KR20000063843A - Platinum-metal oxide catalysts for polymer electrolyte fuel cells - Google Patents

Platinum-metal oxide catalysts for polymer electrolyte fuel cells Download PDF

Info

Publication number
KR20000063843A
KR20000063843A KR1020000045569A KR20000045569A KR20000063843A KR 20000063843 A KR20000063843 A KR 20000063843A KR 1020000045569 A KR1020000045569 A KR 1020000045569A KR 20000045569 A KR20000045569 A KR 20000045569A KR 20000063843 A KR20000063843 A KR 20000063843A
Authority
KR
South Korea
Prior art keywords
oxide
platinum
catalyst
polymer electrolyte
metal oxide
Prior art date
Application number
KR1020000045569A
Other languages
Korean (ko)
Inventor
이홍기
심중표
김상욱
이주성
Original Assignee
이홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이홍기 filed Critical 이홍기
Priority to KR1020000045569A priority Critical patent/KR20000063843A/en
Publication of KR20000063843A publication Critical patent/KR20000063843A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for preparing a platinum-metallic oxide catalyst for a polymer electrolyte fuel cell is provided by which prepared catalyst has higher catalytic activity than a conventional platinum catalyst so the capacity of the polymer electrolyte fuel cell is able to be highly improved. CONSTITUTION: The platinum-metallic oxide catalyst for a polymer electrolyte fuel cell is prepared by immersing metallic oxide in a porous carbon black where platinum is immersed, wherein a precursor of the metallic oxide is selected from the group consisting of nitrate, chloride, ammonium salt and sulfate and the metallic oxide is selected from the group consisting of tungsten oxide, titanium oxide, tin oxide, iron oxide, molybdenum oxide, cobalt oxide, nickel oxide, manganese oxide, ruthenium oxide, iridium oxide, osmium oxide and palladium oxide.

Description

고분자 전해질 연료전지용 백금-금속산화물 촉매의 제조방법 {Platinum-metal oxide catalysts for polymer electrolyte fuel cells}Platinum-metal oxide catalysts for polymer electrolyte fuel cells

본 발명은 고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell: 이하 PEMFC)에서 높은 촉매활성을 가지는 백금-금속산화물 촉매 및이를 구비하는 PEMFC에 관한 것으로서, 상세하기로는 백금이 담지된 다공질 카본블랙(carbon black)에 금속산화물이 함께 담지된 PEMFC용 촉매 및 이 촉매를 이용하여 전극촉매층을 제조함으로써 촉매활성이 향상되고 높은 성능을 나타내는 PEMFC에 관한 것이다.The present invention relates to a platinum-metal oxide catalyst having a high catalytic activity in a polymer electrolyte membrane fuel cell (hereinafter referred to as PEMFC) and a PEMFC comprising the same, and more particularly, to a porous carbon black loaded with platinum ( The present invention relates to a catalyst for PEMFC in which a metal oxide is supported on carbon black) and an electrode catalyst layer using the catalyst to improve catalytic activity and exhibit high performance.

PEMFC는 전류밀도가 높고 운전온도가 낮으며 부식 및 전해질 손실의 염려가 없는 장점을 가지고 있어 군사용이나 우주선의 동력원으로 개발되기 시작하였으나 현재는 출력밀도가 높고 장치가 간단하며 모듈화가 가능하다는 점을 이용하여 자동차의 동력원이나 이동용 전원으로 응용하기 위한 연구가 활발히 진행되고 있다.PEMFC has the advantages of high current density, low operating temperature, and no worry of corrosion and electrolyte loss, so it has begun to be developed as a power source for military or spacecraft, but now it has high output density, simple device and modularity. Therefore, research is being actively conducted for application as a power source or a mobile power source for automobiles.

