JPH03285559A - Rotor for superconducting rotary electric machine - Google Patents

Rotor for superconducting rotary electric machine

Info

Publication number
JPH03285559A
JPH03285559A JP2080623A JP8062390A JPH03285559A JP H03285559 A JPH03285559 A JP H03285559A JP 2080623 A JP2080623 A JP 2080623A JP 8062390 A JP8062390 A JP 8062390A JP H03285559 A JPH03285559 A JP H03285559A
Authority
JP
Japan
Prior art keywords
shaft
torque tube
mounting shaft
coil mounting
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2080623A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
俊 小林
Yoshinobu Nakamura
中村 嘉延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2080623A priority Critical patent/JPH03285559A/en
Publication of JPH03285559A publication Critical patent/JPH03285559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To facilitate balance adjusting work of a coil mounting shaft, after field coils are wound, by arranging a flexible disk to connect at least one end part shaft to a normal temperature damper and directly connecting both side end part shafts to a torque tube and the coil mounting shaft. CONSTITUTION:A drive side end part shaft 8, torque tube 1, coil mounting shaft 2 serving as the central part of the torque tube 1 and an opposite drive side end part shaft 9 are directly connected in a condition that a helium outer cylinder 6 is mounted, after completion of winding of field coils 3 to the coil mounting shaft 2. A perfect axial system, which by itself has sufficient bending rigidity, is formed. The concerned axial system partly constitutes a final assembly condition of a rotor. Accordingly, the axial system is a structure such that no necessity for disassembly for mounting a flexible disk 15 and a normal temperature damper 4 is generated after the axial system is once built.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導回転電機の回転子に関し、特に常温
ダンパとコイル取付軸、トルクチューブの温度差により
発生する熱応力を緩和するための、軸方向に可撓なフレ
キシブルディスクを備えた超電導回転電機の回転子に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rotor of a superconducting rotating electric machine, and in particular, a method for alleviating thermal stress caused by a temperature difference between a room-temperature damper, a coil mounting shaft, and a torque tube. The present invention relates to a rotor for a superconducting rotating electric machine equipped with a flexible disk that is flexible in the axial direction.

[従来の技術〕 従来、この種の回転子として第2図に示すものがあり、
図において、トルクチューブ(1)の中央部を形成する
コイル取付軸(2)に超電導界磁コイル(3)が固定さ
れている6トルクチユーブ(1)とコイル取付軸(2)
を囲繞して常温ダンパ(4)が、常温ダンパ(4)とコ
イル取付軸(2)の間に低温ダンパ(5)がそれぞれ設
けられている。コイル取付軸(2)の外周部および側面
部にはそれぞれヘリウム外筒(6)およびヘリウム端板
(ア)が取付けられている。(8)および(9)はそれ
ぞれ駆動側、反駆勅使端部軸と軸受(10)により支承
されている。
[Prior Art] Conventionally, there is a rotor of this type as shown in Fig. 2.
In the figure, the superconducting field coil (3) is fixed to the coil mounting shaft (2) that forms the center of the torque tube (1).6 Torque tube (1) and coil mounting shaft (2)
A room temperature damper (4) is provided surrounding the coil, and a low temperature damper (5) is provided between the room temperature damper (4) and the coil mounting shaft (2). A helium outer cylinder (6) and a helium end plate (A) are attached to the outer periphery and side surface of the coil attachment shaft (2), respectively. (8) and (9) are respectively supported by the drive side, counterdrive end shaft and bearing (10).

(11)は界磁電流供給用のスリップリングである。(11) is a slip ring for supplying field current.

トルクチューブ(1)には熱交換器(12)が配置され
ている。(13)は側部輻射シールド、(14)は真空
部である。 (15)は薄肉の円環状の金属板を複数枚
積層したフレキシブルディスク、(17)はトルクチュ
ーブ(1)とフレキシブルディスク(15)の内周側を
結合する接続リング、(16)はフレキシブルディスク
(15)を接続リング(17)にボルト等で締結するた
めの円環状の押えリングである。
A heat exchanger (12) is arranged in the torque tube (1). (13) is a side radiation shield, and (14) is a vacuum part. (15) is a flexible disk made by laminating multiple thin-walled annular metal plates, (17) is a connecting ring that connects the torque tube (1) and the inner circumferential side of the flexible disk (15), and (16) is a flexible disk. This is an annular retaining ring for fastening (15) to the connecting ring (17) with bolts or the like.

以上の構成により、コイル取付軸(2)に配設されてい
る超電導界磁コイル(3)を極低温に冷却して電気抵抗
を零の状態とし、励磁損失をなくすることにより、超電
導界磁コイル(3)に強力な磁界を発生させ、固定子(
図示せず)に交流電力を発生させる。この超電導界磁コ
イル(3)を極低温に冷却、保持するために、液体ヘリ
ウムを反駆動側端部軸(9)の中央部から導入管(図示
せず)を通じ、ヘリウム外筒(6)、ヘリウム端板(7
)により形成される液体ヘリウム容器内に供給する。回
転子内部は真空部(14)により高真空に保つとともに
、極低温の超電導界磁コイル(3)およびコイル取付軸
(2)に回転トルクを伝えるトルクチューブ(1)を薄
肉円筒とし、かつ、熱交換器(12)により、トルクチ
ューブ(1)を通じて極低温部に侵入する熱を極力減ら
すようになっている。さらに、側部輻射シールド(13
)は側面からの輻射により侵入する熱を低減する。
With the above configuration, the superconducting field coil (3) disposed on the coil mounting shaft (2) is cooled to an extremely low temperature to bring the electrical resistance to zero, thereby eliminating excitation loss. A strong magnetic field is generated in the coil (3), and the stator (
(not shown) to generate AC power. In order to cool and maintain this superconducting field coil (3) at an extremely low temperature, liquid helium is introduced into the helium outer cylinder (6) from the center of the non-drive side end shaft (9) through an introduction pipe (not shown). , helium end plate (7
) into a liquid helium container formed by The interior of the rotor is maintained at a high vacuum by a vacuum section (14), and the torque tube (1) that transmits rotational torque to the ultra-low temperature superconducting field coil (3) and coil mounting shaft (2) is made of a thin-walled cylinder, and The heat exchanger (12) is designed to reduce as much as possible the heat that enters the cryogenic section through the torque tube (1). Furthermore, side radiation shield (13
) reduces heat entering through radiation from the sides.

一方、常温ダンパ(4)および低温ダンパ(5)は、固
定子からの高調波磁界をシールドし、超電導界磁コイル
(3)を保護するとともに、電力系統のしよう乱による
回転子振動を減衰させるように機能するほか、常温ダン
パ(4)は真空外筒としての機能、低温ダンパ(5)は
ヘリウム容器部への輻射シールドとしての機能をそれぞ
れ兼ねている。
On the other hand, the room temperature damper (4) and the low temperature damper (5) shield harmonic magnetic fields from the stator, protect the superconducting field coil (3), and attenuate rotor vibrations caused by disturbances in the power system. In addition, the normal temperature damper (4) also functions as a vacuum outer cylinder, and the low temperature damper (5) functions as a radiation shield for the helium container.

ここで、コイル取付軸(2)が液体ヘリウムにより極低
温に冷却されると、コイル取付軸(2)、トルクチュー
ブ(1)等は熱収縮により長さが減少し、一方、常温ダ
ンパ(4)は常温であるからその長さは変化しない。そ
のため、もし。トルクチューブ(1)と端部軸(8)を
直接締結すると、この長さの差によりトルクチューブ(
1)に過大な熱応力が発生する。フレキシブルディスク
(15)は、内周を接続リング(17)を介してトルク
チューブ(1)と、外周を端部軸(8)および常温ダン
パ(4)と締結されているので、トルクチューブ(1)
と端部軸(8)の相対変位に対し、半径方向および円周
方向には剛性が高く、軸方向の剛性は小さく可視性を有
している。従って、フレキシブルディスク(15)は、
コイル取付軸(2)やトルクチューブ(1)の熱収縮を
容易に許容する方向に変形し、過大な熱応力の発生を防
止することができる。
Here, when the coil mounting shaft (2) is cooled to an extremely low temperature by liquid helium, the length of the coil mounting shaft (2), torque tube (1), etc. decreases due to heat contraction, while the normal temperature damper (4 ) is at room temperature, so its length does not change. Therefore, if. When the torque tube (1) and the end shaft (8) are directly connected, the torque tube (
1) Excessive thermal stress occurs. The flexible disk (15) has an inner circumference connected to the torque tube (1) via a connecting ring (17), and an outer circumference connected to the end shaft (8) and the normal temperature damper (4). )
With respect to relative displacement between the end shaft (8) and the end shaft (8), the rigidity is high in the radial and circumferential directions, and the rigidity in the axial direction is small and visible. Therefore, the flexible disk (15) is
The coil mounting shaft (2) and the torque tube (1) can be deformed in a direction that easily allows thermal contraction, and generation of excessive thermal stress can be prevented.

第3図は実公昭60−37031号公報に示された従来
のフレキシブルディスクの構造である0図において、フ
レキシブルディスク(15)は、トルクチューブ(1)
 と反駆動側端部軸(9)のフランジ(9a)を、取付
円板体(18)を介して結合しており、フレキシブルデ
ィスク(15)の内、外周は押えリング(16a) 。
Figure 3 shows the structure of a conventional flexible disc shown in Japanese Utility Model Publication No. 60-37031. In Figure 0, the flexible disc (15) is connected to the torque tube (1).
and the flange (9a) of the non-drive side end shaft (9) are connected via a mounting disc (18), and the inner and outer periphery of the flexible disc (15) is a retainer ring (16a).

(16b)により締付けられている。構造的に第3図と
第2図に異なる点はあるが、熱応力を除去するためのフ
レキシブルディスク(15)の機能、基本的構成は同一
である。
(16b). Although there are structural differences between FIG. 3 and FIG. 2, the function and basic configuration of the flexible disk (15) for removing thermal stress are the same.

「発明が解決しようとする課題] 従来の超電導回転電機の回転子は以上のように構成され
ているため、コイル取付軸(2)をトルクチューブ(1
)を介して端部軸(8)、(9)と結合するためには、
必らずフレキシブルディスク(15)を取付ける必要が
ある。一方、超電導回転電機の回転子は高速回転体であ
るため、回転時の振動抑iKのためにコイル取付軸(2
)に界磁コイル(3)を巻回し、ヘリウム外筒(6)を
取付けた時点で、常温ダンパ(4)の無い状態でバラン
ス調整を行うことが、バランスウェイト取付作業上、お
よびバランス調整の正確さから重要となる。このバラン
ス調整は少なくとも回転電機の定格回転速度で回転子を
回転させて行う必要があるが、そのために端部軸(8)
、(9)をトルクチューブ(1)と結合する場合、フレ
キシブルディスク(15)は軸方向に可撓性を持つので
、回転子の自重による曲げモーメントに対する剛性が極
めて小さく、第4図に示すように、フレキシブルディス
ク(15)の部分で軸受(10)に支承された回転子が
くの字状に折れ曲がってしまうこととなる。なお、第4
図において、(16c)は外径側で仮にフレキシブルデ
ィスク(15)を締結するための仮押えリングである。
“Problems to be Solved by the Invention” Since the rotor of a conventional superconducting rotating electrical machine is configured as described above, the coil mounting shaft (2) is connected to the torque tube (1).
) to connect with the end shafts (8), (9) through
It is necessary to attach the flexible disk (15). On the other hand, since the rotor of a superconducting rotating electric machine is a high-speed rotating body, the coil mounting shaft (2
) After winding the field coil (3) and attaching the helium outer cylinder (6), it is recommended to perform the balance adjustment without the room temperature damper (4) for the balance weight installation work and balance adjustment. Important for accuracy. It is necessary to perform this balance adjustment by rotating the rotor at least at the rated rotational speed of the rotating electric machine, but in order to do this, the end shaft (8)
, (9) with the torque tube (1), the flexible disk (15) is flexible in the axial direction, so its rigidity against the bending moment due to the weight of the rotor is extremely small, as shown in Figure 4. In addition, the rotor supported by the bearing (10) at the flexible disk (15) is bent into a dogleg shape. In addition, the fourth
In the figure, (16c) is a temporary holding ring for temporarily fastening the flexible disk (15) on the outer diameter side.

第4図の状態を防止するためには、フレキシブルディス
ク(15)に代えて、曲げモーメントに対する剛性の高
い厚肉の円板を用いて端部軸(8)と接続リング(17
)を結合する、フレキシブルディスク(15)を用いず
に接続リング(17)を直接端部軸(8)と結合する、
等の構造が考えられる。しかし、この2種の構造とも、
最終組立状態と異なる軸系でのバランス調整となり、最
終組立状態の軸系とは振動の態様が異なって、バランス
調整の目的を達するうえで問題となること、また、治具
の製作や製品に不必要な加工等が必要となって多大な費
用を要すること、等の問題があった。
In order to prevent the situation shown in Fig. 4, instead of the flexible disc (15), a thick disc with high rigidity against bending moment is used to connect the end shaft (8) and the connecting ring (17).
), connecting the connecting ring (17) directly with the end shaft (8) without a flexible disc (15),
Possible structures are as follows. However, both these two types of structures
The balance is adjusted using a shaft system that is different from the final assembled state, and the mode of vibration is different from the shaft system in the final assembled state, which may cause problems in achieving the purpose of balance adjustment. There have been problems such as unnecessary processing and the like requiring a large amount of cost.

この発明は上記のような問題点を解消するためになされ
たもので、界磁コイル巻回後のコイル取付軸のバランス
調整作業が容易に、かつ、高い精度で行うことができる
とともに、バランス調整のための特殊な治具や加工等が
不要で、経済性に優れた超電導回転電機の回転子を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to easily and accurately balance the coil mounting shaft after winding the field coil. The purpose of the present invention is to obtain a rotor for a superconducting rotating electrical machine that does not require special jigs or processing, and is highly economical.

[課題を解決するための手段] この発明に係る超電導回転電機の回転子は、トルクチュ
ーブとその中央部を形成するコイル取付軸が、駆動側端
部軸および反駆動側端部軸と直接締結され、トルクチュ
ーブおよびコイル取付軸を囲繞する常温ダンパが、少な
くとも一端においてフレキシブルディスクを介して端部
軸と結合されるように、フレキシブルディスクを配設し
たものである。
[Means for Solving the Problems] In the rotor of the superconducting rotating electric machine according to the present invention, the torque tube and the coil mounting shaft forming the center portion thereof are directly connected to the drive side end shaft and the non-drive side end shaft. A flexible disk is arranged such that a normal temperature damper surrounding the torque tube and the coil attachment shaft is connected to the end shaft at least at one end via the flexible disk.

[作 用コ この発明のおいては、フレキシブルディスクは端部軸と
常温ダンパを結合するように配設されてコイル取付軸の
熱収縮による常温ダンパと端部軸の相対的な動きを許容
し、駆動側および反駆動側の端部軸はl・ルクチューブ
と直接締結されて強固な軸系を構成するうえ、この軸系
は製作段階で常温ダンパの取付けされていない状態で最
終組立状態と同一の軸系が完成する。
[Function] In this invention, the flexible disk is disposed to connect the end shaft and the cold damper, and allows relative movement between the cold damper and the end shaft due to thermal contraction of the coil mounting shaft. The drive-side and non-drive-side end shafts are directly connected to the l-ru tube to form a strong shaft system, and this shaft system can be assembled in its final assembled state without a room-temperature damper installed during the manufacturing stage. The same axis system is completed.

