JPS6319981B2 - - Google Patents

Info

Publication number
JPS6319981B2
JPS6319981B2 JP56197147A JP19714781A JPS6319981B2 JP S6319981 B2 JPS6319981 B2 JP S6319981B2 JP 56197147 A JP56197147 A JP 56197147A JP 19714781 A JP19714781 A JP 19714781A JP S6319981 B2 JPS6319981 B2 JP S6319981B2
Authority
JP
Japan
Prior art keywords
electrode
air
cyanocobalamin
present
iron phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56197147A
Other languages
Japanese (ja)
Other versions
JPS58100363A (en
Inventor
Toshiro Hirai
Akihiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56197147A priority Critical patent/JPS58100363A/en
Publication of JPS58100363A publication Critical patent/JPS58100363A/en
Publication of JPS6319981B2 publication Critical patent/JPS6319981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 本発明は、分極が小さく、大電流の取得を可能
にする燃料電池または空気電池用の電極、さらに
詳細には、燃料電池または空気電池の空気極また
は酸素極において、該電極が触媒として鉄フタロ
シアニンとシアノコバラミンの両遷移金属錯体を
含有する新規な上記電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electrode for a fuel cell or an air cell that has small polarization and can obtain a large current, and more specifically, an air electrode or an oxygen electrode for a fuel cell or an air cell. The present invention relates to the above novel electrode, wherein the electrode contains both transition metal complexes of iron phthalocyanine and cyanocobalamin as catalysts.

従来、燃料電池、空気電池用の空気極または酸
素極に用いる触媒については、種々の提案がなさ
れている。
Conventionally, various proposals have been made regarding catalysts used in air electrodes or oxygen electrodes for fuel cells and air cells.

すなわち、燃料電池用の空気極触媒又は酸素極
触媒としては、銅、銀、金、白金、パラジウム等
の金属類、タングステンブロンズ、鉄又は銅フタ
ロシニアン、活性炭及びリチウムをドープした酸
化ニツケル等が知られ、又、空気電池用の空気極
触としては、白金、パラジウム、ルチニウム及び
銀等の貴金属類、銀と水銀及びルチニウムと金等
の合金類、マンガン及びオスミウム等の遷移金属
の酸化物類及びNiFe2O4,CoFe2O4,NiCr2O4
びCoAl2O4等のスピネル酸化物類が知られてい
る。
That is, as air electrode catalysts or oxygen electrode catalysts for fuel cells, metals such as copper, silver, gold, platinum, and palladium, tungsten bronze, iron or copper phthalocyanine, activated carbon, and nickel oxide doped with lithium are known. In addition, as air electrode catalysts for air batteries, noble metals such as platinum, palladium, rutinium and silver, alloys of silver and mercury and rutinium and gold, oxides of transition metals such as manganese and osmium, and NiFe Spinel oxides such as 2 O 4 , CoFe 2 O 4 , NiCr 2 O 4 and CoAl 2 O 4 are known.

しかしながら、従来技術におけるこれらの触媒
のうち、貴金属類は高価なため経済的でなく、そ
れ以外のもしは安価であるが、これを触媒として
用いた空気極又は酸化極はその分極が貴金属より
大きく、又、大電流密度領域におけるかなりの電
位低下が避けられない等、その電極特性が十分に
良好でなく、ひいては、このような電極を組み込
んだ燃料電池及び空気電池において、大電流が取
得できないという欠点があつた。
However, among these catalysts in the prior art, noble metals are expensive and are not economical, whereas other catalysts, which are inexpensive, such as air electrodes or oxidation electrodes, have a polarization greater than that of noble metals. In addition, the electrode characteristics are not good enough, such as a considerable potential drop in the high current density region, and as a result, large currents cannot be obtained in fuel cells and air cells incorporating such electrodes. There were flaws.