고분자 전해질 연료전지의 기본 구조는 고분자 전해질 막을 중심으로 양단에 귀금속 촉매인 백금이 입혀진 다공질의 공기극과 연료극이 존재하며 이들 전극을 지지하는 동시에 가스 통로를 형성하는 전지 프레임으로 구성되어 있다. 연료극 쪽으로 연료인 수소가 들어가고 공기극으로 산화제인 산소 또는 공기가 유입되어 연료가스의 전기화학적 산화와 산화제의 전기화학적 환원에 의하여 전기 에너지가 발생한다. 이때 전극에서 일어나는 각각의 전기화학 반응은 연료극에서는 하기 반응식 1에 의해 수소가 수소이온과 전자를 생성되고 공기극에서는 하기 반응식 2에 의해 산소와 수소이온 및 전자가 반응하여 물을 생성한다. 전체적인 연료전지의 반응은 하기 반응식 3과 같다.The basic structure of the polymer electrolyte fuel cell includes a porous air electrode and a fuel electrode coated with platinum, which is a noble metal catalyst, at both ends of the polymer electrolyte membrane, and a battery frame which supports these electrodes and forms a gas passage. Hydrogen as fuel enters the anode and oxygen or air as an oxidant flows into the cathode to generate electrical energy by electrochemical oxidation of the fuel gas and electrochemical reduction of the oxidant. In this case, each electrochemical reaction occurring at the electrode generates hydrogen ions and electrons by the following Reaction Formula 1 in the anode and oxygen, hydrogen ions and electrons by the following Reaction Scheme 2 in the cathode to generate water. The reaction of the entire fuel cell is shown in Scheme 3 below.

[반응식 1] 연료극 : H2→ 2H++ 2e- [Reaction Formula 1] Anode: H 2 → 2H + + 2e -

[반응식 2] 공기극 : 1/2O2+ 2H++ 2e-→ H2O[Reaction Formula 2] Cathode: 1 / 2O 2 + 2H + + 2e - → H 2 O

[반응식3] 전지반응 : H2+ 1/2O2→ H2OReaction of battery: H 2 + 1 / 2O 2 → H 2 O

즉 공기극과 연료극에서 산소의 환원 반응 및 수소의 산화 반응이 각각 일어나며 그 결과 전기와 물이 생성된다. 전지 전체적으로는 수소와 산소가 전지에 도입되어 전기와 열 및 물을 배출하게 된다. 이때 전지에서 발생되는 전지의 전압은 개회로 상태 하에서 약 1.2V 이며 외부에서 부하를 가하면 부하에 따라 전지의 전압이 강하한다. 현재 전지 전압이 0.7-0.6V 일 때 전지 전류는 대략 0.5-1.2A/cm2정도를 보이고 있다.That is, the reduction reaction of oxygen and the oxidation reaction of hydrogen occur in the air electrode and the fuel electrode, respectively, and as a result, electricity and water are generated. As a whole, hydrogen and oxygen are introduced into the cell to discharge electricity, heat, and water. At this time, the voltage of the battery generated from the battery is about 1.2V under the open circuit condition, and when the load is applied from the outside, the voltage of the battery drops depending on the load. Currently, when the battery voltage is 0.7-0.6V, the battery current is about 0.5-1.2A / cm 2 .

고분자 전해질막을 사용하는 PEMFC의 단위전지 개념도는 도 1에 도시된 바와 같다. 상기 단위전지는 고분자 전해질 막을 사용한 전극-전해질막 어셈블리(assembly)(3)와 연료극 쪽 분리판(1), 공기극 쪽 분리판(5)로 구성되어 있다. 반응가스인 수소는 상기 분리판(1)의 수소 입구(6)로 들어와 가스켓(2)의 구멍(10)을 거쳐 상기 전극-전해질막 어셈블리(3)의 연료극을 대각선 방향으로 통과한 후 상기 전극-전해질막 어셈블리(3)의 구멍(15)과 가스켓(4)의 구멍(18)과 상기 공기극 쪽 분리판(5)의 구멍(21)을 거쳐 전지 밖으로 배출되도록 구성되어 있다. 한편, 공기 혹은 산소는 상기 분리판(5)의 산소 입구(20)로 들어와 상기 가스켓(4)의 구멍(17)을 거쳐 전극-전해질막 어셈블리의 공기극을 대각선 방향으로 통과한 후 가스켓 2의 구멍과 (도 1에서는 보이지 않음) 상기 연료극 쪽 분리판(1)의 구멍(9)를 거쳐 전지 밖으로 배출되도록 되어있다. 이 때 상기 수소입구(6)에서 도입되는 수소와 상기 산소입구(20)에서 도입되는 산소는 각각의 지정된 통로를 통해서만 흘러야 하며 전지 밖으로 유출되거나 전지 내부에서 서로의 통로를 벗어나 다른 곳으로 흐르거나 서로 혼합되어서는 안된다.A conceptual diagram of a unit cell of a PEMFC using a polymer electrolyte membrane is shown in FIG. 1. The unit cell is composed of an electrode-electrolyte membrane assembly (3) using a polymer electrolyte membrane, a separator plate (1) on the anode side, and a separator plate (5) on the cathode side. Hydrogen, which is a reaction gas, enters the hydrogen inlet 6 of the separator 1 and passes through the fuel electrode of the electrode-electrolyte membrane assembly 3 diagonally through the hole 10 of the gasket 2 and then the electrode. It is configured to be discharged out of the battery via the hole 15 of the electrolyte membrane assembly 3, the hole 18 of the gasket 4, and the hole 21 of the separator side 5 of the cathode side. On the other hand, air or oxygen enters the oxygen inlet 20 of the separator 5, passes through the air electrode of the electrode-electrolyte membrane assembly diagonally through the hole 17 of the gasket 4, and then the hole of the gasket 2. And (not shown in FIG. 1) are discharged out of the cell via the hole 9 of the separator side separator 1. At this time, the hydrogen introduced from the hydrogen inlet 6 and the oxygen introduced from the oxygen inlet 20 should flow only through each designated passage and flow out of the cell or out of the passage of each other in the cell, or flow to each other. It should not be mixed.

