JPS63190103A - Method for controlling carbon potential in sintering furnace - Google Patents

Method for controlling carbon potential in sintering furnace

Info

Publication number
JPS63190103A
JPS63190103A JP2000587A JP2000587A JPS63190103A JP S63190103 A JPS63190103 A JP S63190103A JP 2000587 A JP2000587 A JP 2000587A JP 2000587 A JP2000587 A JP 2000587A JP S63190103 A JPS63190103 A JP S63190103A
Authority
JP
Japan
Prior art keywords
chamber
amt
carbon
chambers
sintering furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000587A
Other languages
Japanese (ja)
Inventor
Shunsaku Kido
城戸 俊作
Yoshiharu Nakano
中野 義春
Yoshinori Oguma
小熊 由則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2000587A priority Critical patent/JPS63190103A/en
Publication of JPS63190103A publication Critical patent/JPS63190103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain sintered bodies by measuring the amt. of CO2 in each of presintering, sintering and slow cooling chambers and by controlling the amt. of atmospheric gas fed into each of the chambers in accordance with the measured amt. of CO2 so as to maintain a prescribed carbon potential (amt. of carbon in atmosphere) in each of the chambers. CONSTITUTION:Sensors for measuring the amt. of CO2 are fitted to the presintering, sintering and slow cooling chambers of a sintering furnace in which sintered bodies are continuously produced. The amt. of CO2 in each of the chambers is measured with the sensors and the amt. of atmospheric gas fed into each of the chambers is controlled in accordance with the measured amt. of CO2 so as to maintain a prescribed carbon potential in each of the chambers. Thus, sintered bodies having prescribed dimensions and physical properties are stably and continuously obtd.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、主として、予焼室、本焼室及び徐冷室を有し
、かつ焼結体を連続的に製造する焼結炉において、各室
内のカーボンポテンシャル(雰囲気中の炭素量)を制御
する&11御方法に圓する。
Detailed Description of the Invention (Industrial Application Field) The present invention mainly relates to a sintering furnace that has a pre-firing chamber, a final firing chamber, and an annealing chamber, and that continuously manufactures sintered bodies. The method is based on &11 to control the carbon potential (amount of carbon in the atmosphere) in each room.

〔従来の技術〕[Conventional technology]

従来、この種の連続焼結炉、例えば、メツシュベルト式
の焼結炉においては、予焼室、本焼室及び徐冷室内を正
圧に保持し、かつ酸化を防止するために還元性のガスが
供給されている。ぞして、この還元性ガスとしては、例
えば、天然ガス(メタン主成分)と空気とを約1050
〜1100℃に加熱し、ニッケルを触媒として生成した
水素(+12)40%、−酸化炭素(Co)20%、窒
素(N2)38%を主成分としたものが使用されている
Conventionally, in this type of continuous sintering furnace, for example, a mesh belt type sintering furnace, reducing gas is used to maintain positive pressure in the pre-firing chamber, final firing chamber, and slow cooling chamber, and to prevent oxidation. is supplied. Therefore, as this reducing gas, for example, natural gas (methane main component) and air are mixed at a ratio of about 1050
The main components used are 40% hydrogen (+12), 20% -carbon oxide (Co), and 38% nitrogen (N2), which are heated to ~1100°C and generated using nickel as a catalyst.

(発明が解決しようとする問題点) ところで、焼結体の寸法及び物性は、焼結炉内の雰囲気
、温度条件によって左右され、例えば、FO−C系、F
e−C−Cu系の焼結体においては、含有する炭素量に
よって焼結体の寸法及び物性が大幅に変化する。このた
め、従来は、本焼室内の雰囲気中の炭素量、カーボンポ
テンシャルを一定に保つことが試みられたが、でき上が
った製品の品質は、十分に安定したものとはならなかっ
た。
(Problems to be Solved by the Invention) By the way, the dimensions and physical properties of the sintered body depend on the atmosphere and temperature conditions in the sintering furnace.
In e-C-Cu-based sintered bodies, the dimensions and physical properties of the sintered bodies vary significantly depending on the amount of carbon contained. For this reason, conventional attempts have been made to keep the carbon content and carbon potential in the atmosphere within the firing chamber constant, but the quality of the finished product has not been sufficiently stable.