本発明はこのような現状に鑑みてなされたもの
であり、その目的は、分極が小さく、大電流密度
領域においても電位低下が殆んど起こらず大電流
の取得が可能である高エネルギー密度の燃料電
池、空気電池用電極を提供することである。
The present invention has been made in view of the current situation, and its purpose is to provide a high energy density device that has small polarization and can obtain a large current with almost no potential drop even in the large current density region. The purpose of the present invention is to provide electrodes for fuel cells and air cells.

本発明につき概説すれば、本発明の燃料電池及
び空気電池用電極は、正極が触媒として鉄フタロ
シアニン及びシアノコバラミン(ビタミン
B12)を含有することを特徴とするものである。
To summarize the present invention, the fuel cell and air cell electrodes of the present invention have positive electrodes containing iron phthalocyanine and cyanocobalamin (vitamin) as catalysts.
B 12 ).

これまで燃料電池及び空気電池用の空気極又は
酸素極に触媒として鉄フタロシアニン及びシアノ
コバラミンの両物質を共に用いた例はない。本発
明によれば、電極に鉄フタロシアニン及びシアノ
コバラミン両物質を含有させる新規な構成によ
り、後述するように各々単独に用いるよりも分極
を小さくし、かつ、大電流の取得を可能にすると
いう優れた複合効果が得られる。
Until now, there has been no example of using both iron phthalocyanine and cyanocobalamin as a catalyst in an air electrode or an oxygen electrode for a fuel cell or an air cell. According to the present invention, the novel structure in which the electrode contains both iron phthalocyanine and cyanocobalamin has the advantage of reducing polarization and making it possible to obtain a large current compared to when each is used alone, as described below. A combined effect can be obtained.

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

燃料電池は、負極活物質として水素ガス等を使
用し、電解質としてKOH,NaOH等のアルカリ
電解質、NaCl、KCl等の中性電解質、リン酸等
の酸性電解質を使用して構成され、又、空気電池
は負極活物質として亜鉛、アルミニウム、マグネ
シウム、白金又はこれらの合金等使用し、電解質
として上記と同じものを使用して構成される。
A fuel cell is constructed using hydrogen gas as a negative electrode active material, alkaline electrolytes such as KOH and NaOH, neutral electrolytes such as NaCl and KCl, and acidic electrolytes such as phosphoric acid as electrolytes. The battery is constructed using zinc, aluminum, magnesium, platinum, or an alloy thereof as a negative electrode active material, and the same material as above as an electrolyte.

本発明にける電極は上述の燃料電池ないし空気
電池の正極として用いられるが、上記正極材料
は、炭素粉末、活性炭、グラフアイトまたはアセ
チレンブラツク等の炭素物質とテフロン等の撥水
剤等との混合粉体等であることができ、本発明に
よれば、これに鉄フタロシアニン及びシアノコバ
ラミンの混合物質を触媒として混合等の手段によ
り担持する。
The electrode of the present invention is used as a positive electrode of the above-mentioned fuel cell or air cell, and the above-mentioned positive electrode material is a mixture of a carbon material such as carbon powder, activated carbon, graphite, or acetylene black, and a water repellent such as Teflon. According to the present invention, a mixed substance of iron phthalocyanine and cyanocobalamin is supported on the powder by means of mixing or the like as a catalyst.

正極電極は、上記炭素物質、撥水剤及び鉄フタ
ロシアニン及びシアノコバラミンから成る混合粉
体をニツケル、銀等の金属網と共に成形圧着し、
これを加熱焼成して作成することができる。
The positive electrode is made by molding and press-bonding a mixed powder consisting of the carbon material, water repellent, iron phthalocyanine, and cyanocobalamin together with a metal mesh such as nickel or silver.
This can be created by heating and firing.

