JPS63185803A - Spherical compound metal oxide particle and production thereof - Google Patents

Spherical compound metal oxide particle and production thereof

Info

Publication number
JPS63185803A
JPS63185803A JP62052987A JP5298787A JPS63185803A JP S63185803 A JPS63185803 A JP S63185803A JP 62052987 A JP62052987 A JP 62052987A JP 5298787 A JP5298787 A JP 5298787A JP S63185803 A JPS63185803 A JP S63185803A
Authority
JP
Japan
Prior art keywords
particles
metal oxide
alloy powder
combustion
composite metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62052987A
Other languages
Japanese (ja)
Inventor
Akio Nishida
明生 西田
Akira Ueki
明 植木
Hidenori Masuda
増田 英典
Yoshikazu Goto
義和 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPS63185803A publication Critical patent/JPS63185803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled particles having excellent dispersibility, fluidity and packing property and free from aggregation and fusion of particles, by blasting and burning a raw material alloy powder corresponding to a specific compositional ratio through a burner nozzle in an atmosphere containing O2 gas. CONSTITUTION:A powdery alloy 1 having particle diameter of <=200mu and a composition corresponding to the compositional ratio of the metal of the objective compound metal oxide is supplied at a constant rate with a feeder 2 and blasted into a reaction chamber 6 through a burner nozzle 3 by the aid of gas introduced from an inlet port 4 for alloy powder ejection gas. Separately, O2 gas is introduced into the reaction chamber 6 through an O2-introduction port 5 and the powder is heated with an electric furnace 7 to effect the ignition and combustion. When the combustion reaches stable state, the heating with the furnace 7 is stopped and the reaction is continued by the heat of combustion of the alloy powder. The titled particles of spinel, forsterite, mullite, etc., having an aspect ratio of 1.0-1.3 and containing particles of 0.02-0.30mu in diameter accounting for >=85wt.% of the whole particles are collected with a bag filter 8. The atomic ratio of the metal of the alloy is 1:2 (Mg:Al) for spinel, 2:1 (Mg:Si) for forsterite and 3:1 (Al:Si) for mullite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、顔料、触媒、フィラー、多孔体用原料、焼結
用原料、焼結助剤、センサー用原料、磁性材料等として
の用途に供することのできる球状複合酸化物粒子および
その製法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to pigments, catalysts, fillers, raw materials for porous bodies, raw materials for sintering, sintering aids, raw materials for sensors, magnetic materials, etc. The present invention relates to spherical composite oxide particles that can be provided and a method for producing the same.

〔従来技術及びのそ問題点〕[Prior art and its problems]

近年、種々の産業分野で、分散性、流動性及び充填性に
優れた粉末に対する要求はますます高まっている。この
種粉末の一つとして複合金属酸化物粉末が考えられるが
、従来の複合金属酸化物は粒子形状が不定形であったり
、粒子同志の凝集あるいは融着が激しいため、上記特性
を満足できる粉末とは必ずしも言い難い。
In recent years, there has been an increasing demand for powders with excellent dispersibility, fluidity, and filling properties in various industrial fields. Composite metal oxide powder can be considered as one type of powder, but since conventional composite metal oxides have irregular particle shapes and severe agglomeration or fusion of particles, powders that can satisfy the above characteristics are That is not necessarily true.

たとえば、固相法により得られた複合金属酸化物は、粉
砕処理が必要であり、そのために構成粒子は不定形でお
る。
For example, composite metal oxides obtained by the solid phase method require pulverization treatment, which causes the constituent particles to have an amorphous shape.

また、「窯業協会法j 86 (9)P433−434
 (1978)に開示された均一沈澱法ならびに「窯業
協会法J 91 (4)P164−170(1983)
に開示された噴霧熱分解法により得られた複合金属酸化
物は二次凝集粒子を形成するため、分散性、流動性、及
び充填性に劣る。
Also, “Ceramics Association Law J 86 (9) P433-434
(1978) and the Ceramics Association Law J 91 (4) P164-170 (1983).
Since the composite metal oxide obtained by the spray pyrolysis method disclosed in 2004 forms secondary agglomerated particles, it is inferior in dispersibility, fluidity, and filling property.

