JPS63186538A - System stabilizer - Google Patents

System stabilizer

Info

Publication number
JPS63186538A
JPS63186538A JP62015213A JP1521387A JPS63186538A JP S63186538 A JPS63186538 A JP S63186538A JP 62015213 A JP62015213 A JP 62015213A JP 1521387 A JP1521387 A JP 1521387A JP S63186538 A JPS63186538 A JP S63186538A
Authority
JP
Japan
Prior art keywords
battery
power
output
solar
diesel generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62015213A
Other languages
Japanese (ja)
Inventor
熊野 昌義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62015213A priority Critical patent/JPS63186538A/en
Publication of JPS63186538A publication Critical patent/JPS63186538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、太陽光発電システムが電力系統に並入され
た場合に電力系統の安定化を図る系統安定化装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a system stabilizing device that stabilizes the power system when a solar power generation system is connected to the power system.

〔従来の技術〕[Conventional technology]

太陽光発電システムは、その発電量が日射量の変動に応
じて大きく変化する。特に離島などで見うけられるディ
ーゼル発電機による小規模の電力系統においては、太陽
光発電システムをそのまま電力系統に並入する場合、日
射量の変動にディーゼル発電機の出力調整が十分応答出
来ず、負荷とのパワーバランスが敗れず、また周波数変
動など電力系統の安定維持が困難になるため、電力系統
への並入容量を大幅に制限していた。或はこの出願の第
4図に示されると共に特開昭58−175929号公報
に示されるように、各太陽光発電システムにバッテリー
を設け、太陽電池出力を−担バッテリーに蓄えていた。
The amount of power generated by a solar power generation system varies greatly depending on changes in the amount of solar radiation. Particularly in small-scale power systems using diesel generators, such as those found on remote islands, if a solar power generation system is directly connected to the power system, the output adjustment of the diesel generator cannot respond sufficiently to changes in the amount of solar radiation. The power balance with the load is not lost, and frequency fluctuations make it difficult to maintain the stability of the power system, so the parallel input capacity to the power system has been significantly restricted. Alternatively, as shown in FIG. 4 of this application and as shown in Japanese Patent Application Laid-Open No. 58-175929, each solar power generation system is provided with a battery, and the output of the solar cells is stored in the battery.

第4図はバッテリーが設けられた太陽光発電システムを
一部ブロック図で示す回路図であり、図において(1)
は電力系統のディーゼル発電機、(2)はこのディーゼ
ル発電機(1)に接続された系統配電線、(sa) 、
 (3b)は太陽光発電システムであり、それぞれ系統
配電線(2)に接続されている。各太陽光発電システム
(3a) l (3b)は、太陽電池(31)、この太
陽電池(31) K接続された直交変換器(32)、こ
れら太陽電池(31)と直交変換器(32)の間に接続
されたバッチIJ−(33)、直交変換器(32)のた
めの制御回路(34)、太陽電池(31)と制御回路(
34)の間に接続された第1の電力検出器(35) 、
および直交変換器(32)と制御回路(34)の間に接
続された第2の電力検出器(36)から成る。(4a)
 + (4b)はそれぞれ太陽光発電システム(3a)
 + (3b)の負荷である。
Figure 4 is a partial block diagram of a solar power generation system equipped with a battery.
is the diesel generator of the power system, (2) is the grid distribution line connected to this diesel generator (1), (sa),
(3b) is a solar power generation system, each of which is connected to the grid distribution line (2). Each solar power generation system (3a) l (3b) consists of a solar cell (31), a K-connected orthogonal converter (32), and a quadrature converter (32) connected to these solar cells (31). Batch IJ- (33) connected between the control circuit (34) for the orthogonal converter (32), the solar cell (31) and the control circuit (
a first power detector (35) connected between 34);
and a second power detector (36) connected between the orthogonal converter (32) and the control circuit (34). (4a)
+ (4b) is a solar power generation system (3a) respectively
+ (3b) load.