本発明における上記鉄フタロシアニン及びシア
ノコバラミン混合体が複合触媒として有効である
理由は、正極の電極反応のうち最も効率の良い4
電子反応(O2+2H2O+4e-→4OH-)を選択し得
る鉄フタロシアニンと、4電子反応の選択性が低
い場合(例えばO2+H2O+2e-→HO2 -+OH-
びHO2 -→1/2O2+OH-のような2電子反応が起
る)においても生成する中間体(酸性電解質使用
の場合:H2O2,アルカリ電解質使用の場合:
HO2 -)の分解速度を大きくするシアノコバラミ
ンを共に担持することにより、どのような反応プ
ロセスをとろうとも電極反応を十分円滑に進める
に足る電子の供給が容易であるためと考えられ
る。特に測定の結果では、中間体の分解速度は、
白金黒より高く、鉄フタロシアニン単独の場合の
5倍に達している。
The reason why the above-mentioned iron phthalocyanine and cyanocobalamin mixture in the present invention is effective as a composite catalyst is that the most efficient of the positive electrode reactions is
Iron phthalocyanine that can select the electron reaction (O 2 + 2H 2 O + 4e - → 4OH - ) and when the selectivity of the 4-electron reaction is low (e.g. O 2 + H 2 O + 2e - → HO 2 - +OH - and HO 2 - → 1) /2O 2 + OH - (two-electron reactions such as
It is thought that this is because by supporting cyanocobalamin, which increases the decomposition rate of HO 2 - ), it is easy to supply enough electrons to make the electrode reaction proceed smoothly no matter what reaction process is used. In particular, the results of the measurements show that the decomposition rate of the intermediate is
It is higher than platinum black and five times higher than that of iron phthalocyanine alone.

次に、本発明における正極の構造を図面により
説明する。すなわち、第1図は本発明における正
極(空気極)の構造の一具体例を示した断面概略
図を示し、1は電極材料層、2はニツケル製網を
示す。
Next, the structure of the positive electrode in the present invention will be explained with reference to the drawings. That is, FIG. 1 shows a schematic cross-sectional view showing a specific example of the structure of the positive electrode (air electrode) according to the present invention, in which 1 shows an electrode material layer and 2 shows a nickel mesh.

この空気極を電池に組み込むに当つては、電極
材料層1が電解質に、ニツケル製網がガスに接す
るように向きを定める。この結果、電極材料層1
中に電解質、ガス及び電極粉体の三相界面が形成
される。なお、ニツケル製網2は、電極材料層1
の支持体及び集電体として設けられる。なお、こ
の際、電極の寿命を延ばすために、ガス側に接す
る金属網の外側に、第2の電極材料層をサンドイ
ツチ型に設けてもよく、この場合、第2の電極材
料層は、電解質側に設けた第1の電極材料層より
撥水剤の混合割合を多くして撥水性を高め、か
つ、多孔性を大にする。
When this air electrode is assembled into a battery, it is oriented so that the electrode material layer 1 is in contact with the electrolyte and the nickel mesh is in contact with the gas. As a result, electrode material layer 1
A three-phase interface of electrolyte, gas and electrode powder is formed therein. Note that the nickel net 2 has an electrode material layer 1
It is provided as a support and a current collector. In this case, in order to extend the life of the electrode, a second electrode material layer may be provided in a sanderch type on the outside of the metal mesh in contact with the gas side. In this case, the second electrode material layer The water repellent is mixed in a higher proportion than the first electrode material layer provided on the side to improve water repellency and increase porosity.

次に、本発明を実施例によつて説明するが、本
発明はこれにより何ら限定されるものではない。
なお、実施例における電極電位の電流依存性の測
定は20〜25℃の室温中で行なつた。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way.
In addition, the measurement of the current dependence of the electrode potential in the Examples was carried out at room temperature of 20 to 25°C.