ざらに、「日本化学会誌」Nα11P1758−176
2 (1982)に記載の気相法により得られた複合金
属酸化物粒子は、単−金属酸化物粒子を含有するため、
2種類以上の形状を有し、融着している。
Zarani, “Journal of the Chemical Society of Japan” Nα11P1758-176
Since the composite metal oxide particles obtained by the vapor phase method described in 2 (1982) contain single-metal oxide particles,
It has two or more shapes and is fused together.

その他に、「窯業協会誌J 90 (10) P2O3
−609(1982)に開示された水中火花放電により
得られた複合金属酸化物は、不定形粒子が融着している
In addition, “Ceramic Industry Association Journal J 90 (10) P2O3
The composite metal oxide obtained by underwater spark discharge disclosed in No. 609 (1982) has amorphous particles fused together.

以上のように、従来の複合金属酸化物は、(1)−数粒
子が不定形であること、(2)これらが凝集おるいは融
着していること等の問題点があるため、多くの産業用途
におけるこれらの物質の有用性が損われていた。
As mentioned above, conventional composite metal oxides have many problems, such as (1) several particles are amorphous, and (2) these particles are aggregated or fused. The usefulness of these materials in industrial applications was compromised.

〔問題点を解決するための手段〕 本発明は、粒子同志の凝集あるいは融着がなく、粒子形
状が球状であるため、分散性、流動性および充填性に優
れた複合金属酸化物粒子およびその製法を提供する。
[Means for Solving the Problems] The present invention provides composite metal oxide particles and composite metal oxide particles that have excellent dispersibility, fluidity, and filling properties because the particles do not aggregate or fuse together and have a spherical shape. Provide manufacturing method.

本発明の球状複合金属酸化物粒子は、85重世%以上が
0.02〜0.30μmの範囲内の直径を有し、かつ短
軸径に対する長軸径の比が1.0〜1.3、好ましくは
1゜O〜1.2の範囲内でおる粒子で構成されている。
In the spherical composite metal oxide particles of the present invention, 85% or more have a diameter within the range of 0.02 to 0.30 μm, and the ratio of the major axis diameter to the minor axis diameter is 1.0 to 1.0 μm. 3, preferably in the range of 1°O to 1.2°.

上記複合金属酸化物の具体例としては、スピネル(Mg
O・Aj!203)、フォルステライト(2Mgo−8
102)、ムライト(3Aρ2o3・2Sio2)、ス
タアタイト(Mqo・S!02 )、Aj203 ・5
i02 、MQO”T i 02 、MQo・2T i
 02.2MCl0・TiO2、BeO”AI! 20
3.2BWO”S !02等が挙げられる。
As a specific example of the above composite metal oxide, spinel (Mg
O・Aj! 203), forsterite (2Mgo-8
102), Mullite (3Aρ2o3・2Sio2), Staatite (Mqo・S!02), Aj203・5
i02, MQO"T i 02, MQo・2T i
02.2MCl0・TiO2, BeO"AI! 20
3.2BWO”S!02 etc. are mentioned.

前記の球状複合金属酸化物粒子は、本発明の製法に従っ
て製造することができる。
The spherical composite metal oxide particles described above can be manufactured according to the manufacturing method of the present invention.

本発明の製法においては、原料として上記球状複合金属
酸化物粒子における金属の組成比に対応する組成の合金
粉末が使用され、例えばスピネルではMg−1!  (
原子比1:2>、フォルステライトではMg−3i(原
子比2:1)、ムライトではAfl−3i(原子比3:
1)がそれぞれ合金粉末として使用される。
In the manufacturing method of the present invention, an alloy powder having a composition corresponding to the metal composition ratio in the above-mentioned spherical composite metal oxide particles is used as a raw material. For example, for spinel, Mg-1! (
Atomic ratio 1:2>, forsterite has Mg-3i (atomic ratio 2:1), mullite has Afl-3i (atomic ratio 3:
1) are respectively used as alloy powders.