현재 고분자 전해질 연료전지의 연료와 공기의 산화와 환원에 이용되는 촉매는 다공성이며 전기전도성이 우수한 카본블랙 입자에 귀금속인 백금(Pt)이 2-10nm크기의 미세한 입자형태로 담지되어 있다.At present, the catalyst used for oxidation and reduction of fuel and air of a polymer electrolyte fuel cell is porous and carbon conductive particles having excellent electrical conductivity, in which precious metal platinum (Pt) is supported in the form of fine particles of 2-10 nm size.

이 백금촉매의 전기화학적 활성을 증가시키기 위해서, 미국특허출원 제4,192,907호, 제4,447,506호, 제5,024,905호, 제5,593,934호에는 다음과 같은 내용이 개시되었다.In order to increase the electrochemical activity of this platinum catalyst, U.S. Patent Nos. 4,192,907, 4,447,506, 5,024,905 and 5,593,934 are disclosed.

전극촉매로서 카본블랙에 담지된 백금과 니켈(Ni) 또는 크롬(Cr), 철(Fe), 코발트(Co), 구리(Cu), 바나듐(V), 망간(Mn), 루테늄(Ru), 오스뮴(Os), 이리듐(Ir), 팔라듐(Pd) 등과 고온에서 소결하여 합금형태로 제조하여 높은 촉매활성을 얻었다.Platinum and nickel (Ni) or chromium (Cr), iron (Fe), cobalt (Co), copper (Cu), vanadium (V), manganese (Mn), ruthenium (Ru) It was sintered at high temperature with osmium (Os), iridium (Ir), palladium (Pd) and the like to form an alloy to obtain high catalytic activity.

그러나, 상기 방법은 다음과 같은 문제점이 있다.However, the method has the following problems.

첫째, 백금과 다른 금속을 합금으로 제조하기 위해서는 700℃이상의 온도와 환원성 분위기 하에서 소결하여 하는 단점이 있다. 700℃이상의 온도에서 백금 입자를 소결함으로 인해 미세한 형태의 백금 입자가 인접한 백금 입자와 서로 응집하여 백금 입자의 크기가 5-20nm정도로 증가하게 되어 백금 입자의 활성표면적이 감소하고 이로 인해 수소와 산소의 산화와 환원반응에 대한 전기화학적인 촉매활성이 감소하게 되는 단점이 있다.First, in order to manufacture platinum and other metals as an alloy, there is a disadvantage in that the sintering is performed under a temperature of 700 ° C. or in a reducing atmosphere. By sintering platinum particles at temperatures above 700 ° C, fine platinum particles agglomerate with adjacent platinum particles, increasing the size of the platinum particles to about 5-20 nm, which reduces the active surface area of platinum particles, thereby reducing hydrogen and oxygen There is a disadvantage in that the electrochemical catalytic activity for oxidation and reduction reactions is reduced.

