チの占有面積率を求めた
所、それぞれo、 05 %、03%であったので、拡
散熱処理を施すことなく、その!、ま圧延工程に送り、
圧延後N A、 CE  基準による水素誘起割れテス
)k実施した所、全て合格であった。
40X20 from near the center. Take out the specimen and apply the → microanalyzer treatment as described above, P)O○4 Section, Mn:) 1. ] 5 The occupied area ratios of 0 and 05% and 03% were calculated, respectively, so without performing diffusion heat treatment, that! , then sent to the rolling process.
After rolling, hydrogen-induced cracking tests were conducted according to NA and CE standards, and all tests passed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAP−AMn 相関関係のグラフ、第2図は本
発明の試片採取の説明図、第3図は評価のだめの測定視
野の説明図、第4図(、)はP占有面積率算定のだめの
マイクロアナライザーによる解析図、第4図(b)は第
4図(a)の部分拡大図である。 代理人 弁理士  茶野木 立 夫 第4図(cl) ρ 、y”、Q る− べ2 ・ 9・9    第4図(b) °、り3 、/ C ν    18 ゛  −づ゛ −〃 、        A ;斐すオこイ見野
Fig. 1 is a graph of AP-AMn correlation, Fig. 2 is an explanatory diagram of specimen collection of the present invention, Fig. 3 is an explanatory diagram of the measurement field of view for evaluation, and Fig. 4 (, ) is the P occupied area ratio. Fig. 4(b) is a partially enlarged view of Fig. 4(a), which is a diagram analyzed by the microanalyzer of the calculation. Agent Patent Attorney Tatsuo Chanoki Figure 4 (cl) ρ, y”, Q Ru-be2・9・9 Figure 4 (b) °, Ri3, / C ν 18゛-zu゛-〃, A ; Hisu Okoi Mino

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造鋳片の巾方向の中央部または適当な位置で鋳造
方向の断面をとり、且つ厚み方向の最終凝固部を含み、
前記鋳造方向の望ましくは少なくとも40mmを含み、
且つ厚み方向20mmを含む視野内で、0.04%以上
のPの占有面積率APをY軸とし、1.5%以上のMn
の占有面積率AMnをX軸とするとき、log(AP)
≦−0.4Xlog(AMn)−1.2としたことを特
徴とする耐水素誘起割れ特性に優れた均熱拡散処理省略
型連続鋳片。
A cross section in the casting direction is taken at the center in the width direction of the continuously cast slab or at an appropriate position, and includes the final solidified part in the thickness direction,
preferably comprising at least 40 mm of said casting direction;
In addition, within the field of view including 20 mm in the thickness direction, the Y axis is the occupied area ratio AP of P of 0.04% or more, and Mn of 1.5% or more
When the occupied area rate AMn is taken as the X axis, log(AP)
A continuous slab that does not require soaking diffusion treatment and has excellent hydrogen-induced cracking resistance, characterized in that ≦-0.4Xlog(AMn)-1.2.
JP61161916A 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance Expired - Lifetime JPH069733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161916A JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161916A JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Publications (2)

Publication Number Publication Date
JPS6320142A true JPS6320142A (en) 1988-01-27
JPH069733B2 JPH069733B2 (en) 1994-02-09

Family

ID=15744462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161916A Expired - Lifetime JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Country Status (1)

Country Link
JP (1) JPH069733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236842A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp Method for evaluating center segregation
JP2014172074A (en) * 2013-03-08 2014-09-22 Kobe Steel Ltd Destination change method by qualitative determination of sour-resistant steel slab
JP2015058473A (en) * 2013-09-20 2015-03-30 株式会社神戸製鋼所 Destination change method by qualitative determination of sour resistant line pipe steel slab

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773162A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS586961A (en) * 1981-07-03 1983-01-14 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS60228655A (en) * 1985-04-08 1985-11-13 Kawasaki Steel Corp Steel material having superior resistance to hydrogen induced cracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773162A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS586961A (en) * 1981-07-03 1983-01-14 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS60228655A (en) * 1985-04-08 1985-11-13 Kawasaki Steel Corp Steel material having superior resistance to hydrogen induced cracking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236842A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp Method for evaluating center segregation
JP2014172074A (en) * 2013-03-08 2014-09-22 Kobe Steel Ltd Destination change method by qualitative determination of sour-resistant steel slab
JP2015058473A (en) * 2013-09-20 2015-03-30 株式会社神戸製鋼所 Destination change method by qualitative determination of sour resistant line pipe steel slab

Also Published As

Publication number Publication date
JPH069733B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
KR101094568B1 (en) Casting steel strip with low surface roughness and low porosity
EP3222744A1 (en) High toughness and high tensile strenght thick steel plate with excellent material homogeneity and production method for same
JP4582916B2 (en) Method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2002086252A (en) Continous casting method
JPS62256950A (en) High-strength steel wire rod excellent in wiredrawability
JPS6320142A (en) Cast steel slab having excellent hydrogen inducing crack resistance
KR950006273B1 (en) Method for wear-resistant compound roll manufacture
JP3596290B2 (en) Steel continuous casting method
KR100550291B1 (en) Method for continuous annealing and pickling of high chrome ferritic stainless steel plate
JP6862723B2 (en) Continuously cast steel slabs and continuous casting methods
JP3406459B2 (en) Cooling method for continuous casting bloom
CA1110822A (en) Continuous casting
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH11179509A (en) Continuous casting method of billet cast slab
US4408652A (en) Method of continuously casting nickel containing steel wherein surface cracks are prevented
JP3900851B2 (en) Manufacturing method of steel sheet with excellent surface properties
JPS59177352A (en) Low-decarburization spring steel for continuous casting
JP6515291B2 (en) Continuous steel casting method
JP2838467B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
JP2004307931A (en) Continuously cast piece, and casting method therefor
JPH0251971B2 (en)
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate