JPS58217191A - Method of reducing oxygen content of atmosphere of heating furnace and furnace executing said method - Google Patents

Method of reducing oxygen content of atmosphere of heating furnace and furnace executing said method

Info

Publication number
JPS58217191A
JPS58217191A JP58049053A JP4905383A JPS58217191A JP S58217191 A JPS58217191 A JP S58217191A JP 58049053 A JP58049053 A JP 58049053A JP 4905383 A JP4905383 A JP 4905383A JP S58217191 A JPS58217191 A JP S58217191A
Authority
JP
Japan
Prior art keywords
furnace
heating furnace
fuel gas
atmosphere
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58049053A
Other languages
Japanese (ja)
Other versions
JPS6046357B2 (en
Inventor
フリツツ・ペツツイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludwig Riedhammer GmbH and Co KG
Original Assignee
Ludwig Riedhammer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludwig Riedhammer GmbH and Co KG filed Critical Ludwig Riedhammer GmbH and Co KG
Publication of JPS58217191A publication Critical patent/JPS58217191A/en
Publication of JPS6046357B2 publication Critical patent/JPS6046357B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • F27B9/025Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks having two or more superimposed tracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • F27B9/3011Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally
    • F27B2009/3022Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally with arrangements to maintain oxidising reducing or neutral zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/02Charges containing ferrous elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/02Charges containing ferrous elements
    • F27M2001/023Ferrites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、セラミック材料、特に軟磁性フェライト用の
加熱炉の雰囲気の酸素含量を所定の値に低下させる方法
並びに該方法を実施する炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing the oxygen content of the atmosphere of a heating furnace for ceramic materials, in particular soft magnetic ferrite, to a predetermined value, as well as a furnace for carrying out the method.

セラミック材料を焼成するための加熱炉は、連続式加熱
炉又はパッチ式に作業する炉として公知である。この種
の炉で通常の組成の材料、例えば磁器又はそれに類似し
たものを焼成する場合には、炉雰囲気の組成を焼成材料
の化学的性質に合せるために、大した問題は生じない。
Furnaces for firing ceramic materials are known as continuous furnaces or patch-working furnaces. When firing materials of conventional composition in this type of furnace, for example porcelain or the like, no major problems arise, since the composition of the furnace atmosphere is adapted to the chemical nature of the firing material.

この種の焼成材料の多くのものは酸化性雰囲気内で焼成
されねばならず、この場合炉雰囲気には所定量の空気又
は酸素が供給される。その他の焼成材料は中性又は還元
性雰囲気を必要としかつこの場合にも炉雰囲気を相応し
て調整することに困難はない。
Many of these firing materials must be fired in an oxidizing atmosphere, in which case a certain amount of air or oxygen is supplied to the furnace atmosphere. Other firing materials require a neutral or reducing atmosphere and in this case too there is no difficulty in adjusting the furnace atmosphere accordingly.

特に電子工業分骨においてはFe2O3の他になお別の
金属酸化物、例えば酸化亜鉛、酸化ニッケル、酸化マン
ガン等を含有するフェロ−スピンネルであるフェライト
が増々使用されるようになった。特に軟磁性亜鉛/マン
ガン−フェライトは、加熱の際に酸素を著しい量で放出
し、それによって炉雰囲気の組成を変化させる特性を有
する。他面、該材料の磁性特性は著しく焼成雰囲気の組
成に依存するので、1さにこの焼成材料からの酸素の放
出は著しい技術的な困難を惹起する。
Particularly in the electronics industry, ferrites, which are ferro-spinels, are increasingly being used which contain, in addition to Fe2O3, other metal oxides, such as zinc oxide, nickel oxide, manganese oxide, etc. In particular, soft magnetic zinc/manganese ferrites have the property of liberating significant amounts of oxygen upon heating, thereby changing the composition of the furnace atmosphere. On the other hand, since the magnetic properties of the material are highly dependent on the composition of the sintering atmosphere, the release of oxygen from the sintered material poses considerable technical difficulties.

同様な焼成挙動は、周知のように高温で酸素を放出して
F e 304、いわゆる磁鉄鉱に移行する純粋なF 
e 20 sから成る材料が呈する。この場合にもまた
、炉雰囲気は焼成工程中に酸素で富化される。
A similar calcination behavior is observed in pure F, which, as is well known, releases oxygen at high temperatures and transitions to F e 304, the so-called magnetite.
A material consisting of e 20 s exhibits. In this case too, the furnace atmosphere is enriched with oxygen during the firing process.

原理的には、焼成材料から放出される酸素を、それかも
はや有害とならない程度に、窒素層の供給量を高めるこ
とによって希釈することも可能である。しかし、このた
めに必要な窒素の量は、炉の温度バランスに微妙に支障
をきたす程に大量にすぎ、従って必要な窒素量を炉への
導入前に導入帯域のその都度の温度に加熱するための付
加的手段が講じられねばならない。従って、このように
構成された炉は付加的なバーナ及び復熱室を装備してい
なければならずかつ明らかによシ大量の燃料消費量を必
要とする。
In principle, it is also possible to dilute the oxygen released from the sintered material to such an extent that it is no longer harmful by increasing the amount of nitrogen layer supplied. However, the amount of nitrogen required for this is so large that it subtly disturbs the temperature balance of the furnace, and therefore the required amount of nitrogen must be heated to the respective temperature of the introduction zone before being introduced into the furnace. Additional measures must be taken to ensure this. Furnaces constructed in this way must therefore be equipped with additional burners and recuperation chambers and require significantly higher fuel consumption.

本発明の課題は、酸素を放出するセラミックツチ式に作
業する加熱炉を、炉雰囲気の酸素含量を任意の所定の値
に低下させることができ、しかも焼成材料が酸素を放出
する場合でもそのことができるように改造することであ
った。
It is an object of the present invention to make it possible to reduce the oxygen content of the furnace atmosphere to any predetermined value by using a heating furnace that operates in the oxygen-emitting ceramic type, even if the firing material emits oxygen. The idea was to modify it so that it could be done.

この課題を解決するために、炉の制御すべき位置で炉雰
囲気の酸素含量を測定しかつ測定結果に依存して有利に
は水素を含有する燃料ガスを、所望の酸素含量が生じる
ような量で炉に導入することを提案する。
In order to solve this problem, the oxygen content of the furnace atmosphere is measured at a controlled location in the furnace and, depending on the measurement result, the fuel gas, preferably hydrogen-containing, is supplied in an amount such that the desired oxygen content results. We recommend introducing it into the furnace.

酸素含量の測定、有利には連続的測定のためには、炉内
に1個又は複数個の測定ゾンデを組込む、このことは原
理的にはセラミック材料全焼成するため連続加熱炉にお
いて、例えば***国特許第3016852号明細書から
公知である。この種の測定装置は炉通路の内部まで突入
しかつ炉の外部では相応する表示装置、記録装置及び場
合によシ調節装置と接続されている。
For the measurement, preferably continuous measurement, of the oxygen content, one or more measuring probes are installed in the furnace, which in principle can be used in continuous heating furnaces for the sintering of ceramic materials, for example in West Germany. It is known from National Patent No. 3016852. Measuring devices of this type extend into the interior of the furnace duct and are connected outside the furnace with corresponding display, recording and, if necessary, regulating devices.

ところで、本発明によれば測定ゾンデの範囲で燃料ガス
供給導管を炉通路に案内し、該供給導管の少なくとも1
つを経て前記燃料ガスを炉通路に導入する。
By the way, according to the present invention, the fuel gas supply conduit is guided to the furnace passage in the range of the measuring sonde, and at least one of the supply conduits is
The fuel gas is introduced into the furnace passage through two steps.

燃料ガスとしては、原則的に一酸化炭素でもよいが、水
素含有ガスを使用するのが有利である。しかし、−酸化
水素の場合には、酸素と反応して二酸化炭素となシ、該
ガスは当該の炉温度では既に再び著しい程度でシードア
ールの平衡に基づいて酸素と一酸化炭素に解離されるこ
とに留意されるべきである。従って、水素含有ガスを使
用するのが有利である、この場合にも同様な燃焼生成物
である”水″の解離平衡が存在するが、但し該平衡は大
幅に水の側に寄っている。この場合、含有水素は、いわ
ゆる”溶用ガス″(−酸化炭素と水素の混合物)におけ
るように別のガスとの混合物として存在していてモヨく
、或は例えばメタン、プロパン、ブタン及びその他の類
似した公知の燃料ガスにおけるように、別の物質に化学
的に結合されていてもよい。本発明による別体の燃料ガ
スの導入法は、炉加熱とは完全に無関係であシかっ専ら
炉雰囲気内に存在する酸素と反応して該酸素を化学的に
結合する目的を有している。本発明方法は、燃料加熱炉
においてもまた電気加熱炉においても実施することがで
きる。
The fuel gas may in principle be carbon monoxide, but it is advantageous to use a hydrogen-containing gas. However, - in the case of hydrogen oxide, it reacts with oxygen to form carbon dioxide, which gas is already dissociated to oxygen and carbon monoxide to a significant extent at the relevant furnace temperature due to the equilibrium of the seed R. It should be noted that It is therefore advantageous to use a hydrogen-containing gas; in this case too, a similar dissociation equilibrium exists for the combustion product "water", although this equilibrium is significantly shifted towards water. In this case, the hydrogen contained may be present in a mixture with another gas, as in the so-called "dissolved gas" (a mixture of carbon oxide and hydrogen), or it may be present in a mixture with other gases, such as methane, propane, butane and other gases. It may also be chemically bonded to another substance, as in similar known fuel gases. The method of introducing a separate fuel gas according to the present invention is completely unrelated to furnace heating, but has the sole purpose of reacting with oxygen present in the furnace atmosphere and chemically bonding the oxygen. . The process according to the invention can be carried out both in fuel-heated furnaces and in electrically-heated furnaces.

本発明の有利な1実施態様によれば、測定ゾンデは燃料
ガス供給導管を経て炉通路内に導入される燃料ガスの量
を所定の設定値に依存して調節する調節装置と接続され
ている。加熱炉が連続式加熱炉である場合には、炉通路
が鉛直に配置されたスクリンによって多数の室に分割さ
れておシ、該室の夫々が少なくとも1つの酸素測定ゾン
デ並びに少なくとも1つの燃料ガス供給導管を有してい
るのが有利である。このように構成された炉においては
、炉の全長に渡る酸素含量を、鉛直スクリンによって相
互に隔離された夫々の室内で別々に調節し、形式的に任
意の曲線形で連続加熱炉の全長に渡って延びる酸素曲線
を描くことができるようにすることが可能である。
According to an advantageous embodiment of the invention, the measuring probe is connected to a regulating device that adjusts the amount of fuel gas introduced into the furnace channel via the fuel gas supply line as a function of a predetermined setpoint. . If the furnace is a continuous furnace, the furnace passage is divided by vertically arranged screens into a number of chambers, each of which contains at least one oxygen measuring probe and at least one fuel gas probe. It is advantageous to have a supply conduit. In a furnace constructed in this way, the oxygen content over the entire length of the furnace is adjusted separately in each chamber separated from each other by a vertical screen, and formally arranged in an arbitrary curve shape over the entire length of the continuous heating furnace. It is possible to be able to draw an oxygen curve that extends across.

燃料ガス供給導管は、焼成材料の近く、特に炉通路の近
くで該通路に開口させるのか有利である。開口位置を選
択する際には、排除されるべき酸素含量は特に焼成材料
自体から発生することを考慮すべきであり、従ってその
近くに燃料ガス供給導管を配置するのが有利である。そ
の際には、酸素測定ゾンデを前記供給導管の幾分か上に
配置するのが有利である、それにより炉雰囲気内の拡散
によって既に適度に緩和された値が測定ゾンデによって
得られる。これらのことは炉の構造には無関係に、即ち
連続式加熱炉にもまたパッチ式に作業する加熱炉にも当
嵌る。
Advantageously, the fuel gas supply conduit opens into the sintering material close to the sintering material, in particular close to the furnace duct. When choosing the opening position, it should be taken into account that the oxygen content to be excluded originates in particular from the sintered material itself, and it is therefore advantageous to arrange the fuel gas supply conduit in its vicinity. In this case, it is advantageous to arrange the oxygen measuring probe somewhat above the feed line, so that the measuring probe obtains a value that is already moderately relaxed due to diffusion in the furnace atmosphere. These apply irrespective of the construction of the furnace, ie both for continuous heating furnaces and for furnaces operating in patches.

また、炉槽断面の全体に渡って分配されて多数の酸素測
定ゾンデが配置されてお9かつ夫々の測定ゾンデに燃料
ガス供給導管の固有の開口が配属されているのが有利な
こともある。この場合、燃料ガスの自動調量のために調
節装置を使用する際には、夫々の測定ゾンデ及び夫々の
酸素供給導管ないしは開口に固有の調節装置又は少なく
とも1つの固有の調節通路を配属させることができる。
It may also be advantageous to arrange a large number of oxygen measuring probes distributed over the entire cross-section of the reactor vessel, with each measuring probe being assigned its own opening of the fuel gas supply line. . In this case, when using the regulating device for automatic metering of the fuel gas, each measuring probe and each oxygen supply line or opening must be assigned its own regulating device or at least one individual regulating channel. I can do it.

次に図示の実施例につき本発明の詳細な説明する。The invention will now be described in detail with reference to the illustrated embodiments.

第1図の線図には、横軸に壕ず連続式加熱炉の長さが略
示されている。通゛過方向は矢印1で示されている。
In the diagram of FIG. 1, the length of the continuous heating furnace without trenches is shown schematically on the horizontal axis. The direction of passage is indicated by arrow 1.

左側の縦軸には、加熱通路の湿度が示されており、該温
度曲線は線図に2で示されている。
On the left vertical axis, the humidity of the heating channel is shown, the temperature curve being marked 2 in the diagram.

右側の縦軸には、炉雰囲気の酸素含量(02含量)が%
で示されており、この炉雰囲気内の含量の経過は曲線3
(02曲線)によって示されている。
The vertical axis on the right shows the oxygen content (02 content) of the furnace atmosphere in %.
The course of the content in the furnace atmosphere is shown by curve 3.
(02 curve).

第2図には、連続加熱炉の縦断面図が略示されている。FIG. 2 schematically shows a longitudinal section through a continuous heating furnace.

この炉の長さは第1図の線図の横軸と同じ長さで示され
ているので、両図面はそのまま相互に対応させることが
できる。
Since the length of this furnace is shown as being the same as the horizontal axis of the diagram in FIG. 1, the two diagrams can be made to correspond to each other as is.

焼成されるべき焼成材料は、炉入口牛から炉通路5に入
る。第1図の温度曲線2ば、焼成材料が炉内を移動する
に伴いどのように湿度が上昇するかを示す。炉を通過す
る際に、焼成材料はまず加熱帯域6を通過し、次いで焼
桐帯域7、最後に冷却帯域8に至る。最後に、焼成材料
は再び約100 ’C又はそれ以下の温度で炉を出る。
The firing material to be fired enters the furnace passage 5 from the furnace entrance. Temperature curve 2B in FIG. 1 shows how the humidity increases as the firing material moves through the furnace. In passing through the furnace, the firing material first passes through a heating zone 6, then a baking zone 7 and finally a cooling zone 8. Finally, the calcined material exits the furnace again at a temperature of about 100'C or less.

焼成材料として例えば軟磁性の亜鉛/マンガン−フェラ
イトを使用する場合には、既に加熱帯域6、特にその後
方届の位置で焼成材料からの激しい酸素の放出が生じる
。しかし、焼成材料の磁性特性は、第1図に示されてい
るようにまさにこの範囲で酸素濃度が著しく低下した炉
雰囲気を必要とする。このことを可能にするために、第
3図に示されているように炉通路の範囲に当該実施例で
は多数の酸素測定ゾンデ9が炉通路内に導入されている
。更に、測定ゾンデの範囲には、夫々1つの別体の、場
合によって存在する加熱ガス導管とは無関係な燃料ガス
供給導管10が案内されている。測定ゾンデは夫夫の位
置で炉雰囲気の実際の酸素含量を連続的に監視しかつ測
定値を調節装置11に送る。調節装置は該測定値をそれ
に合わせられた設定値と比較し、酸素とその都度使用さ
れる燃料ガスとの間の公知の反応式に基づいて、酸素含
量を得られた値から所望の値に低下させるために、付加
的に炉内に導入されるべき燃料ガスの必要量を計算する
。更に、第3図には付加的にガスセンベ12が示されて
おり、該ガスボンベは導管13を介して調節装置11が
組込まれた調量装置l+にガスを供給する。ガスボンベ
12はもちろん略示されているにすぎない。その都度の
場所的必要性又は使用されるべき付加的ガスの量に基づ
いて、該ガスをガス導管から取出すこともできる。しか
し、付加的な燃料ガスをダンベ又はタンクから取出す場
合はまれではない、それというのも付加的な燃料ガスの
組成は公知の如く精確な調量に関して極めて精確である
べきであるからである。
If, for example, a soft magnetic zinc/manganese ferrite is used as the sintering material, a strong evolution of oxygen from the sintering material takes place already in the heating zone 6, especially at the rear thereof. However, the magnetic properties of the fired material require a furnace atmosphere with a significantly reduced oxygen concentration in just this range, as shown in FIG. To make this possible, a number of oxygen-measuring probes 9 are introduced into the furnace duct in the exemplary embodiment in the area of the furnace duct, as shown in FIG. Furthermore, a separate fuel gas supply line 10 is guided in each case in the area of the measuring probe, which is independent of the optionally present heating gas line. The measuring probe continuously monitors the actual oxygen content of the furnace atmosphere at the husband's location and sends the measured value to the regulating device 11. The regulating device compares the measured value with an adapted set value and adjusts the oxygen content from the obtained value to the desired value on the basis of the known reaction equation between oxygen and the fuel gas used in each case. Calculate the required amount of fuel gas to be additionally introduced into the furnace in order to reduce the amount. Furthermore, FIG. 3 additionally shows a gas cylinder 12, which supplies gas via a line 13 to a metering device l+ in which a regulating device 11 is integrated. The gas cylinder 12 is of course only shown schematically. Depending on the respective spatial requirements or the amount of additional gas to be used, the gas can also be removed from the gas line. However, it is not uncommon for additional fuel gas to be removed from the dump or tank, since the composition of the additional fuel gas must be extremely precise with respect to precise metering, as is known.

第2図は、加熱帯域6の範囲に、炉通路をその全長に渡
って多数の個室16に分割する、鉛直に配置された多数
のスクリン15が炉通路内に組込まれていることを示す
。このようなスクリン(屡々拡散スクリンと称される)
を配置することは、***国特許第3016852号明細
書から公知である。
FIG. 2 shows that, in the region of the heating zone 6, a number of vertically arranged screens 15 are integrated into the furnace passage, which divides the furnace passage into a number of compartments 16 over its entire length. Such screens (often referred to as diffusion screens)
It is known from German Patent No. 3,016,852.

スクリンは本発明と組合わされて、炉通路を十分に隔離
した個室に分割し、所望の酸素曲線がまさに精確に維持
され得るようにガス流を制御可能にする目的を有する。
The screen, in combination with the present invention, has the purpose of dividing the furnace passage into well-isolated compartments and making it possible to control the gas flow so that the desired oxygen curve can be precisely maintained.

02 含量が特に激しく変化する炉通路には、多数の鉛
直スクリンが相前後に組込まれており、それによりそこ
で互いに制限し合った炉雰囲気の区分の強すぎる混合を
阻止する。こうして第1図に示されているような02含
量の強度の変化を達成することが可能である。
02 In the furnace passages, where the content changes particularly sharply, a number of vertical screens are installed one after the other in order to prevent too strong a mixing of the sections of the furnace atmosphere that are mutually limited there. It is thus possible to achieve a variation in the intensity of the 02 content as shown in FIG.

更に、第1図は、所望の酸素濃度は焼結帯域7の範囲で
再び高くなりかつ長い区分に渡って一定であることを示
す。この一定の区分閣内では、炉を多数の個室に分割す
る必要はない。しかし、酸素濃度が変化する区間、例え
ば焼結帯域7の開始位置及び終了位置では、酸素濃度曲
線が比較的急峻な上昇ないしは降下を描くように室を配
置するのが有利である。
Furthermore, FIG. 1 shows that the desired oxygen concentration increases again in the region of the sintering zone 7 and remains constant over a long section. In this certain compartmentalized cabinet, there is no need to divide the furnace into a large number of private rooms. However, in sections where the oxygen concentration changes, for example at the beginning and end of the sintering zone 7, it is advantageous to arrange the chambers in such a way that the oxygen concentration curve shows a relatively steep rise or fall.

第3図は、焼成材料17はトレイ18の上に配置されて
いてもよいことを示し、この場合通路を更に有効に利用
するために多段に積重ねられている。このような場合に
は、放出された酸素が特に集まるような位置に燃料ガス
を導入するために、燃料ガス供給導管を焼成材料の近く
、特に炉通路の下方範囲で該通路に開口させるのが有利
である。更に、この場合、燃料ガスを炉の下方範囲に導
入することは炉通路ないしは炉室の内部にガスの望まし
い対流を起こさせ、それによって当該室内でガスの急速
な混合が生じかつ所望の酸素濃度が炉の横断面全体に渡
って十分に均等になるこ六が保証される。また、場合に
よっては第3図に略示されているように、炉槽断面全体
に渡って分配されて多数の酸素測定ゾンデが配置されて
おりかつ夫々の測定ゾンデに燃料ガス供給導管の固有の
開口が配置されているのが有利である。
FIG. 3 shows that the firing material 17 may be arranged on a tray 18, in which case it is stacked in multiple tiers to make better use of the channels. In such cases, it is advisable to open the fuel gas supply conduit into the furnace passage close to the firing material, especially in the lower region of the furnace passage, in order to introduce the fuel gas at a location where the released oxygen is particularly concentrated. It's advantageous. Furthermore, in this case, the introduction of the fuel gas into the lower region of the furnace causes the desired convection of the gas inside the furnace passages or furnace chamber, which results in a rapid mixing of the gases in this chamber and achieves the desired oxygen concentration. It is ensured that the temperature is sufficiently uniform over the entire cross-section of the furnace. Also, in some cases, as schematically illustrated in Figure 3, a large number of oxygen measuring probes are arranged distributed over the entire cross-section of the reactor vessel, and each measuring probe has its own unique location in the fuel gas supply conduit. Advantageously, the opening is arranged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続式加熱炉の全長に渡る温度分布曲線及び酸
素分布曲線を示す線図、第2図は連続式加熱炉の略示縦
断面図及び第3図は燃料ガス供給調節装置を接続した、
第2図の炉の略示拡大横断面図である。 1・・・搬送方向、2・・・温度曲線、3・・酸素曲線
、4・・・炉入口、5・・・炉通路、6・・加熱帯域、
7・・・焼結帯域、8・・・冷却帯域、9・・・酸素測
定ゾンデ、10・・・燃料ガス供給導管、11・・・調
節装置、12・・・ガスゼンベ、13・・・導管、14
・・・調量装置、15・・・スクリン、16・・・個室
、17・・・焼成材料、18・・・トレイ 図面の浄書(内容に変更なし) 手続補正書(方式) 昭和58年7 月 72日 特許庁長官殿 1、事件の表示 昭和58年特許願第49053号2・
発明の名称 加熱炉の雰囲気の酸素含量を低下させる方法及び該方法
を実施する炉 3、補正をする者 事件との関係 特許出願人 4、復代理人
Figure 1 is a diagram showing the temperature distribution curve and oxygen distribution curve over the entire length of the continuous heating furnace, Figure 2 is a schematic vertical cross-sectional view of the continuous heating furnace, and Figure 3 is the connection of the fuel gas supply adjustment device. did,
3 is a schematic enlarged cross-sectional view of the furnace of FIG. 2; FIG. 1... Conveyance direction, 2... Temperature curve, 3... Oxygen curve, 4... Furnace inlet, 5... Furnace passage, 6... Heating zone,
7...Sintering zone, 8...Cooling zone, 9...Oxygen measuring sonde, 10...Fuel gas supply conduit, 11...Adjustment device, 12...Gas zenbe, 13...Conduit , 14
...Measuring device, 15...Screen, 16...Private room, 17...Baking materials, 18...Engraving of tray drawing (no change in content) Procedural amendment (method) July 1982 May 72nd, Mr. Commissioner of the Japan Patent Office, 1. Indication of the case, Patent Application No. 49053, 1982, 2.
Title of the invention: A method for reducing the oxygen content of the atmosphere of a heating furnace and a furnace for implementing the method 3. Relationship with the person making the amendment Case: Patent applicant 4, sub-agent

Claims (1)

【特許請求の範囲】 1、 セラミック材料用の加熱炉の雰囲気の酸素含量を
所定の値に低下させる方法において、炉の制御すべき位
置で炉雰囲気の酸素含量を測定しかつ測定結果に依存し
て燃料ガスを、所望の酸素含量が生じるような量で炉に
導入することを特徴とする、加熱炉の雰囲気の酸素含量
を低下させる方法。 2、 セラミック材料用の加熱炉の雰囲気の酸素含量を
所定の値に低下させる方法を実施する炉において、 1)炉が炉通路(5)内に少なくとも1つの酸素測定ゾ
ンデ(9)を有しており、 2)測定ゾンデ(9)の範囲で、炉通路(5)に別体の
燃料ガス供給導管(1o)が案内されている ことを特徴とする、加熱炉の雰囲気の酸素含量を低下さ
せる装置。 3、測定ゾンデ(9)が、燃料ガス供給導管(10)を
経て炉通路(5)内に導入される燃料ガスの量を所定値
に依存して調節する調節装置(11)と接続されている
、特許請求の範囲第2項記載の加熱炉。 4、炉通路(5)が鉛直に配置されたスクリン(15)
によって多数の室(16)に分割されておシ、該室の夫
々が少なくとも1つの酸素測定ゾンデ(9)並びに少な
くとも1つの燃料ガス供給導管(10)ffi有してい
る、特許請求の範囲第1項又は第3項記載の加熱炉。 5、燃料ガス供給導管(10)が焼成材料の近くで炉通
路(5)に開口している、特許請求の範囲第2項〜第Φ
項のいずれか1項に記載の加熱炉。 6、炉槽断面の全体に渡って分配されて多数の酸素測定
ゾンデ(9)が配置されておシかっ夫々の測定ゾンデに
燃料ガス供給導管の固有の開口が配属されている、特許
請求の範囲第2項記載の加熱炉。 7、 連続式加熱炉である、特許請求の範囲第2項〜第
6項のいずれか1項に記載の加熱炉。 8、 パッチ式に作業する、特許請求の範囲第2項〜第
6項のいずれか1項に記載の加熱炉。
[Claims] 1. A method for reducing the oxygen content of the atmosphere of a heating furnace for ceramic materials to a predetermined value, which comprises measuring the oxygen content of the furnace atmosphere at a position in the furnace to be controlled and relying on the measurement result. A method for reducing the oxygen content of the atmosphere of a heating furnace, characterized in that fuel gas is introduced into the furnace in such an amount that a desired oxygen content is produced. 2. In a furnace implementing a method for reducing the oxygen content of the atmosphere of a heating furnace for ceramic materials to a predetermined value, 1) the furnace has at least one oxygen measuring probe (9) in the furnace passage (5); 2) reducing the oxygen content of the atmosphere of the heating furnace, characterized in that a separate fuel gas supply conduit (1o) is guided in the furnace channel (5) in the area of the measuring probe (9); A device that allows 3. The measuring probe (9) is connected to a regulating device (11) which adjusts the amount of fuel gas introduced into the furnace channel (5) via the fuel gas supply conduit (10) as a function of a predetermined value. The heating furnace according to claim 2, wherein 4. Screen (15) with vertically arranged furnace passage (5)
It is divided into a number of chambers (16) by means of a fuel cell, each of which has at least one oxygen measuring probe (9) and at least one fuel gas supply conduit (10)ffi. The heating furnace according to item 1 or 3. 5. Claims 2 to Φ, wherein the fuel gas supply conduit (10) opens into the furnace passage (5) near the firing material.
The heating furnace according to any one of the above. 6. A large number of oxygen measuring probes (9) are arranged distributed over the entire cross-section of the reactor vessel, each measuring probe being assigned a specific opening of the fuel gas supply conduit. A heating furnace according to scope 2. 7. The heating furnace according to any one of claims 2 to 6, which is a continuous heating furnace. 8. The heating furnace according to any one of claims 2 to 6, which operates in a patch manner.
JP58049053A 1982-03-26 1983-03-25 A method for reducing the oxygen content of a heating furnace atmosphere and a heating furnace for carrying out the method Expired JPS6046357B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19823211247 DE3211247A1 (en) 1982-03-26 1982-03-26 Process for reducing the oxygen content of the atmosphere of a continuous annealing furnace, and annealing furnace to perform this process
DE3211247.5 1982-03-26
DE3223954.8 1982-06-26

Publications (2)

Publication Number Publication Date
JPS58217191A true JPS58217191A (en) 1983-12-17
JPS6046357B2 JPS6046357B2 (en) 1985-10-15

Family

ID=6159430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049053A Expired JPS6046357B2 (en) 1982-03-26 1983-03-25 A method for reducing the oxygen content of a heating furnace atmosphere and a heating furnace for carrying out the method

Country Status (2)

Country Link
JP (1) JPS6046357B2 (en)
DE (1) DE3211247A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138005A (en) * 1983-12-26 1985-07-22 Shimadzu Corp Dewaxing method
JPS60138004A (en) * 1983-12-26 1985-07-22 Shimadzu Corp Safety device in heat treating furnace
JP2016001064A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Heat treatment furnace

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834795A1 (en) * 1988-10-12 1990-04-19 Riedhammer Gmbh Co Kg INDUSTRIAL OVEN
DE68922290T2 (en) * 1988-12-28 1995-09-21 Ngk Spark Plug Co Ceramic superconducting composition and method and device for its manufacture.
DE3937104B4 (en) * 1989-11-07 2004-02-19 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Process for drying and sintering moisture-containing ceramic parts
DE102017115140A1 (en) * 2017-07-06 2019-01-10 Dbk David + Baader Gmbh Annealing furnace and method for operating a tempering furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608669B1 (en) * 1965-10-20 1972-01-13 Manfred Leisenberg PROCEDURE FOR THE PERIODIC ACTIVATION OF A REDUCTION PHASE WHEN OPERATING OIL OR GAS FIRED CERAMIC TUNNEL STOVES
DE1508574B1 (en) * 1966-12-27 1970-06-04 Karl August Heimsoth, Industrie- u. Tunnel-Ofenbau GmbH, 3200 Hildesheim Device for regulating the heat supply for continuous and similar ovens
DE3016852C2 (en) * 1980-05-02 1982-07-22 Ludwig Riedhammer GmbH & Co KG, 8500 Nürnberg Electrically heated tunnel furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138005A (en) * 1983-12-26 1985-07-22 Shimadzu Corp Dewaxing method
JPS60138004A (en) * 1983-12-26 1985-07-22 Shimadzu Corp Safety device in heat treating furnace
JPH0571643B2 (en) * 1983-12-26 1993-10-07 Shimadzu Corp
JP2016001064A (en) * 2014-06-11 2016-01-07 日本碍子株式会社 Heat treatment furnace

Also Published As

Publication number Publication date
JPS6046357B2 (en) 1985-10-15
DE3211247C2 (en) 1988-07-14
DE3211247A1 (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US5385337A (en) Control system for a soft vacuum furnace
JPS58217191A (en) Method of reducing oxygen content of atmosphere of heating furnace and furnace executing said method
US4490108A (en) Process for reducing the oxygen content of the atmosphere in a heat treatment furnace and heat treatment furnace for carrying out this process
Matjuschkin et al. The influence of Fe 3+ on garnet–orthopyroxene and garnet–olivine geothermometers
Purohit et al. Alternative route for magnetite processing for lower carbon footprint iron-making through lime-magnetite pellets containing CaFe3O5
Sarkar et al. Interaction of ferrous oxide with alumina refractory under flash ironmaking conditions
US2459618A (en) Heat-treating means utilizing controlled carbonaceous gaseous atmospheres
EP0859068B1 (en) Method for controlling the atmosphere in a heat treatment furnace
SU1261567A3 (en) Method of controlling carburizing atmosphere in furnace
US20190076922A1 (en) Apparatus and method for controlling a sintering process
Hamada et al. Wüstite (Fe1− x O)–Thermodynamics and crystal growth
JPS58213665A (en) Method and device for controlling baking process in cement baking plant
Nakamura et al. Vacancy diffusion in magnetite
US2546013A (en) Means and method for producing special heat-treating gaseous atmospheres
US3968957A (en) Gas carburizing furnace
Jullian et al. Oxygen permeability of Fe‐Ni‐Cr alloys at 1100 and 1150° C under carbon‐free and carbon‐containing gases
EP0024106B1 (en) Method of heat treating ferrous workpieces
US3128323A (en) Measurement and control of constituent potentials
EP0859067B1 (en) Method and apparatus for controlling the atmosphere in a heat treatment furnace
Majkic et al. Stress-induced diffusion and defect chemistry of La0. 2Sr0. 8Fe0. 8Cr0. 2O3− δ: Part 1—creep in controlled-oxygen atmosphere
Chen et al. Longer term oxidation kinetics of low carbon, low silicon steel in 17H2O–N2 at 900 C
JPS6049836B2 (en) Method for adjusting redox potential in protective gas of sintering furnace
Kon et al. Reduction Behavior of Packed Bed of Sinter Reduced by CO–CO2–H2–H2O–N2 Gas
CA1181586A (en) Method and apparatus for controlling the atmosphere in a carburizing furnace utilizing a cascaded valving system
BR102020008626A2 (en) raw material for iron making