둘째, 700℃이상의 온도에서 소결하는 동안 백금 입자가 산화하는 것을 방지하기 위해 환원성분위기를 계속적으로 유지하여야 한다.Second, the reducing component crisis should be continuously maintained to prevent the oxidation of platinum particles during sintering at temperatures above 700 ° C.

셋째, 완전한 백금합금촉매를 제조하기 위해 1-10시간 정도 소결하여야 하기 때문에 제조비용이 증가하게 된다.Third, the manufacturing cost increases because sintering for about 1-10 hours is required to prepare a complete platinum alloy catalyst.

본 발명에서는 고온에서 합금촉매를 제조하는 공정을 거치지 않고 상온에서 제조가 가능하며 촉매활성이 우수한 백금촉매를 제조하기 위해 텅스텐 산화물, 티탄 산화물을 백금과 함께 다공질의 카본블랙에 담지하여 고분자 전해질 연료전지의 촉매로 이용하고자 한다.In the present invention, it is possible to manufacture at room temperature without going through the process of manufacturing the alloy catalyst at a high temperature, and in order to prepare a platinum catalyst with excellent catalytic activity, by supporting tungsten oxide and titanium oxide together with platinum on porous carbon black, a polymer electrolyte fuel cell It is intended to be used as a catalyst.

본 발명이 이루고자 하는 기술적 과제는 촉매활성이 향상되고 제조과정이 용이한 PEMFC의 전극촉매를 제공하는 것이다.The technical problem to be achieved by the present invention is to provide an electrode catalyst of PEMFC with improved catalytic activity and easy manufacturing process.

본 발명이 이루고자 하는 다른 기술적 과제는 금속염으로부터 금속산화물를 제조하는 것을 특징으로하는 PEMFC의 백금-금속산화물 촉매를 제공하는 것이다.Another object of the present invention is to provide a platinum-metal oxide catalyst of PEMFC, characterized in that the metal oxide is prepared from a metal salt.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 전극촉매를 구비하는 것을 특징으로하는 PEMFC를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a PEMFC comprising the electrode catalyst.

도 1은 고분자 전해질 연료전지의 단위전지 분해시 사도이고,1 is an exploded view of a unit cell of a polymer electrolyte fuel cell;

도 2는 본 발명에 따른 백금-금속산화물 촉매의 X-ray 회절분석도이고2 is an X-ray diffraction diagram of a platinum-metal oxide catalyst according to the present invention.

도 3은 본 발명의 실시예에 따라 제조된 백금-금속산화물 촉매를 이용한 고분자 전해질3 is a polymer electrolyte using a platinum-metal oxide catalyst prepared according to an embodiment of the present invention

연료전지 단위전지의 성능을 나타내는 전류-전압곡선이다.It is a current-voltage curve indicating the performance of a fuel cell unit cell.

본 발명의 첫 번째 과제는 백금이 담지된 카본블랙에 금속산화물을 더 포함하는 것을 특징으로 하는 PEMFC의 백금-금속산화물 촉매를 제공함으로써 이루어진다.The first object of the present invention is to provide a platinum-metal oxide catalyst of PEMFC characterized in that it further comprises a metal oxide on the carbon black supported platinum.

본 발명의 두 번째 과제는 금속염으로부터 금속산화물를 제조하는 것을 특징으로하는 PEMFC의 백금-금속산화물 촉매를 제공함으로써 이루어진다.A second object of the present invention is to provide a PEMFC-platinum-metal oxide catalyst characterized in that a metal oxide is prepared from a metal salt.

본 발명의 세 번째 과제는 상기 백금-금속산화물 촉매를 포함하는 것을 특징으로하는 PEMFC에 의해 이루어진다.A third object of the present invention is achieved by a PEMFC, characterized in that it comprises the platinum-metal oxide catalyst.

상기 금속산화물은 텅스텐(W) 또는 티탄늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 루테늄(Ru), 오스뮴(Os), 이리듐(Ir), 팔라듐(Pd)의 산화물을 사용하는 것이 바람직하며, 특히 텅스텐(W)과 티탄늄(Ti)의 산화물이 적당하고, 전극촉매에서 함량은 카본블랙에 대하여 중량%로 2 내지 50%인 것이 바람직하다.The metal oxide may be tungsten (W) or titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), It is preferable to use oxides of ruthenium (Ru), osmium (Os), iridium (Ir) and palladium (Pd). Particularly, oxides of tungsten (W) and titanium (Ti) are suitable. It is preferable that it is 2 to 50% by weight with respect to carbon black.

