JPS63198573A - Balance regulator for superconducting rotor - Google Patents

Balance regulator for superconducting rotor

Info

Publication number
JPS63198573A
JPS63198573A JP62028104A JP2810487A JPS63198573A JP S63198573 A JPS63198573 A JP S63198573A JP 62028104 A JP62028104 A JP 62028104A JP 2810487 A JP2810487 A JP 2810487A JP S63198573 A JPS63198573 A JP S63198573A
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
piezoelectric element
balance
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028104A
Other languages
Japanese (ja)
Other versions
JPH0813185B2 (en
Inventor
Katsuki Ide
勝記 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62028104A priority Critical patent/JPH0813185B2/en
Publication of JPS63198573A publication Critical patent/JPS63198573A/en
Publication of JPH0813185B2 publication Critical patent/JPH0813185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Testing Of Balance (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To regulate the unbalance of an inner cylinder during the rotation of a rotor by displacing the cylinder by a piezoelectric element or displacing a balance ring attached to the cylinder. CONSTITUTION:In a superconducting rotor, an outer cylinder 2 and an inner cylinder 3 are connected to a decoupling side rotary shaft 1, a coupling side rotary shaft 4 is further associated to form a concentric rotary shaft, and supported by a bearing base 5. The cylinder 3 has a field winding superconducting coil 6 and a cooling liquid helium 12, and gaseous helium is discharged while cooling the sections. In this case, a piezoelectric element 21 is held firmly between the cylinder 2 and the flexible coupling 13 of the end of the cylinder 3 in such a manner that it is slidable along the shafts 1 and 4 but immovable radially. Thus, a voltage is applied to the element 21 to bent the cylinder 3, thereby generating a displacement. As a result, a balance state is varied to suppress a vibration.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は回転電機の超電導回転子に係り、特に回転子の
残留率つりあい量の修正を回転中に於いても調整可能で
、さらに振動制御もできる超電導回転子のバランス調整
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting rotor for a rotating electrical machine, and in particular, it is possible to adjust the residual rate balance of the rotor even during rotation. The present invention also relates to a superconducting rotor balance adjustment device that can also control vibration.

(従来の技術) 超電導回転子は例えば第8図に示すように直径の異なっ
た複数の円筒状回転部を同軸に組合せて成るもので、し
かも冷却にいろいろの工夫が加えられているので複雑な
構造である。
(Prior art) A superconducting rotor is made up of a coaxial combination of multiple cylindrical rotating parts with different diameters, as shown in Figure 8. Moreover, various cooling techniques have been added, making it complicated. It is a structure.

回転子の構造ならびに冷却の手段を第8図の一例を用い
て次に説明する。
The structure of the rotor and the cooling means will now be explained using an example shown in FIG.

反カップリング側回転軸■に外筒■と内筒■を結合する
。さらにカップリング側回転軸(へ)を組立て同心の回
転軸を構成し、軸受台■で支持する構造である。
Connect the outer cylinder ■ and the inner cylinder ■ to the rotating shaft ■ on the anti-coupling side. Furthermore, the coupling-side rotating shaft is assembled to form a concentric rotating shaft, which is supported by a bearing stand.

内筒■には界磁巻線用超電導コイル(Q、およびこの超
電導コイル0を冷却する液体ヘリウム(1z)を有する
。また、液体ヘリウム(12)を供給、排気するパイプ
群が複雑に配管される構造である。
The inner cylinder ■ has a superconducting coil (Q) for the field winding, and liquid helium (1z) that cools this superconducting coil 0. In addition, a group of pipes for supplying and exhausting liquid helium (12) is arranged in a complicated manner. It has a structure that allows

超電導コイルの冷却の手段は次のとおりである。The means for cooling the superconducting coil is as follows.

液体ヘリウム(12)は導入管■を通って内筒■に供給
される。内筒■内の液体ヘリウム(12)は遠心力を受
は内筒■に押付けられ、さらに自由表面(へ)を形成す
る。
Liquid helium (12) is supplied to the inner cylinder (2) through the introduction pipe (2). The liquid helium (12) in the inner cylinder (2) receives centrifugal force and is pressed against the inner cylinder (2), further forming a free surface.

内筒■内の液体ヘリウム(12)は遠心力場内の対流に
より第1の開穴〇を通って超電導コイル0を冷却した後
、ガス状になって内筒■に設けられた第2の開穴(10
)を通って内筒■の液体自由表面■より内径側に出され
る。さらにガス状になったヘリウムは排出管(11)を
介して図中矢印のように各部を冷却しながら外部に排出
される。
The liquid helium (12) in the inner cylinder ■ cools the superconducting coil 0 by passing through the first hole 〇 by convection in the centrifugal force field, and then becomes gaseous and passes through the second hole provided in the inner cylinder ■. hole (10
) and is discharged to the inner diameter side from the liquid free surface ■ of the inner cylinder ■. Further, the gaseous helium is discharged to the outside through the discharge pipe (11) as shown by the arrow in the figure while cooling each part.

円筒■は反カップリング側回転軸ωに強固に結合し、カ
ップリング側回転軸には内n(3)の熱変形を吸収する
フレキシブルカップリング(13)で弾性的に結合する
The cylinder (3) is firmly connected to the anti-coupling side rotating shaft ω, and is elastically connected to the coupling side rotating shaft by a flexible coupling (13) that absorbs the thermal deformation of the cylinder (n(3)).

周知のように超電導コイル0は導体を絶対零度近くまで
冷却し、導体の超電導現象を利用して成るもので、この
極低温状態に回転子を冷却しておくために上記のように
液体ヘリウムを流動させなければならないため、どうし
ても多重の円筒状の構造になる。
As is well known, superconducting coil 0 is made by cooling a conductor to near absolute zero and utilizing the superconducting phenomenon of the conductor. In order to cool the rotor to this extremely low temperature state, liquid helium is used as described above. Since it must be made to flow, it inevitably becomes a multi-layered cylindrical structure.

このような構造にあって、超電導回転子の安全および機
能の面から、回転時の振動低減のためにバランス調整作
業が必要不可決である。
In such a structure, from the standpoint of safety and function of the superconducting rotor, balance adjustment work is essential to reduce vibration during rotation.

従来、超電導回転子のバランス調整方法は、次のような
手順で行っていた。
Conventionally, the balance adjustment method for a superconducting rotor has been performed using the following procedure.

まず超電導回転子を外筒■と内筒■および外筒■と内筒
■をフレキシブルに接続するフレキシブルカップリング
(13)に分け、内筒、外筒それぞれ単独にバランス調
整を実施する。ここで外筒■のバランス調整を行う場合
は1回転軸■、(へ)を直結して両側の軸受0で支持し
、修正おもりによってバランス調整を行う。内筒■のバ
ランス調整は。
First, the superconducting rotor is divided into the outer cylinder (2) and the inner cylinder (2), and the flexible coupling (13) that flexibly connects the outer cylinder (2) and the inner cylinder (2), and the balance adjustment is performed independently for each of the inner and outer cylinders. When adjusting the balance of the outer cylinder (2), the one-rotation shafts (2) and (2) are directly connected and supported by bearings 0 on both sides, and the balance is adjusted using correction weights. Balance adjustment of the inner cylinder ■.

両側に接続するバランス調整を完了した回転軸(図示せ
ず)を新たに製作し、これに内筒■を組み立てて、修正
おもりによってバランス調整をする。
A new rotating shaft (not shown) that is connected to both sides and has undergone balance adjustment is manufactured, the inner cylinder (■) is assembled to this, and the balance is adjusted using correction weights.

これで、外筒■、内筒■の単独におけるバランス調整が
完了し、次に全体を組み立てる。このようにすると、内
筒(3)、外筒■のそれぞれのバランス調整を行い残留
アンバランスを小さくしたにもかかわらず、正規の回転
子に組み立てたことによって振動が大きく発生すること
がある。
This completes the individual balance adjustment for the outer cylinder (■) and inner cylinder (■), and then assembles the entire assembly. In this case, even though the balance of the inner cylinder (3) and the outer cylinder (2) has been adjusted to reduce the residual unbalance, large vibrations may occur due to assembly into a regular rotor.

この原因は、組み立てによる偏心、そして内筒■、外筒
■との結合による残留アンバランスの加算等によりアン
バランスが大きくなるためである。
The reason for this is that the unbalance increases due to eccentricity due to assembly and the addition of residual unbalance due to the connection between the inner cylinder (2) and the outer cylinder (2).

したがって組み立て後においても当然、バランス調整作
業が必要不可欠である0組み立て後のバランス調整は、
液体ヘリウム(12)を供給した最終状態で行なうのが
最も望ましい。この全体のバランス調整、そして実稼動
運転時に次のような振動問題が生じる。
Therefore, balance adjustment work is essential even after assembly.0 Balance adjustment after assembly is
It is most desirable to perform this in the final state where liquid helium (12) is supplied. During this overall balance adjustment and actual operation, the following vibration problem occurs.

まず、バランス調整作業では、修正位f12(おもり付
加点)が外筒■のみしか選定できないことから、実際に
内筒■に大きなアンバランスが生じた場合に外筒のみで
はバランス調整ができない場合もある。また、内筒■に
は超電導コイル0からなる界磁巻線が納められており、
熱変形によるすベリなどの非線形変形を含め新たなアン
バランスが発生する。さらに内筒■内には液体ヘリウム
(12)が存在し、その流体の不安定な動きによって振
動が大きくなる場合もある。
First, in balance adjustment work, only the outer cylinder ■ can be selected for the correction position f12 (weight addition point), so if a large imbalance actually occurs in the inner cylinder ■, balance adjustment may not be possible with the outer cylinder alone. be. In addition, a field winding consisting of superconducting coil 0 is housed in the inner cylinder ■.
New imbalances occur, including nonlinear deformations such as slippage due to thermal deformation. Furthermore, liquid helium (12) is present in the inner cylinder (2), and vibrations may increase due to the unstable movement of the fluid.

このように、超電導回転子は単なる一時的なバランス調
整で、その後の振動を完全に近く保障できるものではな
い。また、先に述べたように内筒■と外筒■が偏心して
組立てたなど、大きなアンバランスについては、外筒■
のみではバランス調整ができない場合も生じる。
In this way, the superconducting rotor is only a temporary balance adjustment, and cannot completely guarantee future vibrations. Also, as mentioned earlier, if the inner cylinder ■ and the outer cylinder ■ are assembled eccentrically, or if there is a large imbalance, please check the outer cylinder ■.
There may be cases where the balance cannot be adjusted by only using the

(発明が解決しようとする問題点) 以上のように従来の超電導回転子では、構造の複雑さか
らバランス調整作業が困難であった。さらに回転子内部
に熱変形などを生じやすく、振動が増大する大きな問題
点があった。
(Problems to be Solved by the Invention) As described above, in the conventional superconducting rotor, it is difficult to perform balance adjustment due to the complexity of the structure. Furthermore, there was a major problem in that thermal deformation was likely to occur inside the rotor, which increased vibration.

本発明は超電導回転子の残留アンバランスの修正を回転
中に於いても調整可能で、しかも振動制御もできる超電
導回転子のバランス調整装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a balance adjustment device for a superconducting rotor that can correct residual unbalance of a superconducting rotor even during rotation, and can also control vibration.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記目的を達成するために、半径方向に離間し
た外筒と内筒を有する超電導回転子のバランス調整装置
において、内筒の周方向3ケ所に等配して取付けた圧電
素子と、回転子の振動を検出する装置と、検出振動値に
応じて圧電素子を変形させる電圧をフィードバックして
供給するリード線を含めた制御装置と、圧電素子の変形
によって内筒のアンバランスを調整する機構とを備える
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a balance adjustment device for a superconducting rotor having an outer cylinder and an inner cylinder spaced apart in the radial direction. The piezoelectric elements installed in equal positions, a device for detecting vibration of the rotor, a control device including lead wires that feedback and supply voltage to deform the piezoelectric element according to the detected vibration value, and a control device for the piezoelectric element. and a mechanism that adjusts the imbalance of the inner cylinder by deformation.

(作 用) このように構成されたものにおいては、圧電素子が内筒
を変位するか又は内筒に取付けたバランスリングを変位
する等により、内筒のアンバランスを超電導回転子の回
転中に調整することが可能になる。
(Function) In a device configured in this way, the piezoelectric element displaces the inner cylinder or displaces the balance ring attached to the inner cylinder, thereby correcting the unbalance of the inner cylinder while the superconducting rotor is rotating. It becomes possible to adjust.

(実施例) 実施例1 以下2本発明の第1の実施例について第1図。(Example) Example 1 FIG. 1 shows the following two embodiments of the present invention.

第2図、第3図および第4図を参照して説明する。This will be explained with reference to FIGS. 2, 3, and 4.

尚、第8図の従来構造に説明した部分には、同一符号を
用い説明は一部省略する。
Note that the same reference numerals are used for the parts explained in the conventional structure of FIG. 8, and some explanations are omitted.

第1図において外筒■と内筒■端のフレキシブルカップ
リング(13)との間に、電圧を加えると変形を生ずる
圧電素子(21)を回転軸(υ、(イ)の軸方向にすべ
り可能で、半径方向に強固に挟んで取付ける。この圧電
素子(21)には静止側のブラシ(22)、回転側のコ
レクターリング(23)そしてリード線(24)を通し
て電圧を加える。尚、圧電素子(21)は内筒(3)の
端部に直接設けてもよい。
In Figure 1, between the flexible coupling (13) at the end of the outer cylinder ■ and the inner cylinder ■, a piezoelectric element (21) that deforms when a voltage is applied is slid in the axial direction of the rotation axis (υ, (A)). It is possible to install the piezoelectric element (21) by firmly sandwiching it in the radial direction.A voltage is applied to this piezoelectric element (21) through the brush (22) on the stationary side, the collector ring (23) on the rotating side, and the lead wire (24). The element (21) may be provided directly at the end of the inner cylinder (3).

第2図は圧電素子(21)の取付位置を示し1円筒12
0@ ピッチで半径方向に強固に取付ける。
Figure 2 shows the mounting position of the piezoelectric element (21).
Attach firmly in the radial direction with a pitch of 0.

第3図は静止側から回転側に電圧を導びく手段を示し、
ブラシ支え(25)およびブラシホルダ(26)に支え
られたブラシ(22)から回転側のコレクターリング(
23)に導びき、リード線(24)で結んだ圧電素子に
電圧を加える。尚、コレクターリング(23)は絶縁1
(27)で回転軸■から絶縁する。
Figure 3 shows a means for guiding voltage from the stationary side to the rotating side,
The rotation side collector ring (
23) and connected with a lead wire (24), a voltage is applied to the piezoelectric element. In addition, the collector ring (23) is insulated 1
(27) insulates it from the rotating shaft ■.

第4図は回転子の振動の制御装置のブロック図を示す。FIG. 4 shows a block diagram of a rotor vibration control device.

軸受台■に取付けられた軸受台振動計(30)および軸
振動計(31)で、軸受台の振動および軸振動を検出し
、制御系(32)に入力する。制御系(32)はこの検
出された大きい方の振動を小さくするように制御信号を
出力し、増幅器(33)で増幅し、圧電素子に電圧を加
え、内筒(3)と外筒■の隙間を変化させる。
A bearing pedestal vibration meter (30) and a shaft vibration meter (31) attached to the bearing pedestal (3) detect vibrations of the bearing pedestal and shaft vibration, and input the detected vibrations to the control system (32). The control system (32) outputs a control signal to reduce the detected larger vibration, amplifies it with an amplifier (33), applies voltage to the piezoelectric element, and connects the inner cylinder (3) and outer cylinder ■. Change the gap.

次に上記実施例の作用について詳細に説明する。Next, the operation of the above embodiment will be explained in detail.

圧電素子(21)に電圧を印加すると圧電素子(21)
は歪みを生じ変形を発生する。この圧電素子(21)を
外筒■と内筒■の間に入れ、電圧を印加すると曲げ剛性
が小さい方の内筒■が曲げられ、変位を生ずる。
When a voltage is applied to the piezoelectric element (21), the piezoelectric element (21)
causes distortion and deformation. This piezoelectric element (21) is inserted between the outer tube (2) and the inner tube (2), and when a voltage is applied, the inner tube (2), which has a smaller bending rigidity, is bent and displaced.

変位を生ずるとバランス状態が変化し、振動もこれに従
って変化する。圧電素子(21)の取付けは120°円
周等配で円周に3個取付ければ、内筒■端をあらゆる半
径方向に変位させることができる。
When displacement occurs, the balance state changes, and the vibration changes accordingly. By attaching three piezoelectric elements (21) at equal intervals around a 120° circumference, the end of the inner cylinder can be displaced in any radial direction.

従って、軸振動あるいは軸受台の振動を検出し、その振
動が小さくなるようにフィードバック制御し、短時間で
しかも回転中において超電導回転子の振動の抑制が可能
である。
Therefore, by detecting shaft vibration or vibration of the bearing stand and performing feedback control to reduce the vibration, it is possible to suppress the vibration of the superconducting rotor in a short period of time and during rotation.

実施例2 次に第2の実施例について第5図、第6図を参照して説
明する。第5図は超電導回転子で、バランスリング(3
5)を圧電素子(21)を介して円筒■に取付ける(第
5図、第6図ではバランスリング(35)は内筒■の内
側となっているが、第7図のように外側でも良い)。圧
電素子(21)への電圧リード線(24)は第1図の実
施例に準する。
Embodiment 2 Next, a second embodiment will be described with reference to FIGS. 5 and 6. Figure 5 shows a superconducting rotor with balance rings (3
5) is attached to the cylinder ■ via the piezoelectric element (21) (in Figures 5 and 6, the balance ring (35) is inside the inner cylinder ■, but it may be placed outside as shown in Figure 7). ). The voltage lead wire (24) to the piezoelectric element (21) is similar to the embodiment shown in FIG.

第6図はバランスリング(35)の取付は位置を示す断
面図で圧電素子(2I)を3個円周等配に配置し。
FIG. 6 is a sectional view showing the mounting position of the balance ring (35), and three piezoelectric elements (2I) are arranged at equal intervals on the circumference.

バランスリング(35)を変位させバランス状態を変化
させることができ、これに伴って振動も変化する。振動
の制御手段は第4図で示すものと同様にすれば、超電導
回転子の振動の抑制が可能である。
The balance state can be changed by displacing the balance ring (35), and the vibrations also change accordingly. If the vibration control means is similar to that shown in FIG. 4, the vibration of the superconducting rotor can be suppressed.

尚、静止部から回転部への電圧供給装置は実施例で示し
たブラシによる手段のみでなく、回転トランス方式2売
電機方式などが考えられ、特に限定するものではない。
It should be noted that the voltage supply device from the stationary part to the rotating part is not limited to the brush means shown in the embodiment, but may also be a rotary transformer type, two electric vending machine type, etc., and is not particularly limited.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は超電導回転子の残留アンバランス
を回転中に於いても調整可能で、しかも振動制御もでき
る超電導回転子のバランス調整装置を得ることができる
As described above, the present invention provides a superconducting rotor balance adjustment device that can adjust the residual unbalance of the superconducting rotor even during rotation, and can also control vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のバランス調整装置を備
えた超電導回転子を示す縦断面図、第2図は第1図のA
−A線に沿う矢視断面図、第3図は第1図のB−B線に
沿う矢視断面図、第4図は振動の制御手段を説明するブ
ロック図、第5図は第2の実施例を示す超電導回転子の
縦断面図、第6図は第5図のC−C線に沿う矢視断面図
、第7図は第2の実施例の変形例を示す要部断面図、第
8図は従来例を示す超電導回転子の縦断面図である。 2・・・外筒、       3・・・円筒、21・・
・圧電素子、22・・・ブラシ、23・・・コレクター
リング、24・・・リード線、30・・・軸受台振動計
、  31・・・軸振動計、32・・・制御系、33・
・・増幅器。 35・・・バランスリング。 代理人 弁理士  井 上 −男 ネメトぐ一へト、− 第  2  区 第  3  図 第  4  図 第7図 ζト5コへに!
FIG. 1 is a longitudinal sectional view showing a superconducting rotor equipped with a balance adjustment device according to a first embodiment of the present invention, and FIG.
3 is a sectional view taken along the line B-B in FIG. 1, FIG. 4 is a block diagram illustrating the vibration control means, and FIG. A vertical cross-sectional view of a superconducting rotor showing an embodiment, FIG. 6 is a cross-sectional view taken along line CC in FIG. 5, and FIG. 7 is a cross-sectional view of main parts showing a modification of the second embodiment. FIG. 8 is a vertical cross-sectional view of a superconducting rotor showing a conventional example. 2...Outer cylinder, 3...Cylinder, 21...
・Piezoelectric element, 22...Brush, 23...Collector ring, 24...Lead wire, 30...Bearing stand vibration meter, 31...Shaft vibration meter, 32...Control system, 33.
··amplifier. 35... Balance ring. Agent Patent Attorney Inoue - Man Nemetoguichiheto, - 2nd Ward, 3rd Figure, 4th Figure, 7th Figure ζ and 5 more!

Claims (3)

【特許請求の範囲】[Claims] (1)半径方向に離間した外筒と内筒を有する超電導回
転子のバランス調整装置において、内筒の周方向3ヶ所
に等配して取付けた圧電素子と、回転子の振動を検出す
る装置と、検出振動値に応じて圧電素子を変形させる電
圧をフィードバックして供給するリード線を含めた制御
装置と、圧電素子の変形によって内筒のアンバランスを
調整する機構とを備えたことを特徴とする超電導回転子
のバランス調整装置。
(1) In a balance adjustment device for a superconducting rotor that has an outer cylinder and an inner cylinder that are separated in the radial direction, piezoelectric elements are installed at three equal locations in the circumferential direction of the inner cylinder, and a device that detects vibrations of the rotor. It is characterized by being equipped with a control device including a lead wire that feedbacks and supplies a voltage that deforms the piezoelectric element according to the detected vibration value, and a mechanism that adjusts the imbalance of the inner cylinder by deforming the piezoelectric element. Balance adjustment device for superconducting rotor.
(2)内筒のアンバランス調整機構は、内筒をカップリ
ング側回転軸に取付けるフレキシブルカップリング又は
その付近の内筒の外周と外筒の内周間に圧電素子を固着
した構造とすることを特徴とする特許請求の範囲第1項
記載の超電導回転子のバランス調整装置。
(2) The inner cylinder unbalance adjustment mechanism shall have a structure in which a piezoelectric element is fixed between the outer periphery of the inner cylinder and the inner periphery of the outer cylinder in the flexible coupling that attaches the inner cylinder to the rotating shaft on the coupling side or in the vicinity thereof. A superconducting rotor balance adjustment device according to claim 1, characterized in that:
(3)内筒のアンバランス調整機構は、内筒のフレキシ
ブルカップリング側端付近の内側又は外側にて半径方向
変位自在に圧電素子を介して配設したバランスリングと
することを特徴とする特許請求の範囲第1項記載の超電
導回転子のバランス調整装置。
(3) A patent characterized in that the inner cylinder unbalance adjustment mechanism is a balance ring disposed via a piezoelectric element so as to be freely displaceable in the radial direction on the inside or outside of the inner cylinder near the flexible coupling side end. A balance adjusting device for a superconducting rotor according to claim 1.
JP62028104A 1987-02-12 1987-02-12 Balancer for superconducting rotor Expired - Lifetime JPH0813185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028104A JPH0813185B2 (en) 1987-02-12 1987-02-12 Balancer for superconducting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028104A JPH0813185B2 (en) 1987-02-12 1987-02-12 Balancer for superconducting rotor

Publications (2)

Publication Number Publication Date
JPS63198573A true JPS63198573A (en) 1988-08-17
JPH0813185B2 JPH0813185B2 (en) 1996-02-07

Family

ID=12239499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028104A Expired - Lifetime JPH0813185B2 (en) 1987-02-12 1987-02-12 Balancer for superconducting rotor

Country Status (1)

Country Link
JP (1) JPH0813185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439051A (en) * 2013-08-26 2013-12-11 中国科学院电工研究所 Static balance detection device and detection method for superconductive rotor
EP4075646A4 (en) * 2020-01-16 2023-01-25 Mitsubishi Heavy Industries, Ltd. Magnetic geared rotating electrical machine and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439051A (en) * 2013-08-26 2013-12-11 中国科学院电工研究所 Static balance detection device and detection method for superconductive rotor
EP4075646A4 (en) * 2020-01-16 2023-01-25 Mitsubishi Heavy Industries, Ltd. Magnetic geared rotating electrical machine and manufacturing method

Also Published As

Publication number Publication date
JPH0813185B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US7884521B2 (en) Rotor shaft for a magnetic bearing device
US6373156B2 (en) Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
US6037687A (en) Double diaphragm compound shaft
JP5225695B2 (en) Turbine rotor support device and system
US11060940B2 (en) Vibration insulator and unbalance detection device including vibration insulator
JPH08334117A (en) Composite shaft
EP3568602B1 (en) Active radial magnetic bearing assembly with internal sensors
US5068564A (en) End retainer ring assembly for rotary electrical devices
CA3016732C (en) Rotor assembly and method of manufacturing
US4184089A (en) Multiple plane spoke structure for a superconducting dynamoelectric machine
WO1990005856A1 (en) Bearing assembly with thermal compensation
JPS63198573A (en) Balance regulator for superconducting rotor
US4291997A (en) Flexible support for superconducting machine rotor
JPH0246311A (en) Drawing roller unit within wide usage revolution range such as godet
JPH1113760A (en) Hydrostatic magnetic composite bearing
US7589447B2 (en) High speed aerospace generator resilient mount
JPS6343977B2 (en)
US4329602A (en) Superconducting rotor
JPH0628507B2 (en) Airtight coupling device for rotating machinery
JPH03285559A (en) Rotor for superconducting rotary electric machine
JP3302705B2 (en) Superconducting rotating electric machine rotor
JP2004324895A (en) Static pressure magnetic combined bearing
US6713919B2 (en) Magnetic bearing arrangement for a godet roll for guiding at least one yarn
JPH1113762A (en) Hydrostatic magnetic composite bearing and spindle device
JPH03284162A (en) Rotor of superconductive revolving armature