実施例 1 炭素粉末(200メツシユ通過)4g、アセチレ
ンブラツク4g、鉄フタロシアニンとシアノコバ
ラミンの触媒混合物0.2gとテフロンエマルジヨ
ン(テフロン60%含有)3.3gをよく混合し、ロ
ールでシート状にする。シートを30分間程度空気
中で乾燥させた後、片側にニツケル製網(50メツ
シユ)を置き、250℃の温度、100Kg/cm2の圧で30
分間ホツトプレスする。空気中で冷却し、直径30
mmの円形に切り出して空気極(正極)を作製し
た。
Example 1 4 g of carbon powder (passed through 200 meshes), 4 g of acetylene black, 0.2 g of a catalyst mixture of iron phthalocyanine and cyanocobalamin, and 3.3 g of Teflon emulsion (containing 60% Teflon) were thoroughly mixed and formed into a sheet using a roll. After drying the sheet in the air for about 30 minutes, place a nickel mesh (50 mesh) on one side and dry it at a temperature of 250℃ and a pressure of 100Kg/ cm2 for 30 minutes.
Hot press for a minute. cooled in air, diameter 30
An air electrode (positive electrode) was prepared by cutting out a circular shape of mm.

電解質としてIN KOH を使用し、亜鉛を負
極として空気電池を構成し、空気中で空気極の電
極電位(E、対飽和カロメル電極)の電流密度依
存性を調べた。結果を第2図に示す。すなわち、
第2図は、本実施例における空気極の電流密度と
電極電圧との関係を示したグラフであり、Aは本
実施例のうち、混合触媒重量の割合が鉄フタロシ
アニン1:1シアノコバラミンの場合、Bは本実
施例のうち混合触媒の重量割合が鉄フタロシアニ
ン4:1シアノコバラミシの場合、Cは本実施例
のうち割合が鉄フタロシアニン1:4シアノコバ
ラミンの場合D、Eは併せて行なつた従来既知の
触媒を用いた空気極の場合であり、Dは鉄フタロ
シアニン、Eは銀触媒を用いた場合である。
An air battery was constructed using IN KOH as the electrolyte and zinc as the negative electrode, and the dependence of the electrode potential of the air electrode (E, vs. saturated calomel electrode) on current density in air was investigated. The results are shown in Figure 2. That is,
FIG. 2 is a graph showing the relationship between the current density of the air electrode and the electrode voltage in this example. B is in this example when the weight ratio of the mixed catalyst is iron phthalocyanine 4:1 cyanocobalamin; C is in this example when the ratio is iron phthalocyanine 1:4 cyanocobalamin D is the case where an iron phthalocyanine is used, and E is the case where a silver catalyst is used.

第2図によると、鉄フタロシアニンとシアノコ
バラミンが1:1の重量比で混合担持された場
合、平衡電位が−0.033 V(対SCE≪飽和カロメ
ル電極≫)、100mA/cm2のとき−0.68V(対SCE)、
一方、鉄フタロシアニンとシアノコバラミンが
4:1の重量比で混合担持された場合には、平衡
電位が+0.030V(対SCE)、100mA/cm2のとき−
0.60V(対SCE)となる。
According to Figure 2, when iron phthalocyanine and cyanocobalamin are mixed and supported at a weight ratio of 1:1, the equilibrium potential is -0.033 V (vs. SCE <<saturated calomel electrode>>), and -0.68 V at 100 mA/ cm2 ( vs. SCE),
On the other hand, when iron phthalocyanine and cyanocobalamin are mixed and supported at a weight ratio of 4:1, when the equilibrium potential is +0.030V (vs. SCE) and 100mA/ cm2 , -
0.60V (vs. SCE).

第2図から明らかなように、鉄フタロシアニン
や銀を用いた従来の場合に比し、鉄フタロシアニ
ンとシアノコバラミンを混合して用いた本発明の
場合には、平衡電位が高く、分極が小さく、かつ
大電流密度領域でも電位の大幅な低下が見られず
安定している。
As is clear from FIG. 2, compared to the conventional case using iron phthalocyanine and silver, the present invention using a mixture of iron phthalocyanine and cyanocobalamin has a higher equilibrium potential, smaller polarization, and Even in the high current density region, there is no significant drop in potential and it is stable.