상기 금속염은 텅스텐(W) 또는 티탄늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 루테늄(Ru), 오스뮴(Os), 이리듐(Ir), 팔라듐(Pd)의 질산염 또는 황산염, 암모늄염, 염화물을 사용하는 것이 바람직하다.The metal salt is tungsten (W) or titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), ruthenium Preference is given to using nitrates or sulfates, ammonium salts, chlorides of (Ru), osmium (Os), iridium (Ir), palladium (Pd).

본 발명에서는 텅스텐, 티탄, 주석, 몰리브덴, 크롬, 철, 코발트, 니켈 등의 질산염이나 황산염 또는 암모늄염, 염화물 등을 미립자로 산화시켜, 백금이 담지되어 있는 다공질의 카본블랙에 담지하여 PEMFC의 백금-금속산화물 촉매를 제조한 것이다.In the present invention, nitrates such as tungsten, titanium, tin, molybdenum, chromium, iron, cobalt, nickel, sulphate or ammonium salts, chlorides, and the like are oxidized into fine particles, and are supported on the porous carbon black on which platinum is supported, and the platinum of PEMFC- It is to prepare a metal oxide catalyst.

도 2는 백금-텅스텐산화물 촉매와 백금-티탄산화물 촉매의 X-Ray 회절분석도이다. 도 3는 본 발명에 의해 제조된 백금-텅스텐산화물 촉매와 백금-티탄산화물 촉매를 이용하여 전극-전해질막 어셈블리를 제작한 후 전지성능 시험을 통해 측정한 전류-전압 측정 곡선이다.2 is an X-ray diffraction diagram of a platinum-tungsten oxide catalyst and a platinum-titanium oxide catalyst. 3 is a current-voltage measurement curve measured through a cell performance test after fabricating an electrode-electrolyte membrane assembly using a platinum-tungsten oxide catalyst and a platinum-titanium oxide catalyst prepared according to the present invention.

실시예 1Example 1

10wt% Pt/C 촉매를 증류수 또는 알코올에 분산시킨 용액에 텅스텐 나트륨염(Na2WO4)을 첨가하고 2시간 동안 교반하였다. 이 용액에 황산을 떨어뜨려 텅스텐염이 황산과 반응하여 미립자의 텅스텐산화물을 제조하여 백금이 담지된 다공질의 카본블랙에 담지하였다. 백금-텅스텐산화물이 함께 담지된 카본블랙을 증류수에서 세척하고 60℃에서 2시간 건조하였다. 제조한 백금-텅스텐산화물 촉매의 X-ray회절분석도를 도 2에 나타내었다. 백금-텅스텐산화물 촉매를 이소오부틸알코올 용매 하에서 고분자 전해질인 나피온(Nafion, perfluorosulfonic acid polymer) 용액과 혼합하여 잘 분산시킨 후 발수처리가 된 카본 천 또는 카본 종이에 스프레이(spray)법으로 입혀 전극을 제작하였다. 고분자 전해질 막인 나피온 115의 양쪽에 제조된 전극을 위치시킨 후 140℃에서 2분간 5톤의 압력으로 가열 압착하여 전극-전해질막 에셈블리를 제조하였다. 제작된 전극-전해질막 어셈블리의 크기는 11cm x 11cm 였으며, 전극 면적은 25cm2(5cm x 5cm) 였다. 제조된 전극-전해질막 어셈블리와 실리콘으로 제작된 가스켓을 전지틀과 함께 조립하여 단위전지를 제작하였다. 완성된 단위전지를 80℃로 유지하면서 전류-전압 특성을 측정하여 도 3a에 나타내었다. 이 때, 연료극으로는 90℃로 가습된 수소를 공급하였고, 공기극으로는 85℃로 가습된 산소를 공급하였다.Tungsten sodium salt (Na 2 WO 4 ) was added to the solution of 10 wt% Pt / C catalyst in distilled water or alcohol and stirred for 2 hours. Sulfuric acid was dropped into the solution, and the tungsten salt reacted with sulfuric acid to produce fine tungsten oxide, which was supported on platinum-supported porous carbon black. The carbon black loaded with platinum-tungsten oxide was washed in distilled water and dried at 60 ° C. for 2 hours. X-ray diffraction analysis of the prepared platinum-tungsten oxide catalyst is shown in FIG. The platinum-tungsten oxide catalyst is mixed with a solution of Nafion (perfluorosulfonic acid polymer) which is a polymer electrolyte in isobutyl alcohol, and then dispersed well. Was produced. Electrode-electrolyte membrane assemblies were prepared by placing electrodes prepared on both sides of Nafion 115, a polymer electrolyte membrane, and heat-pressing at 140 ° C. for 2 minutes at a pressure of 5 tons. The prepared electrode-electrolyte membrane assembly had a size of 11 cm x 11 cm and an electrode area of 25 cm 2 (5 cm x 5 cm). The electrode-electrolyte membrane assembly and the gasket made of silicon were assembled together with the battery frame to prepare a unit cell. The current unit voltage was measured while maintaining the completed unit cell at 80 ° C., and is shown in FIG. 3A. At this time, hydrogen humidified at 90 ° C. was supplied to the anode, and oxygen humidified at 85 ° C. was supplied to the cathode.

