JP6455661B2 - Independent operation system - Google Patents

Independent operation system Download PDF

Info

Publication number
JP6455661B2
JP6455661B2 JP2014259648A JP2014259648A JP6455661B2 JP 6455661 B2 JP6455661 B2 JP 6455661B2 JP 2014259648 A JP2014259648 A JP 2014259648A JP 2014259648 A JP2014259648 A JP 2014259648A JP 6455661 B2 JP6455661 B2 JP 6455661B2
Authority
JP
Japan
Prior art keywords
storage battery
power
self
operation system
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259648A
Other languages
Japanese (ja)
Other versions
JP2016119820A (en
Inventor
翔直 佐賀
翔直 佐賀
梅沢 一喜
一喜 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014259648A priority Critical patent/JP6455661B2/en
Publication of JP2016119820A publication Critical patent/JP2016119820A/en
Application granted granted Critical
Publication of JP6455661B2 publication Critical patent/JP6455661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

本発明は、順逆変換可能な電力変換装置及び蓄電池を有する蓄電池システムと、この蓄電池システムを充電する発電設備と、電力系統の停電時等に系統から解列される前記蓄電池システムによって給電される負荷設備と、を備えた自立運転システムに関するものである。   The present invention relates to a storage battery system having a power conversion device and a storage battery capable of forward / reverse conversion, a power generation facility for charging the storage battery system, and a load fed by the storage battery system disconnected from the system at the time of a power failure of the power system. And a self-sustained operation system including the equipment.

図6は、特許文献1に記載された自立運転制御装置の全体構成図である。
図6において、50は電力系統に接続された母線、80,80,…は母線50にインバータ70,70,…を介してそれぞれ連系する分散型電源、90,90,…は母線電圧及び母線電流に基づいてインバータ70,70,…を制御する制御装置である。また、100,100,…は分散型電源80,80,…から母線50を介して給電される負荷、60は母線電圧及び負荷電流に基づいてインバータ70,70,…を協調運転するためにこれらの出力指令値を制御装置90,90,…に送出する協調制御装置である。
ここで、分散型電源80,80,…は、太陽光発電装置や風力発電装置等の自然エネルギーを利用した発電設備、あるいは蓄電池等の直流電源設備により構成されている。
FIG. 6 is an overall configuration diagram of the self-sustaining operation control device described in Patent Document 1.
6, 50 is a bus connected to the power system, 80, 80,... Are distributed power sources connected to the bus 50 via inverters 70, 70,..., 90, 90,. This is a control device that controls the inverters 70, 70,... Based on the current. In addition, 100, 100,... Are loads fed from the distributed power sources 80, 80,... Via the bus 50, and 60 is used for cooperative operation of the inverters 70, 70,. Are output to the control devices 90, 90,...
Here, the distributed power sources 80, 80,... Are constituted by power generation facilities using natural energy such as solar power generation devices and wind power generation devices, or DC power supply facilities such as storage batteries.

図7は、図6における制御装置90の構成を示している。この制御装置90は、振幅検出部91、PQ検出部(有効電力成分・無効電力成分検出部)92、比例制御部93a〜93d、電圧指令演算部94、PWM制御部95、位相差検出部96、積分器97等を備えている。   FIG. 7 shows a configuration of the control device 90 in FIG. This control device 90 includes an amplitude detector 91, a PQ detector (active power component / reactive power component detector) 92, proportional controllers 93a to 93d, a voltage command calculator 94, a PWM controller 95, and a phase difference detector 96. , An integrator 97 and the like.

制御装置90において、インバータ70の出力電圧の基準振幅Vrefと、PQ検出部92から比例制御部93aを介して出力される母線50の無効電流(無効電力)成分と、振幅検出部91が検出した母線電圧の振幅との偏差が比例制御部93bにより増幅され、電圧指令演算部94に入力される。
また、母線電圧の位相と位相角指令θとの差が位相差検出部96により検出され、比例制御部93dにより増幅される。更に、PQ検出部92から出力される有効電流(有効電力)成分と協調制御装置60からの出力指令値との偏差が比例制御部93cにより増幅される。そして、インバータ70の出力電圧の基準周波数frefと比例制御部93c,93dの出力とが加算されて積分器97に入力され、前記位相角指令θが演算される。
In the control device 90, the amplitude detection unit 91 detects the reference amplitude V ref of the output voltage of the inverter 70, the reactive current (reactive power) component of the bus 50 output from the PQ detection unit 92 via the proportional control unit 93a, and the amplitude detection unit 91. The deviation from the amplitude of the generated bus voltage is amplified by the proportional control unit 93 b and input to the voltage command calculation unit 94.
Further, the difference between the phase of the bus voltage and the phase angle command θ is detected by the phase difference detection unit 96 and amplified by the proportional control unit 93d. Furthermore, the deviation between the active current (active power) component output from the PQ detection unit 92 and the output command value from the cooperative control device 60 is amplified by the proportional control unit 93c. Then, the reference frequency f ref of the output voltage of the inverter 70 and the outputs of the proportional control units 93c and 93d are added and input to the integrator 97, and the phase angle command θ is calculated.

電圧指令演算部94は、比例制御部93bから出力される振幅指令と位相角指令θとに基づいてインバータ70の出力電圧指令を演算し、PWM制御部95を介してインバータ70をPWM制御することにより、分散型電源80の直流電力を交流電力に変換して母線50から負荷100に供給する。   The voltage command calculation unit 94 calculates an output voltage command of the inverter 70 based on the amplitude command and the phase angle command θ output from the proportional control unit 93b, and performs PWM control of the inverter 70 via the PWM control unit 95. Thus, the DC power of the distributed power source 80 is converted into AC power and supplied from the bus 50 to the load 100.

図6,図7に示した自立運転制御装置では、並列運転により負荷100を分担するインバータ70,70,…の出力電流に差が生じないように、インバータ70,70,…から負荷100に流入する無効電力が大きくなるほど出力電圧の振幅を減少させ、かつ、インバータ70,70,…から負荷100に流入する有効電力が大きくなるほど出力電圧の周波数を低下させるようなドループ特性(スロープ特性)に従って制御を行っている。また、協調制御装置60は負荷100の総量を計算して各インバータ70,70,…の出力指令値を生成し、これらの出力指令値を制御装置90,90,…に与えてインバータ70,70,…を並列運転することにより、全体の需給調整を行いながら分散型電源80,80,…の自立運転を制御している。   In the self-sustained operation control apparatus shown in FIGS. 6 and 7, the inverters 70, 70,... Flow into the load 100 from the inverters 70, 70,. Is controlled according to a droop characteristic (slope characteristic) that decreases the amplitude of the output voltage as the reactive power increases, and decreases the frequency of the output voltage as the active power flowing from the inverters 70, 70,. It is carried out. Further, the cooperative control device 60 calculates the total amount of the load 100 to generate output command values of the inverters 70, 70,..., And gives these output command values to the control devices 90, 90,. ,... Are operated in parallel to control the independent operation of the distributed power sources 80, 80,.

