JPS63185338A - Production of feed - Google Patents

Production of feed

Info

Publication number
JPS63185338A
JPS63185338A JP62018866A JP1886687A JPS63185338A JP S63185338 A JPS63185338 A JP S63185338A JP 62018866 A JP62018866 A JP 62018866A JP 1886687 A JP1886687 A JP 1886687A JP S63185338 A JPS63185338 A JP S63185338A
Authority
JP
Japan
Prior art keywords
methane fermentation
feed
proteins
broth
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62018866A
Other languages
Japanese (ja)
Inventor
Toshinori Kameoka
俊則 亀岡
Michio Sakimoto
崎元 道男
Youichi Inno
因野 要一
Shuhei Miyauchi
宮内 修平
Shigetoshi Otaki
重俊 大滝
Tadaaki Mori
忠明 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI PLANT KK
OSAKA PREF GOV
Osaka Prefecture
Takiron Co Ltd
Original Assignee
MORI PLANT KK
OSAKA PREF GOV
Osaka Prefecture
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI PLANT KK, OSAKA PREF GOV, Osaka Prefecture, Takiron Co Ltd filed Critical MORI PLANT KK
Priority to JP62018866A priority Critical patent/JPS63185338A/en
Publication of JPS63185338A publication Critical patent/JPS63185338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)

Abstract

PURPOSE:To prevent pollution and obtain a high-protein feed at the same time, by adding an organic aid to blood fluid and broth discharged in a fish processing step, flocculating colloidal proteins, separating and recovering the proteins and drying the resultant proteins. CONSTITUTION:An adequate amount of an organic acid, e.g. acetic acid, etc., is added to blood fluid or broth discharged from a fish processing step to flocculate colloidal proteins, which are then separated, recovered and dried to afford the aimed feed.

Description

【発明の詳細な説明】 皮束上■肌■分! 本発明は、魚粉製造工程その他の水産加工工程で排出さ
れる血汁や煮汁を原料とし、これから蛋白質を効率よ(
分離回収して高蛋白質飼料を製造する方法に関する。
[Detailed description of the invention] On the skin bundle ■skin■ minutes! The present invention uses blood juice and broth discharged in the fishmeal production process and other marine product processing processes as raw materials, and efficiently converts protein from this (
This invention relates to a method for separating and collecting high protein feed.

来の 術とそのμ 占 従来より、イワシ等の鮮魚や鮮魚商や缶詰業者その他の
加工業者等から回収された魚腸骨の多くは、魚粉(フィ
ンシュミール)に加工され、家畜、家禽、養魚飼料等と
して利用されている。この魚粉の製造工程においては、
血汁や煮汁が多量に排出されるが、これらは一般に次の
ように処理されている。
Traditionally, most of the fish iliac bones collected from fresh fish such as sardines, fresh fish dealers, canners, and other processors are processed into fishmeal (finschmeal), and used for livestock, poultry, It is used as fish feed, etc. In this fish meal manufacturing process,
A large amount of blood juice and broth are discharged, and these are generally disposed of as follows.

即ち、血汁の場合は、水で希釈して生物分解処理を行い
、水質規制値以下の浄化排水として放流している。一方
、煮汁の場合は、上記の生物分解処理を行って放流する
か、又は加熱濃縮してフィツシュソルブルとして再利用
を図っている。
That is, in the case of blood juice, it is diluted with water, subjected to biodegradation treatment, and then released as purified wastewater that is below the water quality regulation value. On the other hand, in the case of broth, it is either subjected to the above-mentioned biodegradation treatment and then released, or it is heated and concentrated and reused as fish soluble.