本発明は、上記事情に鑑みてなされたもので、その目的
とづるところは、寸法精瓜及び物性が安定し、かつ品質
の良好な製品が確実にf7られる焼結炉におけるカーボ
ンポテンシャル制御方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a carbon potential control method in a sintering furnace that can ensure stable dimensional refinement and physical properties and produce products of good quality. It is about providing.

(問題点を解決するための手段〕 上記目的を達成するために、本発明は、予焼室、本焼室
及び徐冷室内に、それぞれ二酸化炭素を検出するセンサ
ーを配置し、これらのセンサーが検出する二酸化炭素量
に阜づいて、上記各室内に供給する雰囲気ガスの伍を制
御することにより、各室内のカーボンポテンシャルを所
定値にそれぞれ保持するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention arranges sensors for detecting carbon dioxide in each of the pre-burning chamber, the final baking chamber and the slow cooling chamber, and these sensors The carbon potential in each chamber is maintained at a predetermined value by controlling the level of atmospheric gas supplied to each chamber according to the detected amount of carbon dioxide.

(作 用) 本発明の焼結炉におけるカーボンポテンシャル制御方法
にあっては、予焼室、本焼室及び徐冷室内の二酸化炭素
mをそれぞれ検出し、これらの二酸化炭素量に基づいて
、各室内に供給する炭素6iを制御し、各室内のカーボ
ンポテンシャルを所定値に保持する。
(Function) In the carbon potential control method in a sintering furnace of the present invention, carbon dioxide m in the prefiring chamber, final firing chamber, and slow cooling chamber is detected, and each carbon dioxide m is detected based on these carbon dioxide amounts. The carbon 6i supplied into the room is controlled to maintain the carbon potential in each room at a predetermined value.

〔実施例〕〔Example〕

以下、第1図と第2図に基づいて本発明の一実施例を説
明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 and 2.

図中符号1はメツシュベルト式連続焼結炉であり、この
メツシュベルト式連続焼結炉1は、炉体2内が仕切板(
バッフルプレート)3で予焼室4、本焼室5及び徐冷室
6に分けられると共に、これらの室4.5.6内を連続
的に無端状のメツシュベルト7が移動して圧粉体を搬送
焼結するようになっている。
Reference numeral 1 in the figure is a mesh belt type continuous sintering furnace, and this mesh belt type continuous sintering furnace 1 has a partition plate (
A baffle plate) 3 divides the compact into a pre-firing chamber 4, a final firing chamber 5, and an annealing chamber 6, and an endless mesh belt 7 moves continuously within these chambers 4,5,6 to convey the green compact. It is designed to be transported and sintered.

上記各室4.5.6内には、手動弁8を介してそれぞれ
還元性ガス供給源9から還元性ガス(水素40%、−酸
化炭素20%、窒素38%)が供給されていると共に、
エンリッチガス供給源10からメタンガスが電磁弁11
を介してそれぞれ供給されるようになっている。また、
各室4,5゜6には、二酸化炭素検出用の検出端12が
それぞれ配置されており、これらの検出端12″C採取
されたガスは、赤外線吸収式の二酸化炭素計13に導か
れ、二酸化炭素量が計測されるようになっている。そし
て、各二酸化炭素計13からの信号は、電磁弁11の操
作を制御するコントローラ14にそれぞれ入力されてお
り、各コントローラ14は、上記各二酸化炭素計13の
計測値とあらかじめ設定値C+ 、C2* 03とが一
致するように電磁弁11を制御して、各室4.5.6内
に供給するメタンガス晴を調整するようになっている。
Reducing gas (40% hydrogen, -20% carbon oxide, 38% nitrogen) is supplied into each of the above chambers 4,5,6 from a reducing gas supply source 9 via a manual valve 8. ,
Methane gas is supplied from the enriched gas supply source 10 to the solenoid valve 11
They are supplied through the respective channels. Also,
A detection end 12 for detecting carbon dioxide is arranged in each chamber 4, 5゜6, and the gas collected by these detection ends 12''C is led to an infrared absorption type carbon dioxide meter 13. The amount of carbon dioxide is measured.The signals from each carbon dioxide meter 13 are input to a controller 14 that controls the operation of the electromagnetic valve 11, and each controller 14 is configured to measure the amount of carbon dioxide. The solenoid valve 11 is controlled so that the measured value of the carbon meter 13 matches the preset values C+, C2*03, and the methane gas venting to be supplied into each chamber 4.5.6 is adjusted. .

なお、上記予焼室4内に供給される還元性ガス及びメタ
ンガスの吹出し口は予焼室4の入口側に向けると共に、
徐冷室6内に供給される還元性ガス及びメタンガスの吹
出し口は徐冷v6の出口側に向けて配置されている。ま
た、予焼94内の検出端12は本焼室5寄りに設置され
ている。
Note that the outlets for the reducing gas and methane gas supplied into the pre-burning chamber 4 are directed toward the entrance side of the pre-burning chamber 4, and
The outlets for the reducing gas and methane gas supplied into the slow cooling chamber 6 are arranged toward the exit side of the slow cooling v6. Further, the detection end 12 within the pre-firing 94 is installed closer to the final firing chamber 5.

次に、上記のように構成されたメツシュベルト式連続焼
結炉1を用いて本発明の方法を実施する場合について説
明する。
Next, a case will be described in which the method of the present invention is implemented using the mesh belt type continuous sintering furnace 1 configured as described above.

まず、炉体2内の各室4.5.6には、それぞれ手動弁
8を介して所定量の還元性ガスが供給されている状態に
おいて、従来同様、駆動されているメツシュベルト7上
に圧粉体(被焼結体)を載置搬送して、予焼室4、本焼
室5、徐冷室6の順に連続的に通過させて加熱し、焼結
を行なう。
First, in a state where a predetermined amount of reducing gas is supplied to each chamber 4, 5, 6 in the furnace body 2 through the manual valve 8, pressure is applied to the mesh belt 7 being driven, as in the conventional case. The powder (body to be sintered) is placed and conveyed, and is passed through a pre-firing chamber 4, a final firing chamber 5, and an annealing chamber 6 in this order to be heated and sintered.

この場合、炉体2内の各室4.5.6においては、 GO2+ ト121士 CO+H20 の可逆反応が成立しており、その平衡条件は、であられ
せる。ここで、−酸化炭素及び水素は上記還元性ガス供
給源9から常時所定間が供給されているから一定であり
、従って、 水蒸気の分圧/二酸化炭素の分圧−一定となり、二酸化
炭素の分圧がわかれば、炉体2の各室4.5.6内の雰
囲気ガスの状態が把握できる。そして、この二酸化炭素
の分圧が凸くなると(カーボンポテンシャルが小さくな
ると)、被焼結体には脱炭作用として働き、また、二R
(ヒ炭素の分圧が低くなると、被焼結体には浸炭作用と
して働く。
In this case, in each chamber 4.5.6 in the furnace body 2, a reversible reaction of GO2+ and CO+H20 is established, and the equilibrium condition is as follows. Here, -carbon oxide and hydrogen are always supplied from the reducing gas supply source 9 for a predetermined period of time, so they are constant, so the partial pressure of water vapor/partial pressure of carbon dioxide-is constant, and the partial pressure of carbon dioxide is constant. If the pressure is known, the state of the atmospheric gas in each chamber 4.5.6 of the furnace body 2 can be grasped. When the partial pressure of this carbon dioxide increases (when the carbon potential decreases), it acts as a decarburizing effect on the sintered body, and also
(When the partial pressure of carbon is lowered, it acts as a carburizing effect on the body to be sintered.

そこで、各二酸化炭素ff1113によって計測された
各室4.5.6の二酸化炭素の検出値と、各コントロー
ラ14に設定された設定IC+、C2゜C3とを比較し
、その結果、二酸化炭素の検出値が大きい場合には、各
コントローラ14がそれぞれ個々に各電磁弁11を操作
してメタンガスを各室4.5.6に供給すると共に、上
記検出値が小さい場合には、メタンガスの供給を停止す
る。これにより、各室4,5.6の二酸化炭素ff1(
カーボンポテンシャル)はあらかじめ設定された値に保
持されるから、連続して焼結されている製品の寸法及び
物性が安定化して品質の良好な製品が円滑に得られる。
Therefore, the detected value of carbon dioxide in each chamber 4.5.6 measured by each carbon dioxide ff1113 is compared with the setting IC+, C2°C3 set in each controller 14, and as a result, the detected value of carbon dioxide is If the detected value is large, each controller 14 individually operates each electromagnetic valve 11 to supply methane gas to each chamber 4.5.6, and if the detected value is small, the supply of methane gas is stopped. do. As a result, carbon dioxide ff1(
Since the carbon potential (carbon potential) is maintained at a preset value, the dimensions and physical properties of the continuously sintered products are stabilized, and products of good quality can be smoothly obtained.

また、各室4,5.6はそれぞれ仕切機3で仕切られて
いるから、各室4,5.6内での雰囲気の制御性が向上
する。
Moreover, since each chamber 4, 5.6 is partitioned off by the partition machine 3, the controllability of the atmosphere within each chamber 4, 5.6 is improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、予焼室、本焼室及び徐
冷室内に、それぞれ二酸化炭素を検出するセンサーを配
置し、これらのセンサーが検出する二酸化炭素量に基づ
いて、上記各室内に供給覆る雰囲気ガスの吊をそれぞれ
個別に制御することにより、各室内のカーボンポテンシ
ャルをそれぞれ所定値に保持することができる。従って
、所定の寸法及び物性の焼結体を安定的にかつ連続して
得ることができるという優れた効果を右する。
As explained above, the present invention arranges sensors for detecting carbon dioxide in each of the pre-burning chamber, the main-firing chamber, and the slow-cooling chamber, and detects the amount of carbon dioxide in each of the above rooms based on the amount of carbon dioxide detected by these sensors. By individually controlling the supply of atmospheric gas to each room, the carbon potential in each room can be maintained at a predetermined value. Therefore, it has an excellent effect of being able to stably and continuously obtain a sintered body having predetermined dimensions and physical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の一実施Mを示すもので、第1
図は概略構成図、第2図は側面図である。 1・・・・・・メツシュベルト式連続焼結炉、4・・・
・・・予焼室、5・・・・・・本焼室、6・・・・・・
徐冷室、10・・・・・・エンリッチガス供給源、11
・・・・・・電磁弁、12・・・・・・検出端、13・
・・・・・二酸化炭素計、14・・・・・・コントロー
ラ。
FIG. 1 and FIG. 2 show one embodiment M of the present invention.
The figure is a schematic configuration diagram, and FIG. 2 is a side view. 1... Metschbelt type continuous sintering furnace, 4...
...Pre-firing room, 5...Final firing room, 6...
Annealing chamber, 10...Enriched gas supply source, 11
...Solenoid valve, 12...Detection end, 13.
...Carbon dioxide meter, 14...Controller.

Claims (1)

【特許請求の範囲】[Claims] 予焼室、本焼室及び徐冷室を有し、焼結体を連続的に製
造する焼結炉におけるカーボンポテンシャル制御方法に
おいて、上記予焼室、本焼室及び徐冷室内に、それぞれ
二酸化炭素を検出するセンサーを配置し、これらのセン
サーが検出する二酸化炭素量に基づいて、上記各室内に
供給する雰囲気ガスの量を個別に制御することにより、
該各室内のカーボンポテンシャルを所定値にそれぞれ保
持することを特徴とする焼結炉におけるカーボンポテン
シャル制御方法。
In a carbon potential control method in a sintering furnace that has a pre-firing chamber, a final firing chamber, and an annealing chamber and continuously manufactures sintered bodies, carbon dioxide is contained in each of the pre-firing chamber, the final firing chamber, and the annealing chamber. By arranging sensors that detect carbon and individually controlling the amount of atmospheric gas supplied to each of the above rooms based on the amount of carbon dioxide detected by these sensors,
A method for controlling carbon potential in a sintering furnace, characterized in that the carbon potential in each chamber is maintained at a predetermined value.
JP2000587A 1987-01-30 1987-01-30 Method for controlling carbon potential in sintering furnace Pending JPS63190103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000587A JPS63190103A (en) 1987-01-30 1987-01-30 Method for controlling carbon potential in sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000587A JPS63190103A (en) 1987-01-30 1987-01-30 Method for controlling carbon potential in sintering furnace

Publications (1)

Publication Number Publication Date
JPS63190103A true JPS63190103A (en) 1988-08-05

Family

ID=12015014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000587A Pending JPS63190103A (en) 1987-01-30 1987-01-30 Method for controlling carbon potential in sintering furnace

Country Status (1)

Country Link
JP (1) JPS63190103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118705A (en) * 1993-10-19 1995-05-09 Kanagawa Pref Gov Method for controlling carbon content of metal powder compact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492707A (en) * 1972-04-27 1974-01-11
JPS6013002A (en) * 1983-07-05 1985-01-23 Mitsubishi Metal Corp Continuous sintering furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492707A (en) * 1972-04-27 1974-01-11
JPS6013002A (en) * 1983-07-05 1985-01-23 Mitsubishi Metal Corp Continuous sintering furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118705A (en) * 1993-10-19 1995-05-09 Kanagawa Pref Gov Method for controlling carbon content of metal powder compact

Similar Documents

Publication Publication Date Title
EP0541711B1 (en) Method for controlling the conversion of iron-containing reactor feed into iron carbide
US20080073002A1 (en) Carburization treatment method and carburization treatment apparatus
JPS63190103A (en) Method for controlling carbon potential in sintering furnace
US4490108A (en) Process for reducing the oxygen content of the atmosphere in a heat treatment furnace and heat treatment furnace for carrying out this process
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
US2546013A (en) Means and method for producing special heat-treating gaseous atmospheres
CA1144742A (en) Method of operating a continuous ceramic kiln
ES8104974A1 (en) Method for heat treatment of clay and refractory ware.
GB1560175A (en) Process for adjusting and regulating desired redox potentials in gases
JPS60251265A (en) Apparatus for controlling heat-treatment in atmosphere
EP0024106B1 (en) Method of heat treating ferrous workpieces
JPS58217191A (en) Method of reducing oxygen content of atmosphere of heating furnace and furnace executing said method
JP3307697B2 (en) Batch type firing furnace
KR100871241B1 (en) A carburization treatment method
US1851831A (en) Atmospheric control for heat treating furnaces
JPH02130387A (en) Industrial furnace
CA1181586A (en) Method and apparatus for controlling the atmosphere in a carburizing furnace utilizing a cascaded valving system
JPS53132417A (en) Control method for atmosphere inside heating furnace of nonoxidizing type
JPS6233753A (en) Control method for atmospheric gas
JPS5713169A (en) Method for controlling concentration of carbon in carburizing atmosphere
TW268091B (en) A roller furnace
CN209537600U (en) A kind of high carbon potential regulator control system for carburizer
JPS61280311A (en) Combustion type heating furnace
CN106839757A (en) A kind of controllable ceramic sintering kiln of firing atmosphere
JPS6257592B2 (en)