[実施例] 第1図はこの発明の一実施例を示し、(15)はフレキ
シブルディスク、(lea) 、 (16b)はそれぞ
れ内径側、外径側の押えリングである。この実施例では
フレキシブルディスク(15)は駆動側において端部軸
(8)゛と常温ダンパ(4)を接続するように配設され
ている。端部軸(8)とトルクチューブ(1)とは直接
結合されている。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which (15) is a flexible disk, and (lea) and (16b) are retaining rings on the inner and outer diameter sides, respectively. In this embodiment, the flexible disk (15) is arranged to connect the end shaft (8) and the normal temperature damper (4) on the drive side. The end shaft (8) and the torque tube (1) are directly connected.

その他第2図におけると同一符号は同一部分を示してお
り、説明を省略する。
The same reference numerals as in FIG. 2 indicate the same parts, and the explanation will be omitted.

次に動作について説明する。フレキシブルディスク(1
5)は、コイル取付軸(2)が液体ヘリウムにより冷却
されて熱収縮した場合、その収縮を容易に許容するよう
に変形して熱応力の発生を防止する。さらに、第1図か
ら明らかなように、駆動側端部軸(8)、トルクチュー
ブ(1)、その中央部をなすコイル取付軸(2)、反駆
動側端部軸(9)は、界磁コイル(3)のコイル取付軸
(2)への巻回完了後、ヘリウム外筒(6)を取付けた
状態で直接結合され、それ自体十分な曲げ剛性をもった
完全な軸系を形成する。そしてその軸系は回転子の最終
組立状態の一部を構成するものであり、−度、軸系の組
立てを行った後、フレキシブルディスク(15)や常温
ダンパ(4)の取付けのために分解する必要が生じない
構造物である。従って、コイル取付軸(2)のバランス
調整を行う際には、常温ダンパ(4)の無い状態で端部
軸(8)、(9)をトルクチューブ(1)に締結し、回
転体として取扱うことができる。このため、バランス調
整作業は高精度に、かつ、容易に行うことができ、かつ
、特殊な治具や加工等、−切不要となる。
Next, the operation will be explained. Flexible disk (1
5) When the coil mounting shaft (2) is cooled by liquid helium and thermally shrinks, the coil is deformed to easily accept the shrinkage, thereby preventing the generation of thermal stress. Furthermore, as is clear from Fig. 1, the drive side end shaft (8), the torque tube (1), the coil mounting shaft (2) forming the center thereof, and the non-drive side end shaft (9) are After the magnetic coil (3) has been wound around the coil mounting shaft (2), it is directly connected with the helium outer cylinder (6) attached, forming a complete shaft system that itself has sufficient bending rigidity. . The shaft system forms part of the final assembled state of the rotor, and after the shaft system is assembled, it is disassembled to install the flexible disk (15) and room temperature damper (4). This is a structure where there is no need to do so. Therefore, when adjusting the balance of the coil mounting shaft (2), the end shafts (8) and (9) are fastened to the torque tube (1) without the room temperature damper (4) and handled as a rotating body. be able to. Therefore, the balance adjustment work can be performed with high precision and easily, and special jigs, processing, etc. are not required.

バランス調整後、常温ダンパ(4)、フレキシブルディ
スク(15)、押えリング(16a) 、 (16b)
等を組立て、最終的な回転子が完成する。
After balance adjustment, room temperature damper (4), flexible disc (15), presser ring (16a), (16b)
etc., to complete the final rotor.

ちなみに、フレキシブルディスク(15)、内径側押え
リング(16a)の内径が端部軸の駆動側フランジ(8
a)より寸法的に小さい場合に必要となる。端部軸のフ
ランジ(8a)を焼嵌めによる取外し可能な構造とする
ことは、通常、火力発電機用大型タービン発ttll”
Cら用いられている周知の構造であり、何ら問題が無い
By the way, the inner diameter of the flexible disk (15) and inner diameter side retaining ring (16a) is the drive side flange (8) of the end shaft.
a) Required for smaller dimensions. Making the flange (8a) of the end shaft removable by shrink fitting is usually used in large turbines for thermal power generators.
This is a well-known structure used by C. et al., and there are no problems with it.