合金粉末を用いずに、単一組成の金属粉末同志を、目的
とする複合金属酸化物を形成する組成比となるように混
合して得られる混合物を燃焼させると、原料単一組成金
属に相当する酸化物微粉末が生成し、ついでこの酸化物
が反応することにより複合酸化物が生成するため、得ら
れる生成物は複合酸化物と単一組成の酸化物の混合物と
なる。
If you burn a mixture obtained by mixing metal powders of a single composition in a composition ratio that forms the desired composite metal oxide without using alloy powder, it will be equivalent to the raw material single composition metal. A fine oxide powder is produced, and then this oxide reacts to produce a composite oxide, so the resulting product is a mixture of the composite oxide and the oxide of a single composition.

原料として合金粉末を用いる本発明の製法によると、合
金は元素が原子のオーダーで混合しているため、合金粉
末が燃焼する際に直接複合金属酸化物が生成し、目的と
する複合金属酸化物微粉末を製造することが可能となる
According to the manufacturing method of the present invention that uses alloy powder as a raw material, since the alloy is a mixture of elements on the order of atoms, a composite metal oxide is directly generated when the alloy powder is burned, and the desired composite metal oxide is produced. It becomes possible to produce fine powder.

本発明の製法で使用する合金粉末の粒子径は、200μ
m以下であることが好ましい。粒子径がこれ以上大きい
と燃焼性が悪くなり、未反応合金粉末が複合合金酸化物
に残存するようになる。
The particle size of the alloy powder used in the production method of the present invention is 200μ
It is preferable that it is below m. If the particle size is larger than this, combustibility will deteriorate and unreacted alloy powder will remain in the composite alloy oxide.

この合金粉末はバーナーノズルから噴出させて酸素含有
ガス雰囲気下に浮遊させて燃焼させる。
This alloy powder is ejected from a burner nozzle, suspended in an oxygen-containing gas atmosphere, and burned.

合金粉末は一般に噴出用ガスとしては、窒素、アルゴン
のような不活性ガスが好ましく使用される。
In general, an inert gas such as nitrogen or argon is preferably used as the blowing gas for the alloy powder.

合金粉末の着火・燃焼は合金の燃焼熱を利用する。Ignition and combustion of the alloy powder utilizes the combustion heat of the alloy.

合金粉末の燃焼熱は5000 cal/9以上と大きい
ため、火炎温度は5000℃以上となる。そのため、−
目生成した複合金[2化物粒子は火炎内で溶融する(ス
ピネル、フォルステライトおよびムライトの融点はそれ
ぞれ2135℃、1890℃、1880℃)。その後、
急冷することにより、回収された粒子は球状となる。ま
た、複合金属酸化物の火炎内滞留時間は0.1〜1秒と
非常に短かいため、溶融粒子の凝集おるいは融着は起こ
らない。
Since the combustion heat of the alloy powder is as large as 5000 cal/9 or more, the flame temperature is 5000° C. or more. Therefore, −
The resulting composite gold particles melt in the flame (the melting points of spinel, forsterite, and mullite are 2135°C, 1890°C, and 1880°C, respectively). after that,
By rapid cooling, the recovered particles become spherical. Furthermore, since the residence time of the composite metal oxide in the flame is very short, 0.1 to 1 second, no aggregation or fusion of the molten particles occurs.

合金粉末を安定に燃焼させるためには、火炎の伝播によ
る着火だけでなく、反応室壁や火炎からの輻射熱による
着火を利用することが望ましい。
In order to stably burn the alloy powder, it is desirable to utilize not only ignition by flame propagation but also ignition by radiant heat from the reaction chamber wall and flame.

このためには、反応室は断熱構造にして、合金の燃焼熱
が蓄積されるようにすることが好ましい。
For this purpose, it is preferable that the reaction chamber has an adiabatic structure so that the heat of combustion of the alloy is accumulated.

通常、金属の燃焼において着火源としては抵抗加熱、高
周波遊動加熱、化学炎、アーク放電、レーザー等がある
が、本発明は前述の様に合金の燃焼熱を利用するため、
通常の着火源を用いる場合に生じる欠点、例えば(1)
反応装置が複雑になり、設備費が高くなるとか、(2)
電気、ガス等を使用するため、製造コストが多角なると
かの欠点を解消することができる。
Normally, ignition sources in the combustion of metals include resistance heating, high-frequency floating heating, chemical flame, arc discharge, laser, etc., but as mentioned above, the present invention utilizes the combustion heat of the alloy.
Disadvantages that arise when using ordinary ignition sources, such as (1)
(2) The reaction equipment becomes complicated and equipment costs increase.
Since electricity, gas, etc. are used, it is possible to eliminate the disadvantage of high manufacturing costs.

得られる球複合金属酸化物粒子の粒径は合金粉末の燃焼
状態、例えば含酸素ガスの供給量を変化させることによ
って制御することができる。
The particle size of the obtained spherical composite metal oxide particles can be controlled by changing the combustion state of the alloy powder, for example, by changing the amount of oxygen-containing gas supplied.

その−例を示すと、後述する実施例の結果かられかるよ
うに、合金粉末に対する酸素の供給量を増加させると、
得られる複合金属酸化物の粒子径が小さくなる。
As an example, as can be seen from the results of the examples described later, when the amount of oxygen supplied to the alloy powder is increased,
The particle size of the resulting composite metal oxide becomes smaller.

次に本発明を実施する際に用いる反応装置の概略図を第
1図に示す。
Next, a schematic diagram of a reaction apparatus used in carrying out the present invention is shown in FIG.

合金粉末1はフィダー2によって定」供給され、合金粉
末噴出用ガス導入口4から導入されたガスによってバー
ナーノズル3から反応室6へ噴出される。一方、酸素は
酸素導入口5から反応室へ導入される。合金粉末は燃焼
が安定するまでは電気炉7により加熱され着火されるが
、燃焼が安定したところで電気炉による加熱は止める。
The alloy powder 1 is constantly supplied by a feeder 2, and is ejected from the burner nozzle 3 into the reaction chamber 6 by gas introduced from the alloy powder ejecting gas inlet 4. On the other hand, oxygen is introduced into the reaction chamber from the oxygen introduction port 5. The alloy powder is heated and ignited by the electric furnace 7 until the combustion becomes stable, but once the combustion becomes stable, the heating by the electric furnace is stopped.

合金粉末の燃焼により生成した球状複合金属酸化物粒子
はバグフィルタ−8によって捕集される。
Spherical composite metal oxide particles generated by combustion of the alloy powder are collected by a bag filter 8.

[実施例] 次に本発明の実施例を示す。[Example] Next, examples of the present invention will be shown.

実施例1 第1図に示す反応装置を用いて複合金属酸化物を製造し
た。バーナーノズルロ径は6mφ、反応室の内径は70
#φ、長さが800mである。
Example 1 A composite metal oxide was produced using the reaction apparatus shown in FIG. The burner nozzle diameter is 6mφ, and the inner diameter of the reaction chamber is 70mm.
#φ, length is 800m.

合金粉末(100〜200メツシユ)はフィダーにより
7g/分の割合で定量供給し、3Nρ/分の合金粉末噴
出用ガス(アルゴンガス)とともにバーナーノズルから
噴出された。また、酸素は15NF/分の割合で反応室
へ導入した。反応室は電気炉により1200℃に加熱さ
れ、この輻射により合金粉末を着火し、燃焼が安定した
ところで、電気炉による加熱を停止した。合金粉末の燃
焼により生成した球状複合金属酸化物粒子はバグフィル
タ−で捕集した。また、得られた球状複合酸化物粒子は
透過型電子顕微鏡で粒子径、長軸径及び短軸径を測定し
、X線回折によって生成物を固定し、窒素吸着法により
比表面積を測定した。
The alloy powder (100 to 200 meshes) was quantitatively fed by a feeder at a rate of 7 g/min, and was ejected from a burner nozzle together with an alloy powder ejecting gas (argon gas) at 3 Nρ/min. Further, oxygen was introduced into the reaction chamber at a rate of 15 NF/min. The reaction chamber was heated to 1200° C. by an electric furnace, the alloy powder was ignited by this radiation, and when combustion became stable, heating by the electric furnace was stopped. Spherical composite metal oxide particles produced by combustion of the alloy powder were collected with a bag filter. In addition, the particle diameter, major axis diameter, and minor axis diameter of the obtained spherical composite oxide particles were measured using a transmission electron microscope, the product was fixed by X-ray diffraction, and the specific surface area was measured by a nitrogen adsorption method.

合金粉末の種類を変えて行なった実験結果を第1表に示
す。また、得られたスピネル粉末の透過型電子顕微鏡写
真を第2図に示す。
Table 1 shows the results of experiments conducted with different types of alloy powder. Furthermore, a transmission electron micrograph of the obtained spinel powder is shown in FIG.

実施例1で(昇られたスピネル粉末の嵩密度、タップ密
度及び安息角を測定した結果を第2表に示す。嵩密度は
粉末を100mf!の容器に充填したときの見掛密度で
おり、タップ密度は100dの粉末を容器に充填した後
、1回/秒の割合で180回タップしたときの密度であ
り、安息角はスピネル粉末を板より7.5cm上部から
落下したときの堆積粉末の稜線と板とのなす角度である
The bulk density, tap density and angle of repose of the spinel powder lifted in Example 1 are shown in Table 2. The bulk density is the apparent density when the powder is packed in a 100 mf! container. The tapped density is the density when 100 d of powder is filled into a container and tapped 180 times at a rate of 1/sec. The angle of repose is the density of the deposited powder when the spinel powder is dropped from 7.5 cm above the plate. It is the angle between the ridgeline and the plate.

ざらに、実施例1で得られたスピネル粉末を100Kg
/crAで一軸加圧した後、1.5t/cnでラバープ
レスして製造した成形体の密度及び相対密度(理論密度
を3.58g/ CTl1とした)を第2表に併記する
Roughly 100 kg of spinel powder obtained in Example 1
Table 2 also shows the density and relative density (theoretical density was set to 3.58 g/CTl1) of the molded product produced by uniaxial pressing at /crA and then rubber pressing at 1.5 t/cn.

比較のため水中火花放電法により得られた市販のスピネ
ル粉末の物性を第2表に示す。
For comparison, Table 2 shows the physical properties of commercially available spinel powder obtained by the underwater spark discharge method.

第  2   表 実施例2 実施例1において合金粉末をMCI−A、Q  (原子
比1:2)とし、酸素の流量を変えた以外は実施例1と
同様に操作してスピネル粉末を製造した。
Table 2 Example 2 Spinel powder was produced in the same manner as in Example 1 except that the alloy powder was MCI-A, Q (atomic ratio 1:2) and the flow rate of oxygen was changed.

その結果を第3表に示す。尚、実施例1の結果を併記す
る。
The results are shown in Table 3. Note that the results of Example 1 are also listed.

番  3  表Number 3 Table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の際に使用される反応装置の一例
の概略図であり、第2図は実施例1で得られたスピネル
粉末の粒子構造を示す図である。 3・・・バーナーノズル、5・・・酸素導入口、6・・
・反応室。 特許出願人   宇部興産株式会社 第1図 手続補正書(自発) 昭和62年 7月 72日
FIG. 1 is a schematic diagram of an example of a reaction apparatus used in carrying out the present invention, and FIG. 2 is a diagram showing the particle structure of the spinel powder obtained in Example 1. 3...Burner nozzle, 5...Oxygen inlet, 6...
・Reaction chamber. Patent applicant: Ube Industries, Ltd. Figure 1 procedural amendment (voluntary) July 72, 1988

Claims (4)

【特許請求の範囲】[Claims] (1)0.02〜0.30μmの範囲内の直径を有する
粒子が85重量%以上であり、粒子の短軸径に対する長
軸径の比が1.0〜1.3の範囲内であることを特徴と
する球状複合金属酸化物粒子。
(1) Particles having a diameter within the range of 0.02 to 0.30 μm account for 85% by weight or more, and the ratio of the major axis diameter to the minor axis diameter of the particles is within the range of 1.0 to 1.3. A spherical composite metal oxide particle characterized by:
(2)複合金属酸化物における金属の組成比に対応する
組成の合金粉末を、バーナーノズルから噴出させ、酸素
含有ガス雰囲気に燃焼させることを特徴とする球状複合
金属酸化物粒子の製法。
(2) A method for producing spherical composite metal oxide particles, which comprises ejecting alloy powder having a composition corresponding to the metal composition ratio in the composite metal oxide from a burner nozzle and burning it in an oxygen-containing gas atmosphere.
(3)合金粉末の粒子径が200μm以下であることを
特徴とする特許請求の範囲第(2)項に記載の球状複合
金属酸化物粒子の製法。
(3) The method for producing spherical composite metal oxide particles according to claim (2), wherein the particle size of the alloy powder is 200 μm or less.
(4)合金粉末の燃焼が合金粉末自身の燃焼熱を利用し
て行なわれる特許請求の範囲(2)項に記載の球状複合
金属酸化物粒子の製法。
(4) The method for producing spherical composite metal oxide particles according to claim (2), wherein the combustion of the alloy powder is performed using the combustion heat of the alloy powder itself.
JP62052987A 1986-08-08 1987-03-10 Spherical compound metal oxide particle and production thereof Pending JPS63185803A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18515786 1986-08-08
JP61-185157 1986-08-08

Publications (1)

Publication Number Publication Date
JPS63185803A true JPS63185803A (en) 1988-08-01

Family

ID=16165835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052987A Pending JPS63185803A (en) 1986-08-08 1987-03-10 Spherical compound metal oxide particle and production thereof

Country Status (1)

Country Link
JP (1) JPS63185803A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065495A2 (en) 2003-01-24 2004-08-05 Showa Denko K. K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
JP2007106650A (en) * 2005-10-17 2007-04-26 Denki Kagaku Kogyo Kk Calcium aluminate, alumina cement composition and monolithic refractory
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
WO2008084811A1 (en) * 2007-01-10 2008-07-17 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
TWI400213B (en) * 2009-03-16 2013-07-01 China Steel Corp Method for the manufacture of Forsterite film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141604A (en) * 1984-12-13 1986-06-28 Tokuyama Soda Co Ltd Production of inorganic oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141604A (en) * 1984-12-13 1986-06-28 Tokuyama Soda Co Ltd Production of inorganic oxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065495A2 (en) 2003-01-24 2004-08-05 Showa Denko K. K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
US7425287B2 (en) 2003-01-24 2008-09-16 Showa Denko K.K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
JP2007106650A (en) * 2005-10-17 2007-04-26 Denki Kagaku Kogyo Kk Calcium aluminate, alumina cement composition and monolithic refractory
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
WO2008084811A1 (en) * 2007-01-10 2008-07-17 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
US8044524B2 (en) 2007-01-10 2011-10-25 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
TWI485227B (en) * 2007-01-10 2015-05-21 Hitachi Chemical Co Ltd Adhesive for circuit component connection and semiconductor device using the same
TWI493014B (en) * 2007-01-10 2015-07-21 Hitachi Chemical Co Ltd Adhesive for circuit component connection and semiconductor device using the same
TWI400213B (en) * 2009-03-16 2013-07-01 China Steel Corp Method for the manufacture of Forsterite film

Similar Documents

Publication Publication Date Title
JP3356323B2 (en) Fine metal powder
Sytschev et al. Self-propagating high-temperature synthesis of nanomaterials
JP3383608B2 (en) Apparatus for synthesizing nanocrystalline materials
US5472477A (en) Process for the preparation of finely divided metal and ceramic powders
US4812166A (en) Process for producing ultrafine particles of metals, metal compounds and ceramics and apparatus used therefor
US3848068A (en) Method for producing metal compounds
Koc et al. Synthesis of beta silicon carbide powders using carbon coated fumed silica
JP2000514870A (en) Electrically assisted synthesis of films and particles with precisely tuned properties
ES2034881A1 (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings.
Mukasyan Combustion synthesis of silicon carbide
US4508788A (en) Plasma spray powder
JPS60255602A (en) Preparation of ultrafine particle of oxide
KR100254065B1 (en) Fine-particle oxide ceramic powders
US3640757A (en) Flame deposited oxide coating and method of making same
CN106927436A (en) A kind of preparation method of chromium nitride nano powder
JPS63185803A (en) Spherical compound metal oxide particle and production thereof
Comet et al. Phosphorus‐Based Nanothermites: A New Generation of Pyrotechnics Illustrated by the Example of n‐CuO/Red P Mixtures
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS6140723B2 (en)
US5389585A (en) Fine non-oxide ceramic powders
Merzhanov et al. Self-propagating high-temperature synthesis of carbides, nitrides, and borides
JP3225073B2 (en) Method for producing metal oxide powder
US6652801B2 (en) Method for producing agglomerated boron carbide
JPH0226834A (en) Manufacture of spherical magnetic material
Lin et al. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II)