しかしながら、かかる方法で血汁や煮汁を処理する場合
は、以下に述べるような種々の問題がある。今、煮汁を
例にとって説明すると、この煮汁の性状は一般に、固形
物が約10%(重量%、以下同様)、有機物が約9%、
BODが約60000mg/j!、CODが約1)00
0mg/j!、全窒素が約12000mg/A、全炭素
が約48000mg/j!で、炭素率(C/N比)が4
と低いものであるため、生物分解処理を行っても速やか
に分解せず、効率よく処理できないといった問題がある
。これに対し、加熱濃縮してフィンシュソルブルとする
場合は、煮汁中の水分量が多く多量の熱エネルギーを必
要とするため、エネルギーコストが高くつくといった問
題があり、特にフィツシュソルブルの価格が低迷してい
る昨今では全く収支がとれなくなっている。それでも、
鮮魚を原料として魚粉を製造している場合は、得られる
フィンシュソルブルを加水分解し、魚粉製造途中の乾燥
工程に投入することによって、ホールミールの製造に利
用できるのでまだよいが、鮮度の悪い魚腸骨を原料とし
て魚粉を製造している場合は、得られるフィンシュソル
ブルが油分の酸化等、品質面での問題を有するため、ホ
ールミールの製造に利用することもできず、その処理に
頭を痛めているのが実情である。
However, when treating blood juice or broth using such a method, there are various problems as described below. Now, taking broth as an example, the properties of this broth are generally about 10% solids (wt%), about 9% organic matter, and about 9% organic matter.
BOD is about 60000mg/j! , COD is approximately 1)00
0mg/j! , total nitrogen is about 12,000 mg/A, and total carbon is about 48,000 mg/J! So, the carbon ratio (C/N ratio) is 4
Therefore, even if biodegradation treatment is performed, it does not decompose quickly and cannot be treated efficiently. On the other hand, when heating and concentrating to make Finsch soluble, there is a problem that the energy cost is high because the water content in the broth is high and a large amount of thermal energy is required. Nowadays, with prices down, it is no longer possible to make ends meet. nevertheless,
If fishmeal is produced using fresh fish as raw material, it is possible to hydrolyze the resulting Finsch soluble and add it to the drying process during fishmeal production, which is good because it can be used to produce whole meals, but the freshness may be affected. If fishmeal is produced using bad fish iliac bones, the resulting Finsch soluble has quality problems such as oxidation of oil content, so it cannot be used for whole meal production. The reality is that we are having a hard time dealing with it.

このような事情から、煮汁や血汁をメタン醗酵処理する
ことにより、エネルギー資源として回収、利用しようと
する試みも行われているようである。
Under these circumstances, attempts are being made to recover and utilize boiled broth and blood juice as an energy resource by subjecting them to methane fermentation treatment.

しかしながら、煮汁等は前述のように炭素率が低く、ま
た含硫アミノ酸等も多く含まれているため、機械攪拌型
単槽式のメタン醗酵槽による通常の中温醗酵法では、メ
タン醗酵菌に悪影響を及ぼすアンモニアや硫化水素の濃
度が経時的に高くなって正常なメタン醗酵が困難となり
、ガス発生量が著しく低下するといった問題がある。し
かも消化液のBOD値やCOD値が高いため、この消化
液の後処理が容易でないといった問題もある。
However, as mentioned above, broth has a low carbon content and contains a large amount of sulfur-containing amino acids, so normal medium-temperature fermentation using a mechanically stirred single-tank methane fermentation tank has a negative effect on methane-fermenting bacteria. There is a problem in that the concentration of ammonia and hydrogen sulfide that cause methane increases over time, making normal methane fermentation difficult and significantly reducing the amount of gas generated. Moreover, since the BOD value and COD value of the digestive fluid are high, there is also the problem that post-treatment of this digestive fluid is not easy.

光所■旦煎 本発明は上記問題に鑑みてなされたもので、その目的と
するところは、煮汁や血汁からコロイド状の蛋白質を効
率良く分離回収し、残液のメタン醗酵を行い易くさせつ
つ価値ある高蛋白質飼料を製造するという一石二鳥の方
法を提供することにある。
The present invention was made in view of the above problems, and its purpose is to efficiently separate and recover colloidal proteins from broth and blood juice, and to facilitate methane fermentation of the remaining liquid. The objective is to provide a method that kills two birds with one stone by producing high-protein feed that is both affordable and valuable.