なお、上記実施例では駆動側にフレキシブルディスクを
配設したものを示したが、反駆動側、もしくはその両方
にフレキシブルディスクを設けてもよく、要するに、端
部軸とトルクチューブ、コイル取付軸の構成する軸系に
フレキシブルディスクを介在させない構造とすることに
より、上記実施例と同様の効果を奏する。
In the above embodiment, a flexible disk is provided on the drive side, but a flexible disk may be provided on the non-drive side or both.In short, the flexible disk may be provided on the non-drive side or both. By adopting a structure in which a flexible disk is not interposed in the shaft system, the same effects as in the above embodiment can be achieved.

[発明の効果] 以上のように、この発明によれば、端部軸とトルクチュ
ーブ、コイル取付軸を直接結合するので、常温ダンパの
取付けされていない状態でも、それ自体十分曲げ剛性を
もった完全な軸系が得られ、コイル取付軸のバランス調
整作業が高精度に、かつ、容易に行うことができ、回転
体としての信頼性が大きく向上する。また、特殊な治具
や加工が不要となるので経済性が向上する等の効果があ
る。
[Effects of the Invention] As described above, according to the present invention, since the end shaft, the torque tube, and the coil mounting shaft are directly connected, the shaft itself has sufficient bending rigidity even when no room temperature damper is attached. A complete shaft system can be obtained, the balance adjustment work of the coil mounting shaft can be performed easily and with high precision, and the reliability of the rotating body is greatly improved. Furthermore, since special jigs and processing are not required, there are effects such as improved economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の縦断面図、第2図は従来
の超電導回転電機の回転子の縦断面図、第3図は同じく
他の変形の要部拡大側面図、第4図は同じく問題点を説
明するための縦断面図である。 (1)・・トルクチューブ、(2)・・コイル取付軸、
(3)・・超電導界磁コイル、(4)・・常温ダンパ、
(8)、(9)・・端部軸、(15)・・フレキシブル
ディスク。 なお、各図中、同一符号は同−又は相当部分を示す。
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of a rotor of a conventional superconducting rotating electric machine, Fig. 3 is an enlarged side view of the main part of another modification, and Fig. 4. is a longitudinal cross-sectional view for explaining the same problem. (1) Torque tube, (2) Coil mounting shaft,
(3)...Superconducting field coil, (4)...Room temperature damper,
(8), (9)... End shaft, (15)... Flexible disk. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 液体ヘリウムにより極低温に冷却して用いる超電導界磁
コイルと、この超電導界磁コイルを取付け液体ヘリウム
で同時に冷却されるコイル取付軸と、このコイル取付軸
の軸方向両側に配設され常温で用いられる端部軸と、前
記コイル取付軸と前記端部軸の間に設けられ常温部と極
低温部とを結合するトルクチューブと、前記界磁コイル
、コイル取付軸、トルクチューブを囲繞して両側の前記
端部軸を結合し常温で用いられる常温ダンパと、この常
温ダンパと前記コイル取付軸で、トルクチューブの温度
差により発生する熱応力を緩和するための軸方向に可撓
なフレキシブルディスクと、を備えた超電導回転電機の
回転子において、前記フレキシブルディスクが少なくと
も一方の前記端部軸と前記常温ダンパを接続して配設さ
れ、両側の前記端部軸と前記トルクチューブおよび前記
コイル取付軸は直接結合していることを特徴とする超電
導回転電機の回転子。
A superconducting field coil that is cooled to an extremely low temperature with liquid helium, a coil mounting shaft to which this superconducting field coil is mounted and simultaneously cooled with liquid helium, and a coil mounting shaft that is installed on both sides of the coil mounting shaft and used at room temperature. a torque tube that is provided between the coil mounting shaft and the end shaft and connects the normal temperature section and the cryogenic section; and a torque tube that surrounds the field coil, the coil mounting shaft, and the torque tube, a room-temperature damper that connects the end shaft of the torque tube and is used at room temperature, and a flexible disk that is flexible in the axial direction to relieve thermal stress caused by a temperature difference in the torque tube between the room-temperature damper and the coil mounting shaft. In the rotor of a superconducting rotating electric machine, the flexible disk is arranged to connect at least one of the end shafts and the normal temperature damper, and the flexible disks are connected to the end shafts on both sides, the torque tube, and the coil mounting shaft. A rotor of a superconducting rotating electrical machine characterized by being directly coupled.
JP2080623A 1990-03-30 1990-03-30 Rotor for superconducting rotary electric machine Pending JPH03285559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080623A JPH03285559A (en) 1990-03-30 1990-03-30 Rotor for superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080623A JPH03285559A (en) 1990-03-30 1990-03-30 Rotor for superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPH03285559A true JPH03285559A (en) 1991-12-16

Family

ID=13723482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080623A Pending JPH03285559A (en) 1990-03-30 1990-03-30 Rotor for superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPH03285559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211921B2 (en) * 2000-12-20 2007-05-01 Siemens Aktiengesellschaft Winding support of a superconductive rotor, comprising a structure to compensate for axial expansion of the support
JP2008301665A (en) * 2007-06-04 2008-12-11 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of superconducting rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127402A (en) * 1974-08-30 1976-03-08 Fuji Electric Co Ltd Chodendokaitenki no kaitenshi
JPS5858860A (en) * 1981-09-30 1983-04-07 Hitachi Ltd Multiple cylindrical rotor
JPS59129562A (en) * 1983-01-14 1984-07-25 Hitachi Ltd Liquid level meter for superconductive rotor
JPS62236357A (en) * 1986-04-07 1987-10-16 Hitachi Ltd Rotor for superconductive rotary machnine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127402A (en) * 1974-08-30 1976-03-08 Fuji Electric Co Ltd Chodendokaitenki no kaitenshi
JPS5858860A (en) * 1981-09-30 1983-04-07 Hitachi Ltd Multiple cylindrical rotor
JPS59129562A (en) * 1983-01-14 1984-07-25 Hitachi Ltd Liquid level meter for superconductive rotor
JPS62236357A (en) * 1986-04-07 1987-10-16 Hitachi Ltd Rotor for superconductive rotary machnine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211921B2 (en) * 2000-12-20 2007-05-01 Siemens Aktiengesellschaft Winding support of a superconductive rotor, comprising a structure to compensate for axial expansion of the support
JP2008301665A (en) * 2007-06-04 2008-12-11 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of superconducting rotary electric machine

Similar Documents

Publication Publication Date Title
US6633106B1 (en) Axial gap motor-generator for high speed operation
US6169353B1 (en) Method for manufacturing a rotor having superconducting coils
JPS6035939A (en) Rotor and method of producing same
US20130093273A1 (en) Rotary electric machine
WO2007069332A1 (en) Permanent magnet generator rotor for gas turbine, its manufacturing method, and gas turbine
US5323080A (en) One-piece rotor shaft for two-pole rotor
US4237392A (en) Rotor member for a superconducting generator
US4291997A (en) Flexible support for superconducting machine rotor
JPH03285559A (en) Rotor for superconducting rotary electric machine
US4329602A (en) Superconducting rotor
US5847481A (en) Vehicle transmission system fitted with an electrical retarder
US5855264A (en) Vehicle transmission system fitted with an electrical retarder
JP3302705B2 (en) Superconducting rotating electric machine rotor
GB2099231A (en) Rotor for superconductive rotary electric machine
JP3461952B2 (en) Superconducting rotating electric machine rotor
JP2529382B2 (en) Insertion molding method of superconducting field coil in rotor of superconducting rotating electric machine
JP2003239971A (en) Superconductivity magnetic bearing device and superconductivity flywheel device
JPS60128839A (en) Salient-pole type rotor
JP2667063B2 (en) Superconducting rotating electric machine rotor
US5838084A (en) Vehicle transmission system fitted with an electrical retarder
JPS6248473B2 (en)
JP2672894B2 (en) Superconducting rotating electric machine rotor
JPH03284162A (en) Rotor of superconductive revolving armature
JPH0130675Y2 (en)
JPH0242045Y2 (en)