太陽光発電システム(3a) + (3b)は上述のよ
うに構成されており、その太陽電池(31)の出力は、
日射量に応じて変化し、第1の電力検出器(35)で検
出される。一方、直交変換器(32)の入力は第2の電
力検出器(36)によって検出される。直交変換器(3
2)の制御回路(7)は、太陽電池(31)の出力を所
定のフィルター(図示しない)にかけて平滑化し、この
値に直交変換器(32)の入力が等しくなるように、直
交変換器(32)の通過電力を制御する。この結果、日
射量の変動に基づく太陽電池(31)の出力変動分は一
担バッテリー(33)に蓄積されてから徐々に電力系統
へ出力されるため、電力系統への急激なじよう乱を防止
でき、電力系統の安定維持が行われる。
The solar power generation system (3a) + (3b) is configured as described above, and the output of its solar cells (31) is:
It changes depending on the amount of solar radiation and is detected by the first power detector (35). On the other hand, the input of the orthogonal transformer (32) is detected by a second power detector (36). Orthogonal transformer (3
The control circuit (7) of 2) smoothes the output of the solar cell (31) by applying a predetermined filter (not shown), and smooths the output of the solar cell (31) so that the input of the orthogonal converter (32) becomes equal to this value. 32) to control the passing power. As a result, fluctuations in the output of the solar cell (31) due to fluctuations in solar radiation are accumulated in the primary battery (33) and then gradually output to the power grid, preventing sudden disturbances to the power grid. This will help maintain the stability of the power system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

太陽光発電システムは、太陽電池の設置面積が非常に大
きくかつ集約化が困難なため、各需用家等に小型分散設
置される場合が多い、しかし、上述した太陽光発電シス
テムでは、その各々がそれぞれバッテリーを必要とし、
この維持管理が非常にやっかいであるという問題点があ
った。
In solar power generation systems, the installation area of solar cells is very large and it is difficult to consolidate them, so they are often installed in small and distributed locations at each customer.However, in the above-mentioned solar power generation systems, each each requires a battery,
There was a problem in that this maintenance and management was extremely troublesome.

この発明は、上述した問題点を解決するためになされた
もので、分散配置された各太陽光発電システムにバッテ
リーを設けることなく、各太陽光発電システムを電、力
系統に並入しても、電力系統を安定維持することの出来
る系統安定化装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to connect each solar power generation system to the electric power system in parallel without installing batteries in each distributed solar power generation system. The purpose of this invention is to obtain a system stabilizing device capable of stably maintaining a power system.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る系統安定化装置は、バッテリーと、この
バッテリーと電力系統の間に接続された直交変換器と、
電力系統のディーゼル発電機出力およびバッテリーの充
放電電力を検出し、これら信号より直交変換器の通過電
力を制御する制御回路とを設けたものである。
A system stabilizing device according to the present invention includes a battery, an orthogonal converter connected between the battery and the power system,
The system is equipped with a control circuit that detects the diesel generator output of the power system and the charging/discharging power of the battery, and controls the power passing through the orthogonal converter based on these signals.

〔作用〕[Effect]

この発明においては、複数台の太陽光発電システムが発
生する電力変動を系統安定化装置のバッテリーに吸収し
、電力系統のディーゼル発電機の出力には、上述した電
力変動分が含まれないように且つバッテリーの保有電荷
量を常に所定範囲内に確保するように、系統安定化装置
の直交変換器の通過電力が制御され、バッテリーが過充
電や過放電されることなく電力系統の安定化が達成され
る。
In this invention, the power fluctuations generated by multiple solar power generation systems are absorbed by the battery of the system stabilization device, so that the output of the diesel generator in the power system does not include the above-mentioned power fluctuations. In addition, the power passing through the orthogonal converter of the system stabilization device is controlled to ensure that the amount of charge held by the battery is always within a predetermined range, and the power system is stabilized without overcharging or overdischarging the battery. be done.

〔実施例〕〔Example〕

第1図は、バッテリーが設けられていない太陽光発電シ
ステムを含む電力系統に適用されたこの発明の一実施例
を一部ブロック図で示す回路図である。図において、(
1)および(2)は第4図に示したものと全く同じであ
る。(3Oa)〜(3on)はバッテリーが設けられて
いない太陽光発電システムであり、それぞれ太陽電池(
31)およびこの太陽電池(31)に接続された直交変
換器(32)から成る。(4a)〜(4n)はそれぞれ
太陽光発電システム(aOa)〜(30n)の負荷であ
る。(5)は系統安定化装置であり、系統配電線(2)
に接続されている。
FIG. 1 is a circuit diagram showing, in partial block diagram form, an embodiment of the present invention applied to a power system including a solar power generation system without a battery. In the figure, (
1) and (2) are exactly the same as shown in FIG. (3Oa) to (3on) are solar power generation systems without batteries, and each solar cell (
31) and an orthogonal converter (32) connected to this solar cell (31). (4a) to (4n) are loads of the solar power generation systems (aOa) to (30n), respectively. (5) is a system stabilizing device, and system distribution line (2)
It is connected to the.

系統安定化装置(5)は、バッチ+)−(51)、この
バッチIJ−(51)と系統配電線(2)の間に接続さ
れてバッテリー(51)の直流出力を交流出力に変換す
る直交変換器(52)、系統配電線(2)に接続されて
電力系統のディーゼル発電機(1)の出力を検出する電
力検出器(53)、バッテリー(51)に接続されてそ
の充放電電流を検出する手段、並びにこれら電力検出器
(53)および充放電電流検出手段(54)の検出信号
を基にして直交変換器(52)の通過電力を制御する制
御回路から成る。
The grid stabilizing device (5) is connected between the batch +)-(51), this batch IJ-(51), and the grid distribution line (2), and converts the DC output of the battery (51) into an AC output. A quadrature converter (52), a power detector (53) connected to the grid distribution line (2) to detect the output of the diesel generator (1) of the power grid, and a power detector (53) connected to the battery (51) to detect its charging/discharging current. and a control circuit that controls the passing power of the orthogonal converter (52) based on the detection signals of the power detector (53) and charging/discharging current detecting means (54).

上述したように構成された電力系統および系統安定化装
置(5)において、電力系統に並入された太陽光発電シ
ステム(30a)〜(3on)が太陽電池(31)の直
流出力をそのまま直交変換器(32)で交流出力に変換
して系統配電線(2)に出力しているため、日射量の変
動に伴なってディーゼル発電機(1)の出力は急変する
。このディーゼル発電機(1)の出力を電力検出器(5
3)で検出し、その急変分を相殺するように制御回路(
55)は直交変換器(52)の通過電力を制御する。こ
れと同時に、バッチIJ−(51)の保有電荷量を充放
電電流検出手段(54)で求め、この値が一定の範囲内
になるように制御回路(55)は直交変換器(52)の
通過電力の平均値を補正する。
In the power system and system stabilization device (5) configured as described above, the solar power generation systems (30a) to (3on) connected in parallel to the power system perform orthogonal conversion of the DC output of the solar cell (31) as it is. Since the diesel generator (32) converts the output into alternating current output and outputs it to the grid distribution line (2), the output of the diesel generator (1) changes suddenly as the amount of solar radiation changes. The output of this diesel generator (1) is detected by a power detector (5).
3), and the control circuit (
55) controls the passing power of the orthogonal converter (52). At the same time, the amount of charge held by the batch IJ- (51) is determined by the charge/discharge current detection means (54), and the control circuit (55) controls the orthogonal converter (52) so that this value falls within a certain range. Correct the average value of passing power.

第2図は、第1図中に示した制御回路(55)の詳細な
構成を示すブロック図である。この制御回路(55)は
、充放電電流検出手段(54)に接続されてバッテリー
(51)の保有電荷量を演算する演算器(551) 、
バッテリー(51)の所定の管理レベルを指令する指令
器(552) 、これらバッテリー保有電荷量演算器(
551)およびバッテリー管理レベル指令器(552)
に接続きれかつ偏差積分器(図示しない)を用いてバッ
チIJ−(51)の保有電荷レベルを制御する制御器(
553)およびこのバッテリー保有電荷レベル制御器(
553)および電力検出器(53)に接続されかつ偏差
増幅器(図示しない)を用いてディーゼル発電機(1)
の出力変動を制御する電力制御器(554)から構成さ
れている。
FIG. 2 is a block diagram showing the detailed configuration of the control circuit (55) shown in FIG. 1. This control circuit (55) includes an arithmetic unit (551) that is connected to the charge/discharge current detection means (54) and calculates the amount of charge held by the battery (51);
A command unit (552) that commands a predetermined management level of the battery (51), and a battery charge amount calculation unit (
551) and battery management level indicator (552)
A controller (not connected to
553) and this battery charge level controller (
553) and a power detector (53) and using a deviation amplifier (not shown)
It consists of a power controller (554) that controls output fluctuations.

第3図は第2図中の各部の波形図であり、(21)は電
力検出器(53)で検出されたディーゼル発電機出力波
形、(22)はバッテリー保有電荷レベル制御器(55
3)から出力される電力制御基準信号、(23)は直交
変換器(52)の通過電力波形、(24)はバッテリー
保有電荷量演算器(551)から出力されるバッテリー
保有電荷量レベル信号、(25)はバッテリー管理レベ
ル指令器(552)で指令されるバッテリー管理レベル
信号である。
Figure 3 is a waveform diagram of each part in Figure 2, where (21) is the diesel generator output waveform detected by the power detector (53), and (22) is the battery charge level controller (55).
(23) is the passing power waveform of the orthogonal converter (52), (24) is the battery held charge amount level signal outputted from the battery held charge amount calculator (551), (25) is a battery management level signal commanded by a battery management level command device (552).

以下、第2図および第3図を用いてこの発明の一実施例
の動作を説明する。今、系統安定化装置(5)が十分作
動していない場合、系統配電線(2)に接続された太陽
光発電システム(30a)〜(30n)から供給される
電力が日射量の変動に応じて変化するため、ディーゼル
発電機(1)の出力もこれに応じて変化する。これを電
力検出器(53)で検出・フィードバックし、電力制御
器(554)において電力制御基準信号(22)と比較
し、その偏差に応じて系統電圧位相に対する直交変換器
(52)の出力電圧位相を調整する。これにより、直交
変換器(52)の通過電力が波形(23)のように変化
し、結局電力系統の変動分が系統安定化装置(5)のバ
ッチ+)−(St)に吸収されるため、ディーゼル発電
機(1)の出力は電力制御基準信号(22)のように安
定な値に保持される。この場合、バッチIJ−(51)
で吸収又は放出される電力により、バッチ1)−(51
)の保有電荷量は変化する。そのため、充放電電流検出
手段(54)で検出されたバッテリー充放電々流を基に
してバッテリー効率を掛け、バッテリー保有電荷量演算
器(551)で演算し、その出力であるバッテリー保有
電荷量レベル信号(24)と所定の管理レベルであるバ
ッテリー管理レベル信号(25)との偏差をバッテリー
保有電荷レベル制御器(553)において十分な時定数
で積分増幅し、これを上述した電力制御基準信号(22
)とすることにより、バッテリー保有電荷量が所定の管
理レベルに平均的に等しくなるよう、電力制御基準信号
(22)は補正されたことになる。この結果、系統安定
化装置(5)は、バッテリー容量が比較的小さくても、
バッテリー保有電荷量が常に管理レベル近傍に維持され
、過充電や過放電することなくディーゼル発電機(1)
の出力急変を防止し、もってディーゼル発電機(1)が
十分応答出来る9つくりした速度で出力が変化するので
、電力系統の安定化を図ることが出来る。
The operation of an embodiment of the present invention will be described below with reference to FIGS. 2 and 3. If the grid stabilization device (5) is not operating sufficiently now, the power supplied from the solar power generation systems (30a) to (30n) connected to the grid distribution line (2) will change depending on the fluctuations in the amount of solar radiation. Since the output of the diesel generator (1) changes accordingly, the output of the diesel generator (1) also changes accordingly. This is detected and fed back by the power detector (53), compared with the power control reference signal (22) in the power controller (554), and the output voltage of the orthogonal converter (52) with respect to the grid voltage phase is determined according to the deviation. Adjust the phase. As a result, the power passing through the orthogonal converter (52) changes as shown in the waveform (23), and the fluctuations in the power system are eventually absorbed by the batch +) - (St) of the system stabilizer (5). , the output of the diesel generator (1) is held at a stable value as is the power control reference signal (22). In this case, batch IJ-(51)
Batch 1) - (51
) will change. Therefore, based on the battery charging/discharging current detected by the charging/discharging current detecting means (54), the battery efficiency is multiplied and the battery retained charge amount calculator (551) calculates the result, which is the output of the battery retained charge amount level. The deviation between the signal (24) and the battery management level signal (25), which is a predetermined management level, is integrated and amplified in the battery charge level controller (553) with a sufficient time constant, and this is converted into the above-mentioned power control reference signal ( 22
), the power control reference signal (22) has been corrected so that the amount of charge held by the battery is on average equal to the predetermined management level. As a result, even if the battery capacity is relatively small, the system stabilizer (5)
The amount of charge held by the battery is always maintained close to the control level, and diesel generators (1) can be operated without overcharging or overdischarging.
This prevents sudden changes in the output of the diesel generator (1) and changes the output at a speed of 9 to which the diesel generator (1) can respond sufficiently, making it possible to stabilize the power system.

この結果、電力系統内に太陽光発電システムが幾つ分散
配置されても、発電所と同等に集約管理の容易な系統安
定化装置のバッテリー1台ですみ、個々の太陽光発生シ
ステムにはバッテリーを設けてディーゼル発電機の出力
変動を防止する必要がなく、太陽電池の出力をそのまま
交流に変換して電力系統に出力することが出来るため、
簡単で安価なシステムが使用出来る。
As a result, no matter how many solar power generation systems are distributed in the power system, only one battery is required for the system stabilization device, which is easy to manage centrally and is equivalent to a power plant, and each solar power generation system does not require a battery. There is no need to install a diesel generator to prevent fluctuations in the output of the diesel generator, and the output of the solar cells can be directly converted to alternating current and output to the power grid.
A simple and inexpensive system can be used.

なお、第2図の制御回路(55)では、バッテリー(5
1)の充放電々流を検出し、バッテリー(51)の保有
電荷量を演算しているが、バッテリー電源の代りにディ
ーゼル発電機出力(21)と電力制御基準信号(22)
の偏差〔制御系が作動すれば、バッテリ゛−(51)の
充放電々力に相当する〕より求めることも出来る。
In addition, in the control circuit (55) of FIG.
1) is detected and the amount of charge held by the battery (51) is calculated, but instead of the battery power source, the diesel generator output (21) and the power control reference signal (22) are used.
It can also be determined from the deviation (corresponds to the charging and discharging power of the battery (51) if the control system operates).

又、第2図の制御回路(55)中に波線で示したように
、系統安定化装置(5)に太陽電池(31)を付加すれ
ば、構成手段を何ら変更することなく、この系統安定化
装置(5)から電力系統へ平均的エネルギー供給を行な
うことも可能である。この場合、太陽光発電システム出
力は一担バッテリー(51)に充電され、保有電荷量が
増加することにより、ディーゼル発電機(1)の電力制
御基準信号(22)が下がり、直交変換器(52)から
電力系統への供給電力の平均値は増加し、パワーバラン
スが取られる。
Furthermore, as shown by the dotted line in the control circuit (55) in Fig. 2, by adding a solar cell (31) to the system stabilizing device (5), this system can be stabilized without changing the configuration means. It is also possible to carry out an average energy supply from the converter (5) to the power grid. In this case, the solar power generation system output is charged to the primary battery (51), and as the amount of charge increases, the power control reference signal (22) of the diesel generator (1) decreases, and the orthogonal converter (52) ) increases the average value of power supplied to the power grid, and power balance is achieved.

なお、第1図の実施例では、系統安定化装置(5)の電
力系統への並入接続点が、ディーゼル発電機(1)の出
力母線になっているが、ディーゼル発電機(1)の電力
検出器(53)のみで複数台のディーゼル発電機の総出
力を検出出来れば、並入接続点は、太陽光発電システム
(30a)〜(3on)のように分岐した系統配電線(
2)の中間や末端でも長いことは云うまでもない。
In the embodiment shown in Fig. 1, the parallel connection point of the grid stabilizer (5) to the power grid is the output bus of the diesel generator (1). If the total output of multiple diesel generators can be detected only with the power detector (53), the parallel connection point can be connected to the branched grid distribution line (3on) like the solar power generation system (30a) to (3on).
Needless to say, even the middle and end of 2) are long.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明は、バッテリーと、この
バッテリーと電力系統の間に接続された直交変換器と、
電力系統のディーゼル発電機の出力を検出し、この値が
指令値と等しくなるように直交変換器を制御すると共に
、バッテリーの保有電荷量が所定の値になるように上記
指令値を定める制御回路とを設けたので、ディーゼル発
電機の出力の急変を防ぎ、安定化が図れるため、個々の
太陽光発電システム中の太陽電池の出力をそのまま電力
系統に並入出来る簡単で安価なシステムが使用出来ると
いう効果を奏する。
As detailed above, the present invention includes a battery, an orthogonal converter connected between the battery and the power system,
A control circuit that detects the output of a diesel generator in a power system, controls an orthogonal converter so that this value becomes equal to a command value, and also determines the command value so that the amount of charge held in a battery becomes a predetermined value. This feature prevents sudden changes in the output of the diesel generator and stabilizes it, making it possible to use a simple and inexpensive system in which the output of the solar cells in each solar power generation system can be directly connected to the power grid. This effect is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバッテリーが設けられていない太陽光発電シス
テムを含む電力系統に適用されたこの発明の一実施例を
一部ブロック図で示す回路図、第2図は纂1図に示した
実施例中の制御回路の詳細なブロック図、第3図は第2
図中の各部の波形図、第4図はバッテリーが設けられた
太陽光発電システムを一部ブロック図で示す回路図であ
る。 (1)は電力系統のディーゼル発電機、(2)は系統配
電線、(3Oa)〜(3on)は太陽光発電システム、
(5)は系統安定化装置、(51)はバッテリー、(5
2)は直交変換器、(53)は電力検出器、(54)は
充放電々流検出手段、(55)は制御回路、(55t 
)はバッテリー保有電荷量演算器、(552)はバッテ
リー管理レベル指令器、(553)はバッテリー保有電
荷レベル制御器、(554)は電力制御器である。 p101図 551  :  l’l−+〒リーイ牽壱電術を膚W豚
552 、 ハ゛・1テリ−gfLt<比重4箒活55
3    バー1〒リー1緊庖を潰テし1ル宵1惟P券
554   電つ詩御酪 第3図    。 手続補正書 昭和62年8p28 日
Figure 1 is a circuit diagram showing a partial block diagram of an embodiment of the present invention applied to a power system including a solar power generation system without a battery, and Figure 2 is a circuit diagram showing the embodiment shown in Figure 1. A detailed block diagram of the control circuit inside, Figure 3 is shown in Figure 2.
FIG. 4 is a circuit diagram showing a partial block diagram of a solar power generation system provided with a battery. (1) is the diesel generator of the power system, (2) is the grid distribution line, (3Oa) ~ (3on) is the solar power generation system,
(5) is a system stabilizer, (51) is a battery, (5
2) is an orthogonal converter, (53) is a power detector, (54) is a charging/discharging current detection means, (55) is a control circuit, (55t
) is a battery charge amount calculator, (552) is a battery management level command device, (553) is a battery charge level controller, and (554) is a power controller. p101 Figure 551: l'l-+〒Leii traction electrification skin W pig 552, hi 1 Terry-gfLt<specific gravity 4 broom activation 55
3 Bar 1〒1 Lee 1 Kenko Tei 1 Le Yoi 1 Yue P ticket 554 Dentsushi Gobutryu Figure 3. Procedural amendment 1986, 8 p. 28

Claims (3)

【特許請求の範囲】[Claims] (1)ディーゼル発電機を含むと共にバッテリーが設け
られていない太陽光発電システムを含む電力系統に接続
され、バッテリーと、このバッテリーの直流出力を交流
出力に変換して前記電力系統に出力する直交変換と、前
記ディーゼル発電機の出力を検出し、この値が指令値と
等しくなるように前記直交変換器の交流出力を制御する
と共に前記バッテリーの保有電荷量が所定の値と等しく
なるように前記指令値を決定する制御回路とを備えたこ
とを特徴とする系統安定化装置。
(1) Connected to a power system that includes a solar power generation system that includes a diesel generator but does not have a battery, and includes a battery and orthogonal conversion that converts the DC output of this battery into AC output and outputs it to the power system. and detecting the output of the diesel generator, controlling the AC output of the orthogonal converter so that this value becomes equal to a command value, and controlling the AC output of the orthogonal converter so that the amount of charge held in the battery becomes equal to a predetermined value. A system stabilizing device characterized by comprising a control circuit that determines a value.
(2)バッテリーの保有電荷量は、前記バッテリーの充
放電電流から演算によつて求められることを特徴とする
特許請求の範囲第1項記載の系統安定化装置。
(2) The system stabilizing device according to claim 1, wherein the amount of charge held by the battery is determined by calculation from the charging/discharging current of the battery.
(3)指令値は、バッテリーの保有電荷量と所定の値と
の偏差に基づいて積分回路又は1次遅れ回路で決定され
ることを特徴とする特許請求の範囲第2項記載の系統安
定化装置。
(3) System stabilization according to claim 2, characterized in that the command value is determined by an integrating circuit or a first-order lag circuit based on the deviation between the amount of charge held by the battery and a predetermined value. Device.
JP62015213A 1987-01-27 1987-01-27 System stabilizer Pending JPS63186538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62015213A JPS63186538A (en) 1987-01-27 1987-01-27 System stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62015213A JPS63186538A (en) 1987-01-27 1987-01-27 System stabilizer

Publications (1)

Publication Number Publication Date
JPS63186538A true JPS63186538A (en) 1988-08-02

Family

ID=11882595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62015213A Pending JPS63186538A (en) 1987-01-27 1987-01-27 System stabilizer

Country Status (1)

Country Link
JP (1) JPS63186538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328633A (en) * 1992-05-22 1993-12-10 Mitsubishi Electric Corp Solar power generator
US7456604B2 (en) 2004-04-19 2008-11-25 Canon Kabushiki Kaisha Electric power control apparatus, power generation system and power grid system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328633A (en) * 1992-05-22 1993-12-10 Mitsubishi Electric Corp Solar power generator
US7456604B2 (en) 2004-04-19 2008-11-25 Canon Kabushiki Kaisha Electric power control apparatus, power generation system and power grid system
US7550952B2 (en) 2004-04-19 2009-06-23 Canon Kabushiki Kaisha Electric power control apparatus, power generation system and power grid system

Similar Documents

Publication Publication Date Title
US6281485B1 (en) Maximum power tracking solar power system
US6433522B1 (en) Fault tolerant maximum power tracking solar power system
US6369462B1 (en) Maximum power tracking solar power system
EP0683933B1 (en) An emergency power system
US8373312B2 (en) Solar power generation stabilization system and method
US5923100A (en) Apparatus for controlling a solar array power system
JP5459634B2 (en) Maximum power point tracking method and apparatus in power conversion based on double feedback loop and power ripple
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
US7786716B2 (en) Nanosatellite solar cell regulator
US8866465B2 (en) Nanosatellite photovoltaic regulator
JP6455661B2 (en) Independent operation system
JP5608938B2 (en) New architecture of power factor and harmonic compensator for power distribution system
JP3781977B2 (en) Distributed power supply network
KR102087063B1 (en) Method and apparatus for improved burst mode during power conversion
CN107370187B (en) A kind of photovoltaic microgrid system and photovoltaic microgrid system control method
CN110176788B (en) Power storage system and power storage device
JP2020520226A (en) Hybrid energy storage system
JPH11262186A (en) Controller of power storage system
WO2022264303A1 (en) Uninterruptible power supply device
JP2005328622A (en) Power supply system
JP7275386B2 (en) power system
US10951039B2 (en) Multi-input PV inverter system and method
JPS63186538A (en) System stabilizer
JP2008067484A (en) Private power generation system obtained by combining storage battery facility and privately-owned electrical power facility and control method for output of privately-owned electrical power facility in the system
JPS60256824A (en) Controller of solar power generating system