目的を゛ するための手 かかる目的を達成するため、本発明の飼料の製造方法は
、水産加工工程で排出される血汁や煮汁に有機酸を適量
添加し、コロイド状の蛋白質を凝集させて分離回収し、
これを乾燥させる構成としたことを要旨としている。
In order to achieve this purpose, the feed manufacturing method of the present invention involves adding an appropriate amount of organic acid to the blood juice or broth discharged during the seafood processing process to aggregate colloidal proteins. Separate and collect,
The gist is that the structure is designed to dry this.

光夙■作朋 本発明のように有機酸を適量添加すると、コロイド状の
蛋白質がほぼ等電点におかれた状態となって速やかに凝
集するため、高速遠心分離機等によって効率良く分離回
収できる。そして、この回収物を乾燥すると有機酸の殆
どが揮敗し、一部が飼料着香料として残存するので、価
値ある高蛋白質飼料が得られる。また、コロイド状蛋白
質を分離回収すると、残液に含まれる含窒素化合物や含
硫化合物などのメタン醗酵に有害な化合物が減少するの
で、メタン醗酵処理が多少容易になり、ある程度の改善
効果が認められるようになる。
When an appropriate amount of organic acid is added as in the present invention, the colloidal proteins become almost at the isoelectric point and quickly aggregate, so they can be efficiently separated and recovered using a high-speed centrifuge, etc. can. When this recovered product is dried, most of the organic acid evaporates and some remains as a feed flavoring agent, so that a valuable high-protein feed can be obtained. In addition, separating and collecting colloidal proteins reduces compounds harmful to methane fermentation, such as nitrogen-containing compounds and sulfur-containing compounds, contained in the residual liquid, making methane fermentation processing somewhat easier, and a certain degree of improvement effect has been observed. You will be able to do it.

失隻炎 以下、実施例を挙げて本発明のメタン醗酵処理方法を詳
細に説明する。
Hereinafter, the methane fermentation treatment method of the present invention will be explained in detail with reference to Examples.

第1図は本発明の一実施例にかかる飼料製造工程のフロ
ーチャート、第2図は残液のメタン醗酵処理に用いるガ
ス循環装置付きメタン醗酵槽の概略構成図であって、第
1図に示すように、本発明の飼料製造方法によれば、ま
ず原料の血汁や煮汁を水で2倍程度に希釈する。原料と
して用いる血汁は、貯蔵ピントや搬送ピントより排出さ
れる液で、魚体からの滲出液、血液、内蔵、肉片等が含
まれており、また煮汁は、クツカーから排出される液で
、魚体からの抽出液、血液、内蔵、肉汁成分(蛋白質)
、骨性成分が含まれている。この煮汁の性状は既述した
通りであり、固形物中の約80%が粗蛋白質である。
FIG. 1 is a flowchart of a feed manufacturing process according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a methane fermentation tank with a gas circulation device used for methane fermentation treatment of residual liquid, which is shown in FIG. According to the feed manufacturing method of the present invention, first, the raw material blood juice or broth is diluted to about twice the amount with water. The blood juice used as a raw material is the liquid discharged from the storage pinto or the transport pinto, and contains exudate from the fish body, blood, internal organs, pieces of meat, etc. The broth used as a raw material is the liquid discharged from the cutter and contains fish body exudates, blood, internal organs, pieces of meat, etc. extract, blood, internal organs, meat juice components (protein)
, contains bone components. The properties of this broth are as described above, and approximately 80% of the solid matter is crude protein.

次いで、希釈した煮汁等に酢酸を約1容量%添加する。Next, approximately 1% by volume of acetic acid is added to the diluted broth.

このように酢酸を添加すると、希釈液中のコロイド状の
蛋白質がほぼ等電点におかれた状態となるため、速やか
に凝集する。この実施例では、飼料着香料として好まし
い酢酸を添加して蛋白質を凝集させているが、蛋白質凝
集用の有機酸としては、飼料化可能で且つメタン醗酵阻
害を生じさせない蟻酸等も好適に使用できる。
When acetic acid is added in this manner, the colloidal proteins in the diluted solution are brought to a state where they are approximately at the isoelectric point, so that they rapidly aggregate. In this example, acetic acid, which is preferable as a feed flavoring agent, is added to aggregate proteins, but as an organic acid for protein aggregation, formic acid, etc., which can be converted into feed and does not inhibit methane fermentation, can also be suitably used. .