特開2007−124797号公報(段落[0012]〜[0028],[0042]〜[0053]、図1〜図5等)JP 2007-1224797 A (paragraphs [0012] to [0028], [0042] to [0053], FIGS. 1 to 5 etc.)

しかしながら、例えば負荷が急激に重くなった場合に、他のインバータよりも出力電力が大きくなるような周波数指令に従って運転されていたインバータは、出力電力を多く分担することになり、分散型電源80の蓄電池が過放電状態になって蓄電池電圧が不足するおそれがある。
逆に、負荷が急激に軽くなった場合には、他のインバータよりも入力電力が大きくなるような周波数指令に従って運転されていたインバータは、入力電力を多く分担することになり、分散型電源80の蓄電池が過充電状態になって蓄電池電圧が過大になるおそれがある。
このような事態が生じると、システムを安定的かつ継続的に運転することが困難になるという問題があった。
However, for example, when the load suddenly increases, the inverter that is operated in accordance with the frequency command such that the output power becomes larger than the other inverters will share a large amount of output power. There is a possibility that the storage battery becomes overdischarged and the storage battery voltage becomes insufficient.
On the other hand, when the load suddenly becomes lighter, the inverter that has been operated in accordance with the frequency command such that the input power becomes larger than the other inverters will share a lot of input power, and the distributed power source 80 There is a risk that the storage battery will be overcharged and the storage battery voltage will be excessive.
When such a situation occurs, there is a problem that it is difficult to operate the system stably and continuously.

そこで、本発明の解決課題は、蓄電池の充放電電流を適切に制御して蓄電池を保護し、システムの安定的かつ継続的な運転を可能にした自立運転システムを提供することにある。   Then, the solution subject of this invention is providing the self-sustained operation system which controlled the charging / discharging electric current of a storage battery appropriately, protected a storage battery, and enabled the stable and continuous driving | operation of the system.

上記課題を解決するために、請求項1に係る発明は、順逆変換可能な電力変換装置と前記電力変換装置の直流側に接続された蓄電池とからなる蓄電池システムと、前記電力変換装置を制御する蓄電池システム制御装置と、前記電力変換装置の交流側に接続され、かつ前記電力変換装置を介して前記蓄電池を充電可能な発電設備と、前記蓄電池システムと前記発電設備との接続点に母線を介して接続された負荷設備と、を有し、
前記蓄電池システムが電力系統から解列された状態で、前記電力変換装置及び前記母線を介して前記蓄電池を放電させることにより前記負荷に給電する自立運転システムであって、
前記電力変換装置が、
前記母線の有効電力成分・無効電力成分を検出する手段と、ドループ特性に基づき前記有効電力成分に応じて出力周波数指令を調整する手段と、前記出力周波数指令を周波数補正指令により補正する手段と、を備えた自立運転システムにおいて、
前記蓄電池の直流電流を検出する直流電流検出手段と、
前記直流電流検出手段による直流電流検出値と前記蓄電の充電電流保護レベルとを比較する充電電流比較手段と、
前記直流電流検出値が前記充電電流保護レベルを超えたときに、前記出力周波数指令を低下させる極性を有する前記周波数補正指令の上限値を0に制限する手段と、を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 controls a power storage device including a power conversion device capable of forward / reverse conversion and a storage battery connected to a DC side of the power conversion device, and the power conversion device. A storage battery system control device, a power generation facility connected to the alternating current side of the power conversion device and capable of charging the storage battery via the power conversion device, and a connection point between the storage battery system and the power generation facility via a bus Connected load equipment, and
In a state where the storage battery system is disconnected from the power system, the storage battery system is a self-sustaining operation system that supplies power to the load by discharging the storage battery via the power converter and the bus,
The power converter is
Means for detecting an active power component / reactive power component of the bus; means for adjusting an output frequency command according to the active power component based on a droop characteristic; and means for correcting the output frequency command with a frequency correction command; In a self-sustaining operation system with
DC current detection means for detecting the DC current of the storage battery;
A charging current comparison means for comparing the charge current protection level of the electric storage battery and the DC current value detected by the DC current detecting means,
Means for limiting the upper limit value of the frequency correction command having a polarity to lower the output frequency command to 0 when the detected direct current value exceeds the charge current protection level.

請求項2に係る発明は、請求項1に記載した自立運転システムにおいて、
前記直流電流検出値と前記蓄電の放電電流保護レベルとを比較する放電電流比較手段と、前記直流電流検出値が前記放電電流保護レベルを超えたときに、前記出力周波数指令を上昇させる極性を有する前記周波数補正指令の下限値を0に制限する手段と、を更に備えたものである。
The invention according to claim 2 is the self-sustaining operation system according to claim 1,
A discharge current comparing means for comparing the discharge current protection level of the electric storage battery and the DC current detection value, when the DC current detection value exceeds the discharge current protection level, the polarity of increasing the output frequency command And means for limiting the lower limit value of the frequency correction command to 0.

請求項3に係る発明は、順逆変換可能な電力変換装置と前記電力変換装置の直流側に接続された蓄電池とからなる蓄電池システムと、前記電力変換装置を制御する蓄電池システム制御装置と、前記電力変換装置の交流側に接続され、かつ前記電力変換装置を介して前記蓄電池を充電可能な発電設備と、前記蓄電池システムと前記発電設備との接続点に母線を介して接続された負荷設備と、を有し、
前記蓄電池システムが電力系統から解列された状態で、前記電力変換装置及び前記母線を介して前記蓄電池を放電させることにより前記負荷に給電する自立運転システムであって、
前記電力変換装置が、
前記母線の有効電力成分・無効電力成分を検出する手段と、ドループ特性に基づき前記有効電力成分に応じて出力周波数指令を調整する手段と、前記出力周波数指令を周波数補正指令により補正する手段と、を備えた自立運転システムにおいて、
前記蓄電池の直流電圧を検出する直流電圧検出手段と、
前記直流電圧検出手段による直流電圧検出値と前記蓄電の過電圧保護レベルとを比較する過電圧比較手段と、
前記直流電圧検出値が前記過電圧保護レベルを超えたときに、前記出力周波数指令を低下させる極性を有する前記周波数補正指令の上限値を0に制限する手段と、を備えたものである。
The invention according to claim 3 is a storage battery system comprising a power conversion device capable of forward / reverse conversion and a storage battery connected to a DC side of the power conversion device, a storage battery system control device for controlling the power conversion device, and the power A power generation facility connected to the alternating current side of the conversion device and capable of charging the storage battery via the power conversion device; a load facility connected via a busbar to a connection point between the storage battery system and the power generation facility; Have
In a state where the storage battery system is disconnected from the power system, the storage battery system is a self-sustaining operation system that supplies power to the load by discharging the storage battery via the power converter and the bus,
The power converter is
Means for detecting an active power component / reactive power component of the bus; means for adjusting an output frequency command according to the active power component based on a droop characteristic; and means for correcting the output frequency command with a frequency correction command; In a self-sustaining operation system with
DC voltage detection means for detecting the DC voltage of the storage battery;
An overvoltage comparator means for comparing the over-voltage protection level of the electric storage battery and the DC voltage value detected by the DC voltage detection means,
Means for limiting the upper limit value of the frequency correction command having a polarity to lower the output frequency command to 0 when the detected DC voltage value exceeds the overvoltage protection level.

請求項4に係る発明は、請求項3に記載した自立運転システムにおいて、
前記直流電圧検出値と前記蓄電の不足電圧保護レベルとを比較する不足電圧比較手段と、前記直流電圧検出値が前記不足電圧保護レベルを超えたときに、前記出力周波数指令を上昇させる極性を有する前記周波数補正指令の下限値を0に制限する手段と、を更に備えたものである。
The invention according to claim 4 is the self-sustaining operation system according to claim 3,
And undervoltage comparator means for comparing the undervoltage protection level of the electric storage battery and the DC voltage detection value, when the DC voltage detection value exceeds the undervoltage protection level, the polarity of increasing the output frequency command And means for limiting the lower limit value of the frequency correction command to 0.

請求項5に係る発明は、請求項1〜4の何れか1項に記載した自立運転システムにおいて、前記蓄電池システムが複数台、並列に接続されていることを特徴とする。
また、請求項6に係る発明は、請求項5に記載した自立運転システムにおいて、複数台の前記蓄電池システムにそれぞれ設けられた蓄電の充電状態に応じて、前記周波数補正指令にオフセットを持たせたことを特徴とする。
The invention according to claim 5 is the self-sustaining operation system according to any one of claims 1 to 4, wherein a plurality of the storage battery systems are connected in parallel.
The invention according to claim 6, in isolated operation system according to claim 5, according to the state of charge of the power storage batteries respectively provided to multiple storage battery system, to have an offset to the frequency correction command It is characterized by that.

本発明によれば、パワーコンディショナのドループ特性を用いて蓄電池の充放電電流を適切に制御することにより蓄電池を過充電状態や過放電状態から保護し、自立運転システムを安定的かつ継続的に運転することが可能である。   According to the present invention, the storage battery is protected from an overcharged state or an overdischarged state by appropriately controlling the charging / discharging current of the storage battery using the droop characteristic of the power conditioner, and the autonomous operation system can be stably and continuously performed. It is possible to drive.

本発明の実施形態に係る自立運転システムの全体構成図である。1 is an overall configuration diagram of a self-sustained operation system according to an embodiment of the present invention. 図1におけるパワーコンディショナの第1実施例を示すブロック図である。It is a block diagram which shows 1st Example of the power conditioner in FIG. 図1におけるパワーコンディショナの第2実施例を示すブロック図である。It is a block diagram which shows 2nd Example of the power conditioner in FIG. パワーコンディショナのドループ特性を示す図である。It is a figure which shows the droop characteristic of a power conditioner. 複数台のパワーコンディショナのドループ特性を示す図である。It is a figure which shows the droop characteristic of a plurality of power conditioners. 従来技術に係る自立運転制御装置の全体構成図である。It is a whole block diagram of the independent operation control apparatus which concerns on a prior art. 図6における主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part in FIG.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、この実施形態に係る自立運転システムの全体構成図である。図1において、1aは蓄電池2a及びパワーコンディショナ3aからなる蓄電池システムであり、同じく1bは蓄電池2b及びパワーコンディショナ3bからなる蓄電池システム,1cは蓄電池2c及びパワーコンディショナ3cからなる蓄電池システムである。これらの蓄電池システム1a,1b,1cは並列運転により後述の負荷設備7に交流電力を供給するものであり、その台数は図示例に何ら限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a self-sustaining operation system according to this embodiment. In FIG. 1, 1a is a storage battery system comprising a storage battery 2a and a power conditioner 3a, 1b is a storage battery system comprising a storage battery 2b and a power conditioner 3b, and 1c is a storage battery system comprising a storage battery 2c and a power conditioner 3c. . These storage battery systems 1a, 1b, and 1c supply AC power to a load facility 7 to be described later by parallel operation, and the number thereof is not limited to the illustrated example.

パワーコンディショナ3a,3b,3cは、蓄電池2a,2b,2cを充放電させるために順逆変換可能な電力変換装置として機能し、蓄電池システム制御装置5によってそれぞれ制御される。蓄電池システム制御装置5は、蓄電池2a,2b,2cの直流電圧や直流電流(充放電電流)等の測定値に基づいて後述する周波数補正指令、交流電圧補正指令を生成し、パワーコンディショナ3a,3b,3に送信する手段を備えている。   The power conditioners 3a, 3b, 3c function as power converters capable of forward / reverse conversion for charging / discharging the storage batteries 2a, 2b, 2c, and are controlled by the storage battery system control device 5, respectively. The storage battery system control device 5 generates a frequency correction command and an AC voltage correction command, which will be described later, based on measured values such as the DC voltage and DC current (charge / discharge current) of the storage batteries 2a, 2b, 2c, and the power conditioners 3a, Means for transmitting to 3b and 3 are provided.

パワーコンディショナ3a,3b,3cは、トランス4a,4b,4cを介して母線50に一括して接続され、この母線50は連系トランス4g及び系統遮断器8を介して電力系統9に接続されている。
母線50には、トランス4d,4eを介して、太陽光発電装置6aや風力発電装置6b等の自然エネルギー発電装置からなる発電設備6が接続されている。自然エネルギー発電装置の種類は、上記の例に限定されるものではないが、一般的に、出力が変動する特性を有する。
また、母線50には、トランス4fを介して負荷設備7が接続されている。
The power conditioners 3a, 3b, 3c are collectively connected to the bus 50 via the transformers 4a, 4b, 4c, and the bus 50 is connected to the power system 9 via the interconnection transformer 4g and the system breaker 8. ing.
A power generation facility 6 composed of a natural energy power generation device such as a solar power generation device 6a or a wind power generation device 6b is connected to the bus 50 via transformers 4d and 4e. The type of the natural energy power generation apparatus is not limited to the above example, but generally has a characteristic that the output fluctuates.
The load facility 7 is connected to the bus 50 via a transformer 4f.

上記構成において、発電設備6の発電電力によりパワーコンディショナ3a,3b,3cを介して蓄電池2a,2b,2cを充電し、電力系統9の停電等により系統遮断器8が遮断された場合には、パワーコンディショナ3a,3b,3cを介して蓄電池2a,2b,2cを放電させることにより、交流電力を母線50経由で負荷設備7に供給することが可能である。   In the above configuration, when the storage battery 2a, 2b, 2c is charged via the power conditioners 3a, 3b, 3c with the generated power of the power generation facility 6, and the system breaker 8 is cut off due to a power failure of the power system 9, etc. By discharging the storage batteries 2a, 2b, 2c through the power conditioners 3a, 3b, 3c, AC power can be supplied to the load facility 7 via the bus 50.

次に、図2は、パワーコンディショナ3a,3b,3cの第1実施例を示すブロック図である。
図2において、2は図1における参照符号2a,2b,2cに相当する蓄電池、3は同じく3a,3b,3cに相当するパワーコンディショナ、4は同じく4a,4b,4cに相当するトランスを示している。
Next, FIG. 2 is a block diagram showing a first embodiment of the power conditioners 3a, 3b, 3c.
2, 2 is a storage battery corresponding to reference numerals 2a, 2b and 2c in FIG. 1, 3 is a power conditioner corresponding to 3a, 3b and 3c, and 4 is a transformer corresponding to 4a, 4b and 4c. ing.

蓄電池2の直流電圧は直流電圧検出器43により検出され、蓄電池システム制御装置5に入力されている。蓄電池システム制御装置5は、周波数補正指令を生成し、周波数補正指令制限部13Aを介して周波数制御部11に送出すると共に、交流電圧補正指令を生成して電圧制御部12に送出する。   The DC voltage of the storage battery 2 is detected by a DC voltage detector 43 and input to the storage battery system control device 5. The storage battery system control device 5 generates a frequency correction command and sends it to the frequency control unit 11 via the frequency correction command limiter 13 </ b> A, and also generates an AC voltage correction command and sends it to the voltage control unit 12.

周波数補正指令制限部13Aは、直流電流検出器40による直流電流検出値と放電電流保護レベルとから電流偏差を求める放電電流比較手段としての加減算器28fと、前記電流偏差がゼロになるように動作するPI(Proportional Plus Integral)調節器29aと、その出力の下限値を0に制限するリミッタ30aと、前記直流電流検出値と充電電流保護レベルとから電流偏差を求める充電電流比較手段としての加減算器28gと、前記電流偏差がゼロになるように動作するPI調節器29bと、その出力の上限値を0に制限するリミッタ30bと、リミッタ30a,30bの出力により周波数補正指令を制限するリミッタ31と、を備えている。   The frequency correction command limiting unit 13A operates such that the current deviation becomes zero, and the adder / subtractor 28f as discharge current comparison means for obtaining a current deviation from the DC current detection value by the DC current detector 40 and the discharge current protection level. A PI (Proportional Plus Integral) regulator 29a, a limiter 30a for limiting the lower limit of its output to 0, and an adder / subtracter as a charging current comparison means for obtaining a current deviation from the DC current detection value and the charging current protection level 28g, a PI controller 29b that operates so that the current deviation becomes zero, a limiter 30b that limits the upper limit value of its output to 0, and a limiter 31 that limits the frequency correction command by the outputs of the limiters 30a and 30b. It is equipped with.

また、交流電流検出器41により検出された母線51の交流電流はドループ制御部10内のPQ検出部(有効電力成分・無効電力成分検出部)20に入力されている。PQ検出部20は、母線51の交流電流を有効電流成分I及び無効電流成分Iに分解し、有効電流成分Iを周波数調整器21に、無効電流成分Iを交流電圧調整器22に送出する。 Further, the alternating current of the bus 51 detected by the alternating current detector 41 is input to the PQ detection unit (active power component / reactive power component detection unit) 20 in the droop control unit 10. The PQ detector 20 decomposes the alternating current of the bus 51 into an active current component I d and a reactive current component I q , converts the active current component I d into the frequency adjuster 21, and converts the reactive current component I q into the AC voltage adjuster 22. To send.

ここで、周波数調整器21は、図4に示すようなドループ特性を有している。すなわち、周波数調整器21は、有効電流成分Iの極性が正である場合(蓄電池2が放電している場合)にはパワーコンディショナ3の出力周波数(母線51の交流電圧の周波数)を下げるために負の周波数指令dfを周波数制御部11に出力し、有効電流成分Iの極性が負である場合(蓄電池2が充電されている場合)には、パワーコンディショナ3の出力周波数を上げるために正の周波数指令dfを周波数制御部11に出力する。 Here, the frequency adjuster 21 has a droop characteristic as shown in FIG. That is, the frequency regulator 21 lowers the case where the polarity of the active current component I d is positive (the frequency of the AC voltage of the bus 51) the output frequency of the power conditioner 3 in (if battery 2 is discharged) a negative frequency command df outputs the frequency control unit 11 in order, if the polarity of the active current component I d is negative (if the battery 2 is being charged), raising the output frequency of the power conditioner 3 Therefore, a positive frequency command df is output to the frequency control unit 11.

また、交流電圧調整器22も同様のドループ特性を有しており、無効電流成分Iの極性が正である場合(電流が遅れ位相の場合)には、パワーコンディショナ3の出力端電圧(母線51の交流電圧)を下げるために負の電圧指令を電圧制御部12に出力し、無効電流成分Iの極性が負である場合(電流が進み位相の場合)には、パワーコンディショナ3の出力端電圧を上げるために正の電圧指令を電圧制御部12に出力する。 Further, the AC voltage regulator 22 has the same droop characteristic, and when the reactive current component Iq has a positive polarity (when the current is in a delayed phase), the output terminal voltage of the power conditioner 3 ( When the negative voltage command is output to the voltage control unit 12 to reduce the AC voltage of the bus 51 and the reactive current component Iq is negative (when the current is in lead phase), the power conditioner 3 A positive voltage command is output to the voltage control unit 12 in order to increase the output terminal voltage.

上述したような周波数調整器21及び交流電圧調整器22のドループ特性により、パワーコンディショナ3a,3b,3cを含む蓄電池システム1a,1b,1cは、それぞれ自立的に有効電力を分担することが可能となっている。   Due to the droop characteristics of the frequency regulator 21 and the AC voltage regulator 22 as described above, the storage battery systems 1a, 1b, 1c including the power conditioners 3a, 3b, 3c can each independently share the active power. It has become.

周波数調整器21から出力された周波数指令dfは、周波数制御部11内の加減算器28aにより基準周波数f(例えば、50[Hz]または60[Hz])と加算され、その加算結果は、加減算器28bにより、前記リミッタ31を介した周波数補正指令と加算される。
加減算器28bの出力は、VCO(Voltage Controlled Oscillator:電圧制御発振器)24に入力され、VCO24は入力周波数に基づいて正弦波信号を生成する。
The frequency command df output from the frequency adjuster 21 is added to the reference frequency f 0 (for example, 50 [Hz] or 60 [Hz]) by the adder / subtractor 28a in the frequency control unit 11, and the addition result is added / subtracted. The frequency correction command via the limiter 31 is added by the device 28b.
The output of the adder / subtractor 28b is input to a VCO (Voltage Controlled Oscillator) 24, and the VCO 24 generates a sine wave signal based on the input frequency.