실시예 2Example 2

10wt% Pt/C를 무수에탄올에 분산시킨 용액에 티탄 이소프로폭사이드(titanium isopropoxide)를 첨가하고 2시간동안 교반하였다. 이 때, 백금에 대해 티탄산화물이 중량비로 2-20%가 되도록 티탄 이소프로폭사이드를 첨가하였다. 이 용액에 증류수를 천천히 첨가하여 티탄 이소프로폭사이드를 가수분해시켜 미립자의 티탄산화물을 제조하였다. 증류수를 첨가한 후 6시간 동안 교반하여 미립자의 티탄산화물이 백금이 담지된 다공질의 카본블랙에 담지되도록 하였다. 백금-티탄산화물 촉매를 증류수로 세척하고 60℃에서 2시간 건조하였다. 제조한 백금-티탄산화물 촉매의 X-ray회절분석도를 도 2에 나타내었다. 실시예 1에서와 동일한 방법으로 전극-전해질막 어셈블리를 제조하고 전류-전압곡선을 측정하여 그 결과를 도 3b에 나타내었다.Titanium isopropoxide was added to a solution of 10 wt% Pt / C in anhydrous ethanol and stirred for 2 hours. At this time, titanium isopropoxide was added so that titanium oxide might be 2-20% by weight with respect to platinum. Distilled water was slowly added to this solution to hydrolyze titanium isopropoxide to prepare titanium oxide as fine particles. After adding distilled water, the mixture was stirred for 6 hours so that the fine titanium oxide was supported on the porous carbon black loaded with platinum. The platinum-titanium oxide catalyst was washed with distilled water and dried at 60 ° C for 2 hours. X-ray diffraction analysis of the prepared platinum-titanium oxide catalyst is shown in FIG. An electrode-electrolyte membrane assembly was prepared in the same manner as in Example 1, the current-voltage curve was measured, and the results are shown in FIG. 3B.

비교예Comparative example

금속산화물이 담지되지 않은 10wt% Pt/C를 이용하여 실시예 1에서와 동일한 방법으로 전극-전해질막 어셈블리와 단위전지를 제작하여 전지성능을 측정한 결과를 도 3c에 나타내었다.The electrode performance of the electrode-electrolyte membrane assembly and the unit cell were fabricated in the same manner as in Example 1 using 10 wt% Pt / C without metal oxide.

본 발명에 의해서 제조된 백금-텅스텐산화물, 백금-티탄산화물 촉매는 기존의 백금 촉매보다 높은 촉매활성을 지니고 있어 고분자 전해질 연료전지의 성능을 크게 향상시킬 수 있었다. 또한, 백금-텅스텐산화물, 백금-티탄산화물 촉매는 고온에서 소결할 필요가 없이 상온에서 제조가 가능하고 수용액상태에서 제조할 수 있어 촉매 제조공정이 간단하였다. 텅스텐산화물, 티탄산화물은 인체에 유해한 물질이 아니며 가격이 비싸지 않아 낮은 제조비용으로 높은 활성을 가진 촉매를 제조할 수 있었다.The platinum-tungsten oxide and platinum-titanium oxide catalysts prepared according to the present invention have a higher catalytic activity than the conventional platinum catalysts, thereby greatly improving the performance of the polymer electrolyte fuel cell. In addition, the platinum-tungsten oxide and platinum-titanium oxide catalysts can be manufactured at room temperature without sintering at a high temperature and can be prepared in an aqueous solution, thereby simplifying the catalyst manufacturing process. Tungsten oxide and titanium oxide are not harmful to the human body and are inexpensive, thus making it possible to produce catalysts having high activity at low manufacturing costs.