以上説明したように、鉄フタロシアニンとシア
ノコバラミンの両物質を触媒として複合担持した
本発明における正極(空気極または酸素極)は、
分極が小さく、かつ、大電流密度領域においても
電位低下が殆んど起こらず、この点、従来のもの
に比し優れた効果を発揮するものである。したが
つて、この電極を正極として組み込んだ燃料電池
及び空気電池は、大電流の取得ができ、又、より
一層の高エネルギー密度化が可能であり、従来品
に比し極めて高い実用価値を期待することができ
る。
As explained above, the positive electrode (air electrode or oxygen electrode) of the present invention in which iron phthalocyanine and cyanocobalamin are compositely supported as catalysts,
The polarization is small, and there is almost no potential drop even in the high current density region, and in this respect, it exhibits superior effects compared to conventional ones. Therefore, fuel cells and air cells incorporating this electrode as a positive electrode can obtain large currents and have even higher energy density, and are expected to have extremely high practical value compared to conventional products. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における正極(空気極)の構造
の一具体例を示した断面概略図、第2図はそれぞ
れ本発明の実施例の空気極の電流密度と電極電位
の関係を示したグラフである。 1……電極材料層、2……ニツケル製網。
FIG. 1 is a cross-sectional schematic diagram showing a specific example of the structure of the positive electrode (air electrode) according to the present invention, and FIG. 2 is a graph showing the relationship between current density and electrode potential of the air electrode of the embodiment of the present invention. It is. 1... Electrode material layer, 2... Nickel net.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄フタロシアニンとシアノコバラミンの両遷
移金属錯体を触媒として含有することを特徴とす
る燃料電池、空気電池用電極。
1. An electrode for fuel cells and air cells, characterized by containing both transition metal complexes of iron phthalocyanine and cyanocobalamin as catalysts.
JP56197147A 1981-12-08 1981-12-08 Electrode for fuel cell or air cell Granted JPS58100363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197147A JPS58100363A (en) 1981-12-08 1981-12-08 Electrode for fuel cell or air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197147A JPS58100363A (en) 1981-12-08 1981-12-08 Electrode for fuel cell or air cell

Publications (2)

Publication Number Publication Date
JPS58100363A JPS58100363A (en) 1983-06-15
JPS6319981B2 true JPS6319981B2 (en) 1988-04-26

Family

ID=16369536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197147A Granted JPS58100363A (en) 1981-12-08 1981-12-08 Electrode for fuel cell or air cell

Country Status (1)

Country Link
JP (1) JPS58100363A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897278B2 (en) * 2005-11-25 2012-03-14 株式会社リコー Developing device, image forming cartridge, and image forming apparatus
JP2013016474A (en) * 2011-06-06 2013-01-24 Sumitomo Chemical Co Ltd Positive electrode catalyst for air secondary battery and air secondary battery

Also Published As

Publication number Publication date
JPS58100363A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
EP0667041B1 (en) Bifunctional airelectrode
US5069988A (en) Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same
US4132619A (en) Electrocatalyst
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
Cameron et al. Direct methanol fuel cells
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
JPH11126616A (en) Co-tolerant platinum-zinc electrode for fuel cell
US20050031921A1 (en) Hybrid fuel cell
KR20000063843A (en) Platinum-metal oxide catalysts for polymer electrolyte fuel cells
US3753782A (en) Electrode for electrochemical reduction of oxygen and process for its production
US6428931B1 (en) Methods for making oxygen reduction catalyst using micelle encapsulation and metal-air electrode including said catalyst
JPS60746B2 (en) gas electrode
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
JPS6319981B2 (en)
WO1999035701A1 (en) Zinc based electrochemical cell
Abrashev et al. Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator
JPH0119628B2 (en)
JPH04348B2 (en)
US3230114A (en) Catalyst electrodes and process for storing electrical energy
US3709834A (en) Method of making a uranium containing catalyst for a metal electrode
US3429750A (en) Process for preparing an improved platinum electrode
JPH0677460B2 (en) Method for producing positive electrode for fuel cell / air cell
JPS5948511B2 (en) Electrodes for fuel cells and air cells
JPH04345B2 (en)
EP0533711A1 (en) Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same