また、交流電圧調整器22から出力された電圧指令は、電圧制御部12内の加減算器28cにより基準電圧vと加算され、その加算結果は、加減算器28dにおいて蓄電池システム制御装置5からの交流電圧補正指令と加算される。
一方、交流電圧検出器42により検出された母線51の交流電圧は最大値演算器23に入力され、交流電圧最大値が演算されて電圧制御部12内の加減算器28eに入力される。加減算器28eは、前述した加減算器28dの出力と交流電圧最大値との電圧偏差を求めてAVR(Automatic Voltage Regulator:自動電圧調整器)25に送り、AVR25は、上記電圧偏差をゼロにするような交流波形の振幅を演算し、この振幅を電圧指令演算部26へ出力する。
The voltage command output from the AC voltage regulator 22 is added to the reference voltage v 0 by the adder / subtractor 28 c in the voltage controller 12, and the addition result is the AC from the storage battery system controller 5 in the adder / subtractor 28 d. It is added to the voltage correction command.
On the other hand, the AC voltage of the bus 51 detected by the AC voltage detector 42 is input to the maximum value calculator 23, and the AC voltage maximum value is calculated and input to the adder / subtractor 28 e in the voltage controller 12. The adder / subtractor 28e obtains a voltage deviation between the output of the adder / subtractor 28d and the AC voltage maximum value and sends it to an AVR (Automatic Voltage Regulator) 25. The AVR 25 sets the voltage deviation to zero. The amplitude of the alternating waveform is calculated, and this amplitude is output to the voltage command calculation unit 26.

電圧指令演算部26は、VCO24及びAVR25の出力に基づいて、所定の周波数及び振幅を有する電圧指令を演算し、PWM(Pulse Width Modulation)制御部27へ出力する。
PWM制御部27は、例えば電圧指令とキャリアとを比較して駆動信号を生成し、この駆動信号を電力変換部3xの半導体スイッチング素子に送出する。電力変換部3xは、直流電力と交流電力とを相互に変換可能であり、半導体スイッチング素子のオン・オフ動作によって電力変換を行い、蓄電池2を充放電させる。
The voltage command calculation unit 26 calculates a voltage command having a predetermined frequency and amplitude based on the outputs of the VCO 24 and AVR 25 and outputs the voltage command to a PWM (Pulse Width Modulation) control unit 27.
For example, the PWM control unit 27 compares the voltage command with the carrier to generate a drive signal, and sends the drive signal to the semiconductor switching element of the power conversion unit 3x. The power conversion unit 3x can convert DC power and AC power to each other, performs power conversion by turning on and off the semiconductor switching element, and charges and discharges the storage battery 2.

次に、この第1実施例の動作を説明する。
例えば、図1における発電設備6の発電電力がゼロであり、負荷設備7の消費電力がゼロである無負荷状態において、蓄電池システム1a,1b,1cのパワーコンディショナ3a,3b,3cが定電圧・定周波数制御を行っている場合、蓄電池2a,2b,2cの出力端電流はゼロになる。このとき、パワーコンディショナ3a,3b,3cは図4のドループ特性に従って運転されるので、図2における母線51の周波数は基準周波数f(例えば50[Hz])に維持され、母線51の電圧は基準電圧vに維持される。
Next, the operation of the first embodiment will be described.
For example, the power conditioners 3a, 3b, and 3c of the storage battery systems 1a, 1b, and 1c are connected to a constant voltage in the no-load state where the generated power of the power generation facility 6 in FIG. 1 is zero and the power consumption of the load facility 7 is zero. When the constant frequency control is performed, the output terminal current of the storage batteries 2a, 2b, 2c becomes zero. At this time, since the power conditioners 3a, 3b, and 3c are operated according to the droop characteristic of FIG. 4, the frequency of the bus 51 in FIG. 2 is maintained at the reference frequency f 0 (for example, 50 [Hz]), and the voltage of the bus 51 It is maintained at the reference voltage v 0.

この状態で発電設備6から出力(力率1にて有効電力のみ出力)が発生すると、その出力は蓄電池2a,2b,2cの充電に全て用いられる。これにより、パワーコンディショナ3a,3b,3cの出力端の有効電流成分Iの極性は負(充電)になり、図4のドループ特性によって、パワーコンディショナ3a,3b,3cが自立的に出力周波数を上昇させて蓄電池システム1a,1b,1c間で有効電流を調整し、有効電力(蓄電池2a,2b,2cの充電量)を均等に分担する。 In this state, when output (only active power is output at a power factor of 1) is generated from the power generation facility 6, the output is all used for charging the storage batteries 2a, 2b, 2c. Thus, the power conditioner 3a, 3b, the polarity of the active current component I d of the output end of 3c become negative (charged) by droop characteristic of FIG. 4, the power conditioner 3a, 3b, 3c is autonomously output The effective current is adjusted between the storage battery systems 1a, 1b, and 1c by increasing the frequency, and the active power (charge amount of the storage batteries 2a, 2b, and 2c) is equally shared.

上述した制御ではパワーコンディショナ3a,3b,3cの出力周波数が上昇していくため、母線50(51)の周波数も上昇するが、蓄電池システム制御装置5は、上昇した母線50の周波数を図示されていない測定手段により測定し、この周波数が基準周波数fに維持されるように、パワーコンディショナ3a,3b,3cに対する三つの周波数補正指令を生成する。
三つの周波数補正指令は負極性であって全て同値であり、これらの周波数補正指令が周波数補正指令制限部13Aのリミッタ31を介してパワーコンディショナ3a,3b,3cの周波数制御部11に同時に送信されることにより、加減算器28bの出力周波数を低下させる。このため、パワーコンディショナ3a,3b,3cの出力周波数は同時に低下していき、有効電流(充電量)の分担割合を維持したまま、母線50の周波数が低下し、やがて基準周波数fに整定する。
In the control described above, the output frequency of the power conditioners 3a, 3b, and 3c increases, so the frequency of the bus 50 (51) also increases. However, the storage battery system controller 5 shows the frequency of the increased bus 50 in the figure. measured by measuring means not, as the frequency is maintained at the reference frequency f 0, to produce a three frequency correction command to the power conditioner 3a, 3b, 3c.
The three frequency correction commands are negative and all have the same value, and these frequency correction commands are simultaneously transmitted to the frequency control unit 11 of the power conditioners 3a, 3b, and 3c via the limiter 31 of the frequency correction command limiting unit 13A. As a result, the output frequency of the adder / subtractor 28b is lowered. Therefore, the power conditioner 3a, 3b, the output frequency of the 3c is gradually decreased at the same time, while maintaining the distribution ratio of the effective current (charge amount), it reduces the frequency of the bus 50, eventually settling to the reference frequency f 0 To do.

なお、周波数補正指令制限部13Aでは、蓄電池2の直流電流検出値が充電電流保護レベルを超えた場合には、母線50の周波数を低下させる極性の周波数補正指令の上限値をリミッタ30bにより0に制限することで、蓄電池2の充電電流が過大になるのを防止している。
逆に、直流電流検出値が放電電流保護レベルを超えた場合には、母線50の周波数を上昇させる極性の周波数補正指令の下限値をリミッタ30aにより0に制限することで、蓄電池2の放電電流が過大になるのを防止している。
In the frequency correction command limiting unit 13A, when the DC current detection value of the storage battery 2 exceeds the charging current protection level, the upper limit value of the polarity frequency correction command for reducing the frequency of the bus 50 is set to 0 by the limiter 30b. By limiting, the charging current of the storage battery 2 is prevented from becoming excessive.
On the other hand, when the DC current detection value exceeds the discharge current protection level, the limit value 30a limits the lower limit value of the polarity frequency correction command for increasing the frequency of the bus 50 to 0 by the limiter 30a. Is prevented from becoming excessive.

ここで、蓄電池システム制御装置5は、蓄電池2a,2b,2cのSOC(State of Charge:充電状態)に応じてパワーコンディショナ3a,3b,3cにそれぞれ送信する三つの周波数補正指令に重み付けを行っている。   Here, the storage battery system controller 5 weights the three frequency correction commands to be transmitted to the power conditioners 3a, 3b, and 3c in accordance with the SOC (State of Charge) of the storage batteries 2a, 2b, and 2c. ing.

すなわち、SOCの高い蓄電池に対応するパワーコンディショナに対しては、正極性側に重み付けした周波数補正指令を送信することにより、図5の「放電号機特性」のように、ドループ特性に正極性のオフセットを持たせる。このドループ特性によって正極性のオフセットが与えられたパワーコンディショナは、放電時には蓄電池からの放電量をより多くし、充電時には蓄電池への充電量をより少なくするように制御される。
逆に、SOCの低い蓄電池に対応するパワーコンディショナに対しては、負極性側に重み付けした周波数補正指令を送信することにより、図5の「充電号機特性」のように、ドループ特性に負極性のオフセットを持たせる。このドループ特性によって負極性のオフセットが与えられたパワーコンディショナは、放電時には蓄電池からの放電量をより少なくし、充電時には蓄電池への充電量をより多くするように制御される。
That is, by sending a frequency correction command weighted to the positive polarity side to the power conditioner corresponding to the storage battery having a high SOC, the droop characteristic has a positive polarity like the “discharge machine characteristic” in FIG. Have an offset. The power conditioner to which a positive polarity offset is given by this droop characteristic is controlled to increase the amount of discharge from the storage battery at the time of discharging and to decrease the amount of charge to the storage battery at the time of charging.
Conversely, by sending a frequency correction command weighted to the negative polarity side to a power conditioner corresponding to a low SOC storage battery, the droop characteristic has a negative polarity as shown in “Charging machine characteristics” in FIG. Have an offset of. The power conditioner to which the negative polarity offset is given by this droop characteristic is controlled so as to reduce the amount of discharge from the storage battery at the time of discharging and to increase the amount of charge to the storage battery at the time of charging.

次に、図3は、パワーコンディショナ3a,3b,3cの第2実施例を示すブロック図である。
この第2実施例では、図2の第1実施例における直流電流検出器40が削除されていると共に、周波数補正指令制限部13Bの一部の機能が第1実施例と異なっている。その他の構成及び機能は、第1実施例と同様である。
Next, FIG. 3 is a block diagram showing a second embodiment of the power conditioners 3a, 3b, 3c.
In the second embodiment, the DC current detector 40 in the first embodiment of FIG. 2 is deleted, and a part of the function of the frequency correction command limiting unit 13B is different from the first embodiment. Other configurations and functions are the same as those in the first embodiment.

すなわち、周波数補正指令制限部13B内の不足電圧比較手段としての加減算器28fには、直流電圧検出器43が検出した蓄電池2の直流電圧と蓄電池不足電圧保護レベルとが図示の符号で入力され、過電圧比較手段としての加減算器28gには、上記直流電圧と蓄電池過電圧保護レベルとが図示の符号で入力されている。
この第2実施例によれば、直流電圧検出値が蓄電池過電圧保護レベルを超えた場合には、母線50の周波数を低下させる極性の周波数補正指令の上限値をリミッタ30bにより0に制限することで、蓄電池電圧が過大になる(過充電状態になる)のを防止し、逆に、直流電圧検出値が蓄電池不足電圧保護レベルを超えた場合には、母線50の周波数を上昇させる極性の周波数補正指令の下限値をリミッタ30aにより0に制限することで、蓄電池電圧が不足する(過放電状態になる)のを防止することができる。
That is, the DC voltage of the storage battery 2 detected by the DC voltage detector 43 and the storage battery undervoltage protection level are input to the adder / subtractor 28f as the undervoltage comparison means in the frequency correction command limiter 13B by the illustrated symbols. The DC voltage and the storage battery overvoltage protection level are input to the adder / subtractor 28g serving as the overvoltage comparison means with the illustrated symbols.
According to the second embodiment, when the DC voltage detected value exceeds the storage battery overvoltage protection level, the limit value 30b limits the upper limit value of the polarity frequency correction command for reducing the frequency of the bus 50 to 0. , To prevent the storage battery voltage from becoming excessive (overcharge state), and conversely, when the detected DC voltage exceeds the storage battery undervoltage protection level, the frequency correction of the polarity to increase the frequency of the bus 50 By limiting the lower limit value of the command to 0 by the limiter 30a, it is possible to prevent the storage battery voltage from becoming insufficient (becomes an overdischarge state).

以上のように、第1実施例または第2実施例に係るパワーコンディショナによれば、蓄電池2の直流電流または直流電圧に応じて周波数補正指令を制限することにより、母線の有効電流を制御しつつ、蓄電池2の過充電保護や過放電保護を行うことが可能である。   As described above, according to the power conditioner according to the first embodiment or the second embodiment, the effective current of the bus is controlled by limiting the frequency correction command according to the DC current or the DC voltage of the storage battery 2. Meanwhile, the overcharge protection and the overdischarge protection of the storage battery 2 can be performed.

本発明は、各種の発電設備により充電されて並列運転可能な複数台の蓄電池システムを備え、これらの蓄電池システムを自立運転させて負荷設備に給電するシステムとして利用することができる。   INDUSTRIAL APPLICABILITY The present invention includes a plurality of storage battery systems that are charged by various power generation facilities and can be operated in parallel, and can be used as a system that powers load equipment by operating these storage battery systems independently.

1a,1b,1c:蓄電池システム
2,2a,2b,2c:蓄電池
3,3a,3b,3c:パワーコンディショナ
3x:電力変換部
4,4a,4b,4c,4d,4e,4f,4g:トランス
5:蓄電池システム制御装置
6:発電設備
6a:太陽光発電装置
6b:風力発電装置
7:負荷設備
8:系統遮断器
9:電力系統
10:ドループ制御部
11:周波数制御部
12:電圧制御部
13A,13B:周波数補正指令制限部
20:PQ検出部(有効電流・無効電流検出部)
21:周波数調整器
22:交流電圧調整器
23:最大値演算器
24:VCO(Voltage Controlled Oscillator)
25:AVR(Automatic Voltage Regulator)
26:電圧指令演算部
27:PWM(Pulse Width Modulation)制御部
28a,28b,28c,28d,28e,28f,28g:加減算器
29a,29b:PI(Proportional Plus Integral)調節器
30a,30b,31:リミッタ
40:直流電流検出器
41:交流電流検出器
42:交流電圧検出器
43:直流電圧検出器
50,51:母線
1a, 1b, 1c: Storage battery systems 2, 2a, 2b, 2c: Storage batteries 3, 3a, 3b, 3c: Power conditioner 3x: Power converters 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g: Transformers 5: Storage battery system control device 6: Power generation facility 6a: Solar power generation device 6b: Wind power generation device 7: Load facility 8: System breaker 9: Power system 10: Droop control unit 11: Frequency control unit 12: Voltage control unit 13A , 13B: Frequency correction command limiting unit 20: PQ detection unit (active current / reactive current detection unit)
21: Frequency regulator 22: AC voltage regulator 23: Maximum value calculator 24: VCO (Voltage Controlled Oscillator)
25: AVR (Automatic Voltage Regulator)
26: Voltage command calculation unit 27: PWM (Pulse Width Modulation) control units 28a, 28b, 28c, 28d, 28e, 28f, 28g: Adder / subtractors 29a, 29b: PI (Proportional Plus Integral) regulators 30a, 30b, 31: Limiter 40: DC current detector 41: AC current detector 42: AC voltage detector 43: DC voltage detector 50, 51: Bus

Claims (6)

順逆変換可能な電力変換装置と前記電力変換装置の直流側に接続された蓄電池とからなる蓄電池システムと、前記電力変換装置を制御する蓄電池システム制御装置と、前記電力変換装置の交流側に接続され、かつ前記電力変換装置を介して前記蓄電池を充電可能な発電設備と、前記蓄電池システムと前記発電設備との接続点に母線を介して接続された負荷設備と、を有し、
前記蓄電池システムが電力系統から解列された状態で、前記電力変換装置及び前記母線を介して前記蓄電池を放電させることにより前記負荷に給電する自立運転システムであって、
前記電力変換装置が、
前記母線の有効電力成分・無効電力成分を検出する手段と、ドループ特性に基づき前記有効電力成分に応じて出力周波数指令を調整する手段と、前記出力周波数指令を周波数補正指令により補正する手段と、を備えた自立運転システムにおいて、
前記蓄電池の直流電流を検出する直流電流検出手段と、
前記直流電流検出手段による直流電流検出値と前記蓄電の充電電流保護レベルとを比較する充電電流比較手段と、
前記直流電流検出値が前記充電電流保護レベルを超えたときに、前記出力周波数指令を低下させる極性を有する前記周波数補正指令の上限値を0に制限する手段と、
を備えたことを特徴とする自立運転システム。
A storage battery system comprising a power conversion device capable of forward / reverse conversion and a storage battery connected to the DC side of the power conversion device, a storage battery system control device for controlling the power conversion device, and an AC side of the power conversion device And a power generation facility capable of charging the storage battery via the power converter, and a load facility connected via a busbar to a connection point between the storage battery system and the power generation facility,
In a state where the storage battery system is disconnected from the power system, the storage battery system is a self-sustaining operation system that supplies power to the load by discharging the storage battery via the power converter and the bus,
The power converter is
Means for detecting an active power component / reactive power component of the bus; means for adjusting an output frequency command according to the active power component based on a droop characteristic; and means for correcting the output frequency command with a frequency correction command; In a self-sustaining operation system with
DC current detection means for detecting the DC current of the storage battery;
A charging current comparison means for comparing the charge current protection level of the electric storage battery and the DC current value detected by the DC current detecting means,
Means for limiting the upper limit value of the frequency correction command having a polarity to reduce the output frequency command to 0 when the DC current detection value exceeds the charging current protection level;
A self-sustaining operation system characterized by comprising
請求項1に記載した自立運転システムにおいて、
前記直流電流検出値と前記蓄電の放電電流保護レベルとを比較する放電電流比較手段と、
前記直流電流検出値が前記放電電流保護レベルを超えたときに、前記出力周波数指令を上昇させる極性を有する前記周波数補正指令の下限値を0に制限する手段と、
を更に備えたことを特徴とする自立運転システム。
In the self-sustaining operation system according to claim 1,
A discharge current comparing means for comparing the discharge current protection level of the electric storage battery and the DC current detection value,
Means for limiting a lower limit value of the frequency correction command having a polarity to increase the output frequency command to 0 when the DC current detection value exceeds the discharge current protection level;
A self-supporting operation system characterized by further comprising:
順逆変換可能な電力変換装置と前記電力変換装置の直流側に接続された蓄電池とからなる蓄電池システムと、前記電力変換装置を制御する蓄電池システム制御装置と、前記電力変換装置の交流側に接続され、かつ前記電力変換装置を介して前記蓄電池を充電可能な発電設備と、前記蓄電池システムと前記発電設備との接続点に母線を介して接続された負荷設備と、を有し、
前記蓄電池システムが電力系統から解列された状態で、前記電力変換装置及び前記母線を介して前記蓄電池を放電させることにより前記負荷に給電する自立運転システムであって、
前記電力変換装置が、
前記母線の有効電力成分・無効電力成分を検出する手段と、ドループ特性に基づき前記有効電力成分に応じて出力周波数指令を調整する手段と、前記出力周波数指令を周波数補正指令により補正する手段と、を備えた自立運転システムにおいて、
前記蓄電池の直流電圧を検出する直流電圧検出手段と、
前記直流電圧検出手段による直流電圧検出値と前記蓄電の過電圧保護レベルとを比較する過電圧比較手段と、
前記直流電圧検出値が前記過電圧保護レベルを超えたときに、前記出力周波数指令を低下させる極性を有する前記周波数補正指令の上限値を0に制限する手段と、
を備えたことを特徴とする自立運転システム。
A storage battery system comprising a power conversion device capable of forward / reverse conversion and a storage battery connected to the DC side of the power conversion device, a storage battery system control device for controlling the power conversion device, and an AC side of the power conversion device And a power generation facility capable of charging the storage battery via the power converter, and a load facility connected via a busbar to a connection point between the storage battery system and the power generation facility,
In a state where the storage battery system is disconnected from the power system, the storage battery system is a self-sustaining operation system that supplies power to the load by discharging the storage battery via the power converter and the bus,
The power converter is
Means for detecting an active power component / reactive power component of the bus; means for adjusting an output frequency command according to the active power component based on a droop characteristic; and means for correcting the output frequency command with a frequency correction command; In a self-sustaining operation system with
DC voltage detection means for detecting the DC voltage of the storage battery;
An overvoltage comparator means for comparing the over-voltage protection level of the electric storage battery and the DC voltage value detected by the DC voltage detection means,
Means for limiting the upper limit value of the frequency correction command having a polarity to lower the output frequency command to 0 when the DC voltage detection value exceeds the overvoltage protection level;
A self-sustaining operation system characterized by comprising
請求項3に記載した自立運転システムにおいて、
前記直流電圧検出値と前記蓄電の不足電圧保護レベルとを比較する不足電圧比較手段と、
前記直流電圧検出値が前記不足電圧保護レベルを超えたときに、前記出力周波数指令を上昇させる極性を有する前記周波数補正指令の下限値を0に制限する手段と、
を更に備えたことを特徴とする自立運転システム。
In the self-sustained operation system according to claim 3,
And undervoltage comparator means for comparing the undervoltage protection level of the electric storage battery and the DC voltage detection value,
Means for limiting a lower limit value of the frequency correction command having a polarity to increase the output frequency command to 0 when the DC voltage detection value exceeds the undervoltage protection level;
A self-supporting operation system characterized by further comprising:
請求項1〜4の何れか1項に記載した自立運転システムにおいて、
前記蓄電池システムが複数台、並列に接続されていることを特徴とする自立運転システム。
In the self-sustained operation system according to any one of claims 1 to 4,
A self-sustaining operation system, wherein a plurality of the storage battery systems are connected in parallel.
請求項5に記載した自立運転システムにおいて、
複数台の前記蓄電池システムにそれぞれ設けられた蓄電の充電状態に応じて、前記周波数補正指令にオフセットを持たせたことを特徴とする自立運転システム。
In the self-sustaining operation system according to claim 5,
Autonomous operation system in accordance with the state of charge of the power storage batteries respectively provided to multiple storage battery system, characterized in that gave an offset to the frequency correction command.
JP2014259648A 2014-12-24 2014-12-24 Independent operation system Active JP6455661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259648A JP6455661B2 (en) 2014-12-24 2014-12-24 Independent operation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259648A JP6455661B2 (en) 2014-12-24 2014-12-24 Independent operation system

Publications (2)

Publication Number Publication Date
JP2016119820A JP2016119820A (en) 2016-06-30
JP6455661B2 true JP6455661B2 (en) 2019-01-23

Family

ID=56244569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259648A Active JP6455661B2 (en) 2014-12-24 2014-12-24 Independent operation system

Country Status (1)

Country Link
JP (1) JP6455661B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781637B2 (en) * 2017-01-27 2020-11-04 株式会社日立産機システム Control method of the cooperation system of storage battery and power converter, and power conditioning system
JP6928912B2 (en) * 2017-08-03 2021-09-01 パナソニックIpマネジメント株式会社 Power converter, power conversion system
US11349409B2 (en) 2018-05-15 2022-05-31 Mitsubishi Electric Corporation Power conversion device and power conversion system
JP2021005978A (en) * 2019-06-27 2021-01-14 住友電気工業株式会社 Autonomous power supply system and control method thereof
KR102341330B1 (en) * 2019-10-02 2021-12-21 한국에너지기술연구원 Charge/discharge control apparatus and method of energy storage system
JP2021065008A (en) * 2019-10-11 2021-04-22 住友電気工業株式会社 Self-supporting power supply system, power supply device, and control method of self-supporting power supply system
JP2023037045A (en) * 2020-02-27 2023-03-15 パナソニックIpマネジメント株式会社 Power system, controller, power converter, control method and program for power system
CN113675895B (en) * 2021-08-06 2024-04-12 阳光电源(上海)有限公司 Power distribution method and system for optical storage multi-machine parallel system
CN115411771A (en) * 2022-08-24 2022-11-29 华为数字能源技术有限公司 Photovoltaic power generation system and control method thereof
CN115579926B (en) * 2022-10-30 2023-08-08 广州菲利斯太阳能科技有限公司 Energy storage system and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159706A (en) * 1986-01-09 1987-07-15 Fuji Electric Co Ltd Load distribution control apparatus of turbine generator
JP4672525B2 (en) * 2005-11-04 2011-04-20 三菱電機株式会社 Power quality maintenance control device
US7787272B2 (en) * 2007-03-01 2010-08-31 Wisconsin Alumni Research Foundation Inverter based storage in dynamic distribution systems including distributed energy resources
JP2012016077A (en) * 2010-06-29 2012-01-19 Tokyo Electric Power Co Inc:The Frequency control apparatus in power system
JP2014233098A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Charge and discharge system
WO2013179345A1 (en) * 2012-05-31 2013-12-05 三洋電機株式会社 Control apparatus

Also Published As

Publication number Publication date
JP2016119820A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6455661B2 (en) Independent operation system
JP6809753B2 (en) Combined cycle system
JP5717172B2 (en) Power supply system
JP6510741B1 (en) SYSTEM, CONTROL DEVICE, AND CONTROL METHOD OF SYSTEM
JPWO2013008413A1 (en) Power converter for combined power generation system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2020068650A (en) Power system, control unit, and method for controlling power system
CN112106288B (en) Power conversion device and power conversion system
US8401707B2 (en) Output-power control apparatus
US8598839B2 (en) Method for controlling sodium-sulfur battery
JP6707309B2 (en) Power supply system
CN109804520B (en) Power conversion system, power supply system, and power conversion device
WO2018138710A1 (en) Dc power supply system
RU95434U1 (en) MULTIFUNCTIONAL ENERGY COMPLEX (IEC)
WO2021205701A1 (en) Power conversion device
JP6795082B2 (en) DC power supply system
JP2006067672A (en) Power supply apparatus
JP6341103B2 (en) Self-sustaining operation control device, self-sustaining operation control system, self-sustaining operation control method, and program
JP6351200B2 (en) Power supply system
WO2023067759A1 (en) Power conversion system
JP2001224183A (en) Link inverter having dc power limiting function
JP2024017513A (en) Distributed power supply system and method for controlling distributed power supply
JP2006074954A (en) Power supply
JP2006074953A (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6455661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250