Claims (5)

백금이 담지된 다공질 카본블랙에 금속산화물을 함께 담지하여 제조한 고분자 전해질 연료전지용 백금-금속산화물 촉매.Platinum-metal oxide catalyst for polymer electrolyte fuel cell prepared by supporting metal oxide together on porous carbon black loaded with platinum. 제1항에 있어서, 상기 금속산화물의 전구체로 질산염, 염화물, 암모늄염, 황산염으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고분자 전해질 연료전지용 백금-금속산화물 촉매.The platinum-metal oxide catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the metal oxide precursor is selected from the group consisting of nitrates, chlorides, ammonium salts and sulfates. 제1항에 있어서, 상기 금속산화물로 텅스텐산화물, 티탄산화물, 주석산화물, 철산화물, 몰리브덴산화물, 코발트산화물, 니켈산화물, 망간산화물, 루테늄산화물, 이리듐산화물, 오스뮴산화물, 팔라듐산화물으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 고분자 전해질 연료전지용 백금-금속산화물 촉매.According to claim 1, wherein the metal oxide is selected from the group consisting of tungsten oxide, titanium oxide, tin oxide, iron oxide, molybdenum oxide, cobalt oxide, nickel oxide, manganese oxide, ruthenium oxide, iridium oxide, osmium oxide, palladium oxide Platinum-metal oxide catalyst for a polymer electrolyte fuel cell, characterized in that. 제1항에 있어서, 상기 백금에 대해서 중량비로 금속산화물을 2-90%로 담지하는 것을 특징으로 하는 고분자 전해질 연료전지용 백금-금속산화물 촉매.The platinum-metal oxide catalyst for polymer electrolyte fuel cell according to claim 1, wherein the metal oxide is supported by 2-90% by weight with respect to the platinum. 제1항 내지 제5항중 어느 한 항에 따른 백금-금속산화물촉매를 구비하는 것을 특징으로 하는 PEMFC.A PEMFC comprising the platinum-metal oxide catalyst according to any one of claims 1 to 5.
KR1020000045569A 2000-08-07 2000-08-07 Platinum-metal oxide catalysts for polymer electrolyte fuel cells KR20000063843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000045569A KR20000063843A (en) 2000-08-07 2000-08-07 Platinum-metal oxide catalysts for polymer electrolyte fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000045569A KR20000063843A (en) 2000-08-07 2000-08-07 Platinum-metal oxide catalysts for polymer electrolyte fuel cells

Publications (1)

Publication Number Publication Date
KR20000063843A true KR20000063843A (en) 2000-11-06

Family

ID=19681997

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000045569A KR20000063843A (en) 2000-08-07 2000-08-07 Platinum-metal oxide catalysts for polymer electrolyte fuel cells

Country Status (1)