このように蛋白質が凝集すると、これを高速遠心分離機
にかけて分離回収する。分離回収された固形物(凝集蛋
白質)は、約83%の水分を含んでおり、回収率は原料
液固形分の約19%程度である。この実施例では分離手
段として高速遠心分離機を使用し、短時間で凝集蛋白の
分離回収を行っているが、例えば沈降槽内で自然沈降さ
せる等、他の手段で分離回収してもよいことは言うまで
もない。
When proteins are aggregated in this way, they are separated and recovered using a high-speed centrifuge. The separated and recovered solids (agglomerated proteins) contain about 83% water, and the recovery rate is about 19% of the solid content of the raw material liquid. In this example, a high-speed centrifugal separator is used as a separation means to separate and recover aggregated proteins in a short time; however, other means may be used to separate and recover, such as allowing natural sedimentation in a sedimentation tank. Needless to say.

回収した固形物は、予乾して水分を約50%まで減少さ
せ、ペレット状に成形してから乾燥する。
The collected solids are pre-dried to reduce the moisture content to about 50%, formed into pellets, and then dried.

乾燥手段としては、熱風乾燥、真空乾燥、その他所型の
手段を採用すればよい。このように乾燥すると、付着し
ている酢酸の大半が揮散し、僅かの酢酸が飼料着香料と
して残存するので、ベレ・2ト状の価値ある高蛋白飼料
(粗蛋白質が約80%)が得られる。この実施例ではペ
レット状に成形してから乾燥しているが、回収した固形
物を直接乾燥して粉末配合飼料としてもよいことは勿論
である。なお、得られる飼料は、原料の鮮度の良否によ
って品質が左右され、例えば原料の鮮度が著しく悪いよ
うな場合には飼料としての使用に通さないこともあるの
で、そのような場合には高蛋白肥料としての利用を図る
のがよい。従って、本発明は鮮度の悪い原料を積極的に
使用すれば、肥料の製造方法として即応用できるもので
ある。
As the drying means, hot air drying, vacuum drying, and other suitable methods may be used. When dried in this way, most of the adhering acetic acid evaporates, and a small amount of acetic acid remains as a feed flavoring agent, resulting in valuable high-protein feed (approximately 80% crude protein) in the form of pellets. It will be done. In this example, the pellets were formed into pellets and then dried, but it goes without saying that the collected solids may be directly dried and used as a powdered feed. The quality of the feed obtained depends on the freshness of the raw materials. For example, if the freshness of the raw materials is extremely poor, it may not be possible to use it as feed. It is best to use it as fertilizer. Therefore, the present invention can be immediately applied as a method for producing fertilizers if less fresh raw materials are actively used.

上記のように原料液からコロイド状の蛋白質を分離回収
して飼料を製造すると、残液中のメタン醗酵に有害な含
窒素化合物や合繊化合物が約15%程度除去され、その
含有量が約6500mg/βから約5500mg/nに
低下するので、メタン醗酵処理を行い易くなり、ある程
度の改善効果が認められるようになる。しかし、まだ残
液中には溶解性の蛋白質や合繊アミノ酸等がかなり含ま
れており、通常の機械攪拌型単槽式のメタン醗酵槽に入
れて中温醗酵処理しても充分にメタン醗酵させにくいの
で、この残液を可溶化槽に導入して5日間はど酸醗酵さ
せてから、第2図に示すようなガス循環装置付きのメタ
ン醗酵槽に導入し、20日間はど中温又は高温醗酵法で
メタン醗酵処理を行うのが好ましい。
When the colloidal protein is separated and recovered from the raw material liquid to produce feed as described above, about 15% of the nitrogen-containing compounds and synthetic fiber compounds harmful to methane fermentation in the residual liquid are removed, and the content is reduced to about 6,500 mg. /β to about 5,500 mg/n, it becomes easier to carry out methane fermentation treatment, and a certain degree of improvement effect can be observed. However, the residual liquid still contains a considerable amount of soluble proteins and synthetic amino acids, and it is difficult to achieve sufficient methane fermentation even if it is placed in a normal mechanically stirred single-tank methane fermentation tank and subjected to medium-temperature fermentation. Therefore, this residual liquid was introduced into a solubilization tank and subjected to acid fermentation for 5 days, and then introduced into a methane fermentation tank equipped with a gas circulation device as shown in Figure 2, where it was fermented at medium or high temperature for 20 days. It is preferable to carry out methane fermentation treatment using a method.

即ち、このメタン醗酵槽1に取付けられたガス循環装置
2は、図示のように循環パイプ21の途中に硫酸槽22
と酸化鉄充填槽23を直列に設けると共に、循環パイプ
210両端をメタン醗酵槽1の上部と底部にそれぞれ接
続したもので、メタン醗酵槽1内で発生するガスが上部
から循環パイプ21を通って硫酸槽22内の硫酸3と接
触し、更に酸化鉄充填槽23内の酸化鉄4と接触してメ
タン醗酵槽1の底部に戻り、メタン醗酵液5中をバブリ
ングしてガス攪拌を行いながら循環するようになってい
る。従って、このガス循環装置付きメタン醗酵槽で処理
すると、メタン醗酵液5中で発生した有害なアンモニア
や硫化水素が攪拌ガスに保有されて循環パイプ21内を
循環し、その途中で硫酸槽22内の硫酸3と接触してア
ンモニアが硫酸アンモニウムとして除去され、更に酸化
鉄充填槽23内の酸化鉄4と接触して硫化水素が硫化鉄
として除去されるため、アンモニアと硫化水素の濃度が
大幅に減少し、メタン醗酵液5中のアンモニア量は約2
700mg/lでほぼ一定し、循環ガス中の硫化水素は
約78ppmまで低下するようになる。そのため、メタ
ン醗酵菌が盛んに活動して正常なメタン醗酵が持続して
行われ、高熱量のガスが約0.631/g (約63%
の分解率)の高率で安定して発生するようになる。この
ようにして得られる消化ガスは、メタン70%、炭酸ガ
ス29%、その他1%の組成を有し、熱量が約6000
Kca l/N−r+(と大きイノテ、直接燃料として
、或いは電気に変換して、魚粉製造その他の代替エネル
ギーとして充分使用することができる。また消化液は、
BODが約4000mg/It以下(メタン醗酵による
BOD除去率が約90%以上)、CODが約2000 
m g / J以下となるので、水で希釈して通常の活
性汚泥法等で水質規制値以下に浄化処理して放流するか
、或いは消化液温度が約35℃と比較的高いことを利用
して送風式の蒸散処理を行うことにより、容易に処理す
ることができる。
That is, the gas circulation device 2 attached to this methane fermentation tank 1 has a sulfuric acid tank 22 in the middle of a circulation pipe 21 as shown in the figure.
and an iron oxide filling tank 23 are installed in series, and both ends of a circulation pipe 210 are connected to the top and bottom of the methane fermentation tank 1, respectively, so that the gas generated in the methane fermentation tank 1 passes from the top through the circulation pipe 21. It contacts the sulfuric acid 3 in the sulfuric acid tank 22, further contacts the iron oxide 4 in the iron oxide filling tank 23, returns to the bottom of the methane fermentation tank 1, and circulates while bubbling in the methane fermentation liquid 5 and stirring the gas. It is supposed to be done. Therefore, when treated with this methane fermentation tank equipped with a gas circulation device, harmful ammonia and hydrogen sulfide generated in the methane fermentation liquid 5 are retained in the stirring gas and circulated in the circulation pipe 21, and on the way, they are transferred to the sulfuric acid tank 22. Ammonia is removed as ammonium sulfate when it comes into contact with sulfuric acid 3, and hydrogen sulfide is removed as iron sulfide when it comes into contact with iron oxide 4 in the iron oxide filling tank 23, so the concentrations of ammonia and hydrogen sulfide are significantly reduced. However, the amount of ammonia in methane fermentation solution 5 is approximately 2
It remains almost constant at 700 mg/l, and hydrogen sulfide in the circulating gas decreases to about 78 ppm. Therefore, methane-fermenting bacteria become active and normal methane fermentation continues, producing a high-calorie gas of approximately 0.631/g (approximately 63%
decomposition rate). The digestion gas obtained in this way has a composition of 70% methane, 29% carbon dioxide, and 1% other substances, and has a calorific value of about 6000.
Kcal/N-r+ (and a large amount, it can be used directly as fuel or converted into electricity to produce fishmeal and other alternative energy sources. In addition, digestive juices are
BOD is about 4000mg/It or less (BOD removal rate by methane fermentation is about 90% or more), COD is about 2000
m g/J or less, so either dilute it with water and purify it to below the water quality regulation value using the normal activated sludge method before discharging it, or take advantage of the fact that the temperature of the digestive fluid is relatively high at about 35°C. It can be easily treated by performing transpiration treatment using a blower.

なお、この実施例では、ガス循環装置2として前述のご
とき循環パイプ21の途中に硫酸槽2zと酸化鉄充填槽
23を設けたものを使用し、アンモニアと硫化水素を個
別に除去しているが、これに代えて硫酸鉄を充填した槽
を一つだけ設けたガス循環装置を使用し、アンモニアと
硫化水素を同時に除去するようにしてもよい。また、場
合によっては、アンモニアと硫化水素を除去したガスを
メタン醗酵槽に直接戻さないで、その一部又は全部を可
溶化槽を経てメタン醗酵槽に戻すようにしてもよい。
In this embodiment, a sulfuric acid tank 2z and an iron oxide filling tank 23 are installed in the middle of the circulation pipe 21 as described above as the gas circulation device 2, and ammonia and hydrogen sulfide are removed separately. Alternatively, a gas circulation device having only one tank filled with iron sulfate may be used to simultaneously remove ammonia and hydrogen sulfide. Further, in some cases, the gas from which ammonia and hydrogen sulfide have been removed may not be returned directly to the methane fermentation tank, but some or all of it may be returned to the methane fermentation tank via a solubilization tank.

参考までに、−日60tの煮汁を本発明方法で処理して
高蛋白質飼料を製造すると共に、残液を上記のようにメ
タン醗酵させてエネルギーを回収する場合の一年間の収
支を計算すると、次のように43.400千円/年のプ
ラスとなり、従って従来の加熱濃縮に要していた経費3
5,000千円/年を勘案すれば、年間78,400千
円の差益が生まれることになる。
For reference, if we process 60 tons of broth per day to produce high-protein feed using the method of the present invention, and recover energy by methane fermentation of the remaining solution as described above, the annual balance is calculated as follows: As shown below, the increase is 43,400,000 yen/year, and therefore the cost required for conventional heating concentration is 3.
If we take into account the annual rate of 5,000,000 yen, we will have a profit margin of 78,400,000 yen per year.

支出 酢酸      44,000千円/年ランニン
グコスト22,600千円/年収入 回収蛋白飼料  
44,000千円/年差引         43,4
00千円/年光凱至四来 以上の説明から明らかなように、本発明の飼料製造方法
によれば、煮汁や血汁からコロイド状の蛋白質を効率良
く分離回収して価値ある高蛋白質飼料を製造することが
でき、且つ残液のメタン醗酵処理も改善されてエネルギ
ーを高率で回収できるといった顕著な効果が得られる。
Expenditure Acetic acid 44,000,000 yen/year Running cost 22,600,000 yen/year Income Recovered protein feed
44,000,000 yen/annual deduction 43.4
00,000 yen/year As is clear from the above explanation, according to the feed manufacturing method of the present invention, colloidal protein can be efficiently separated and recovered from broth or blood juice to produce a valuable high-protein feed. can be produced, and the methane fermentation treatment of the residual liquid is also improved, resulting in significant effects such as energy recovery at a high rate.

従って、本発明は水産加工業界とりわけ魚粉製造業界に
多大の利益を与える有用な発明であり、公害防止の面で
も優れた発明である。
Therefore, the present invention is a useful invention that greatly benefits the fishery processing industry, particularly the fishmeal manufacturing industry, and is also an excellent invention in terms of pollution prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるメタン醗酵処理のフ
ローチャート、第2図は本発明に用いるガス循環装置付
きメタン醗酵槽の概略構成図である。 1・・・メタン醗酵槽、2・・・ガス循環装置、21・
・・循環パイプ、22・・・硫酸槽、23・・・酸化鉄
充填槽、3・・・硫酸、4・・・酸化鉄、5・・・メタ
ン醗酵液。
FIG. 1 is a flowchart of a methane fermentation process according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a methane fermentation tank with a gas circulation device used in the present invention. 1... Methane fermentation tank, 2... Gas circulation device, 21.
... Circulation pipe, 22... Sulfuric acid tank, 23... Iron oxide filling tank, 3... Sulfuric acid, 4... Iron oxide, 5... Methane fermentation liquid.

Claims (1)

【特許請求の範囲】[Claims] (1)水産加工工程で排出される血汁や煮汁に有機酸を
適量添加し、コロイド状の蛋白質を凝集させて分離回収
し、これを乾燥させることを特徴とする飼料の製造方法
(1) A method for producing feed, which is characterized by adding an appropriate amount of organic acid to blood juice or broth discharged in a seafood processing process, coagulating colloidal proteins, separating and collecting them, and drying this.
JP62018866A 1987-01-28 1987-01-28 Production of feed Pending JPS63185338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018866A JPS63185338A (en) 1987-01-28 1987-01-28 Production of feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018866A JPS63185338A (en) 1987-01-28 1987-01-28 Production of feed

Publications (1)

Publication Number Publication Date
JPS63185338A true JPS63185338A (en) 1988-07-30

Family

ID=11983459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018866A Pending JPS63185338A (en) 1987-01-28 1987-01-28 Production of feed

Country Status (1)

Country Link
JP (1) JPS63185338A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113683A (en) * 1974-07-22 1976-02-03 Daigo Takamura Gyokairuino zanshoohaigoshita kachikuyoshiryo

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113683A (en) * 1974-07-22 1976-02-03 Daigo Takamura Gyokairuino zanshoohaigoshita kachikuyoshiryo

Similar Documents

Publication Publication Date Title
US3711392A (en) Method for the utilization of organic waste material
US4036993A (en) Process for preparation of fish meat extracts
US4199496A (en) Process for the recovery of chemicals from the shells of crustacea
JPS63185499A (en) Methane fermentation method
CN116813409A (en) Preparation method of enteromorpha slurry, preparation method of enteromorpha organic compound fertilizer and application of enteromorpha organic compound fertilizer
US3003880A (en) Process for preparing a nutritional concentrate
JPS63185338A (en) Production of feed
JP2003225697A (en) Anaerobic fermentation system of organic waste
US313665A (en) Process of extracting the oil and albuminoid matter from corn
DE2052667A1 (en) Process for treating sewage sludge
JP4488794B2 (en) Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JPS58186491A (en) Treatment of waste liquid of canned orange and method for producing pectin from waste liquid of canned orange
JPS55145595A (en) Treatment of organic waste water
HUT50878A (en) Process for treating and neutralizing mixture of solid matters and liquids
JP5235643B2 (en) Method and apparatus for treating organic waste by combined methane fermentation
JP2021180617A (en) Method for producing solubilized product of cellulose-containing waste
JPS6255917B2 (en)
JP3174827B2 (en) How to treat marine waste
JP5523168B2 (en) Processing method of solid biomass
JPS63260885A (en) Manufacture of organic fertilizer
JP3906323B2 (en) Treatment method for highly concentrated waste liquid
JP3800990B2 (en) Anaerobic digestion method and apparatus of organic sludge
CN107556365A (en) One kind utilizes sodium alginate flocculant recovery method of protein
KR100384523B1 (en) The manufacturing method of food contained taurine using a waste water generated by cuttle treatment
JPH01187065A (en) Production of natural seasoning