Country Link
KR (1) KR20000063843A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439854B1 (en) * 2002-03-13 2004-07-12 한국과학기술연구원 Aerogel type Platinum-Ruthenium-Carbon Catalyst, Method to Manufacture the said Catalyst and Direct Methanol Fuel Cell comprising the said Catalyst
KR100459060B1 (en) * 2002-09-17 2004-12-03 유지범 Manufacturing method of Pt catalyst for electrode utilizing carbon nanotube
KR100706450B1 (en) * 2005-12-08 2007-04-10 현대자동차주식회사 Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US7811959B2 (en) 2003-11-13 2010-10-12 Samsung Sdi Co., Ltd. Metal oxide-carbon composite catalyst support and fuel cell comprising the same
US8092954B2 (en) 2004-09-20 2012-01-10 3M Innovative Properties Company Method of making a fuel cell polymer electrolyte membrane comprising manganese oxide
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
TWI400123B (en) * 2009-11-26 2013-07-01 Ind Tech Res Inst Catalyst and fabrication method thereof
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
KR101352794B1 (en) * 2011-07-20 2014-01-23 현대자동차주식회사 Manufacturing Method of Platinum-Manganese dioxide/Carbon Complex for Positive Electrode of Lithium-Air Battery
KR102108646B1 (en) * 2018-11-06 2020-05-07 전북대학교산학협력단 Pt complex catalyst electrode with triple catalyst layers for direct methanol fuel cell and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439854B1 (en) * 2002-03-13 2004-07-12 한국과학기술연구원 Aerogel type Platinum-Ruthenium-Carbon Catalyst, Method to Manufacture the said Catalyst and Direct Methanol Fuel Cell comprising the said Catalyst
KR100459060B1 (en) * 2002-09-17 2004-12-03 유지범 Manufacturing method of Pt catalyst for electrode utilizing carbon nanotube
US7811959B2 (en) 2003-11-13 2010-10-12 Samsung Sdi Co., Ltd. Metal oxide-carbon composite catalyst support and fuel cell comprising the same
US8092954B2 (en) 2004-09-20 2012-01-10 3M Innovative Properties Company Method of making a fuel cell polymer electrolyte membrane comprising manganese oxide
US9034538B2 (en) 2004-09-20 2015-05-19 3M Innovative Properties Company Casting solution and method for making a polymer electrolyte membrane
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US7803847B2 (en) 2004-09-20 2010-09-28 3M Innovative Properties Company Fuel cell membrane electrode assembly
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US9431670B2 (en) 2005-10-28 2016-08-30 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
KR100706450B1 (en) * 2005-12-08 2007-04-10 현대자동차주식회사 Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
TWI400123B (en) * 2009-11-26 2013-07-01 Ind Tech Res Inst Catalyst and fabrication method thereof
KR101352794B1 (en) * 2011-07-20 2014-01-23 현대자동차주식회사 Manufacturing Method of Platinum-Manganese dioxide/Carbon Complex for Positive Electrode of Lithium-Air Battery
US9056782B2 (en) 2011-07-20 2015-06-16 Hyundai Motor Company Technique for manufacturing platinum-manganese dioxide/carbon complex for use in positive electrode of lithium-air battery
KR102108646B1 (en) * 2018-11-06 2020-05-07 전북대학교산학협력단 Pt complex catalyst electrode with triple catalyst layers for direct methanol fuel cell and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100691117B1 (en) Ruthenium-rhodium alloy electrode catalyst and fuel cell comprising the same
Yamada et al. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane
KR100552697B1 (en) Metal oxide-carbon composite catalyst support and fuel cell comprising the same
KR20010071152A (en) Improved composition of a selective oxidation catalyst for use in fuel cells
US6866960B2 (en) Electrodes for fuel cell and processes for producing the same
KR100668321B1 (en) Fuel cell electrode containing metal phosphate and fuel cell using the same
US9799893B2 (en) Catalyst support for fuel cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
EP2666201B1 (en) Shape controlled palladium and palladium alloy nanoparticle catalyst
US20170271697A1 (en) Membrane electrode assembly, and electrochemical cell and electrochemical stack using same
US20180274112A1 (en) Membrane electrode assembly for electrochemical cell
KR20000063843A (en) Platinum-metal oxide catalysts for polymer electrolyte fuel cells
US20080090128A1 (en) Electrode Catalyst for Fuel Cell and Fuel Cell
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
US20050271928A1 (en) Proton exchange membrane fuel cell with non-noble metal catalysts
CN105247720B (en) Metal alloy catalyst for anode of fuel cell
JPH10162839A (en) Fuel electrode for fuel cell, and manufacture thereof
JP6501779B2 (en) Arrangement of active layer / membrane for hydrogen production apparatus, and conjugate comprising said arrangement suitable for porous current collector, and method of making the arrangement
Viva Platinum-based cathode catalyst systems for direct methanol fuel cells
JPH11111305A (en) Fuel cell
KR20220057028A (en) Method for manufacturing electrode of fuel cell using Carbon Nano Fiber
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
Jeon et al. Ternary Pt 45 Ru 45 M 10/C (M= Mn, Mo and W) catalysts for methanol and ethanol electro-oxidation
Arroyo-Ramírez et al. Electrochemical study of methanol tolerant oxygen reduction reaction PdxCoy/C-catalysts from organometallic molecular precursors
KR100551034B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid