JPS6255917B2 - - Google Patents

Info

Publication number
JPS6255917B2
JPS6255917B2 JP54058078A JP5807879A JPS6255917B2 JP S6255917 B2 JPS6255917 B2 JP S6255917B2 JP 54058078 A JP54058078 A JP 54058078A JP 5807879 A JP5807879 A JP 5807879A JP S6255917 B2 JPS6255917 B2 JP S6255917B2
Authority
JP
Japan
Prior art keywords
oil
wastewater
protein
flotation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54058078A
Other languages
Japanese (ja)
Other versions
JPS55152599A (en
Inventor
Tadahiro Yamashita
Toshiaki Itonaga
Yoshinori Hisayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Miike Machinery Co Ltd
Original Assignee
Mitsui Miike Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Miike Machinery Co Ltd filed Critical Mitsui Miike Machinery Co Ltd
Priority to JP5807879A priority Critical patent/JPS55152599A/en
Publication of JPS55152599A publication Critical patent/JPS55152599A/en
Publication of JPS6255917B2 publication Critical patent/JPS6255917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水産物の加工処理の際生ずる廃水中に
含まれる油分、蛋白質、BODを除去し、高級魚
油、フイツシユミール、肥料を容易に回収する方
法に関する。 水産加工工場において、魚介類の解凍、裁断、
水洗、煮熟、味付、すりみ、ボイル等の加工工程
より発生する水産加工廃水の水質は、水量と共
に、季節、加工方法により変動巾が非常に大き
く、BODは3000〜12000ppm、油分は1000〜
4000ppm、SSは1000〜5000ppmとなり、エマル
ジヨン化した含窒素物(アミノ酸、蛋白質、ペプ
チド等)の含有量が多いなどの特徴を有する。し
たがつて水産加工廃水を処理する場合、最終工程
として生物酸化を用いる為には、前処理工程にお
ける微生物浄化能力許容濃度範囲内までの油分、
SS、BOD等の効果的な除去作用が必要であり、
除去が不十分であると生物酸化工程での油分蓄積
による微生物浄化能力の低下、多量の不活性SS
の流入による浄化微生物の流出、過大負荷による
酸素供給能低下による浄化微生物の変調等の障害
が発生する。一方、水産加工廃水に含まれる汚濁
成分は油分、蛋白等を主成分とし、元来、有効に
資源の回収が行われるべきものであるが、油、蛋
白を分別して製品化する為には複雑な後処理が必
要である。 一般に水産加工廃水を処理する場合の生物処理
工程前までの処理方法としては、廃水中の固型分
をスクリーンで除去した後、廃水中の油分を自然
浮上させて油分の一部を除去した後に、無機酸に
よりPHを3〜6の蛋白の等電点となし、アルギン
酸ソーダ、ポリアクリル酸ソーダ等を加えて生じ
る凝結作用により蛋白と油分を粗大フロツクと
し、処理水を加圧して空気を溶解させた循環水と
共に浮上分離槽へ導き、油分と蛋白が凝結したフ
ロスと処理水とに分離する第1の方法、第1の方
法における浮上法として電解により生じる気泡に
より前記フロスと処理水を分離する第2の方法、
廃水中の油分を循環加圧水を用いて浮上、分離除
去した後、油分を除去した廃水に生物処理工程に
て発生する余剰汚泥の一部を混合し、微生物フロ
ツクの凝集吸着性を利用して蛋白を補捉した微生
物と蛋白の混合フロツクを循環加圧水を用いて浮
上分離する第3の方法等があるが、第1の方法で
は油分、SSおよび蛋白等を多量に含むフロツク
を同時に浮上させる為に、循環水を多くしてフロ
ス浮上に必要な気泡量を多く発生させる必要性か
ら循環水量が多くなり、浮上分離水槽が過大とな
ることは避けられない。また第2の方法では気泡
を多く発生させる必要性から電力量が多くなりラ
ンニングコストの上昇となる。更に第1、第2の
方法では浮上分離槽で分離されたフロスに油分が
多量に含まれている為、フロスを脱水する場合、
食品添加物として認可されている凝集剤を用いる
ことを前提とすれば、ドラムフイルター、プレス
フイルター、ベルトフイルター等は、油による
布の目詰り、脱水効果の低下により使用が困難で
あり、スクリユープレスでは加熱操作を同時に行
ない、脱水する方法を用いる必要がある。この場
合、絞り出された油は既に熱により酸化されてお
り、そのままでは高級魚油としての価値はなく、
高級魚油として回収するためには更に還元操作を
必要とする。絞り出された油と水は油水分離槽に
て油を回収され、水は等電点処理槽又は活性汚泥
処理槽に返送されるが、加熱により発生した可溶
性蛋白、BODを多量に含み、負荷を上昇させる
ことになる。また蛋白を含む固形物は、乾燥して
飼料として利用する場合、製品に含まれる魚油の
割合が多く、自然発火の危険性があり、またフイ
ツシユミールに混合して利用する場合には含有油
分による品質低下を生じる。第3の方法では微生
物の凝集吸着力のみで蛋白を回収するため完全な
回収が困難であり、蛋白、BODが多量に残留し
た状態で生物酸化工程へ廃水が流入するので生物
酸化工程での負荷が高く、装置の規模が大きくな
る欠点を有し、更にフロス中には蛋白と微生物が
混つた状態となつており、これをフイツシユミー
ル、飼料として使用するには衛生学的見知より考
えて回避されなければならず、肥料としての用途
のみ残されるにすぎない。 本発明者等は上記従来法による水産加工廃水処
理における欠点を解消すべく研究を重ねていた
が、スクリーンで固形物を除去した後の油分、蛋
白質等の除去にあたつて、油分は循環加圧浮上分
離法により、蛋白質は等電点全量加圧浮上分離法
により分離を行なうことによつて、従来法の欠点
が解消され効率よく水産加工廃水の処理が行なわ
れることを見出し本発明を完成したものである。
すなわち、本発明は、水産加工廃水の処理方法に
おいて、被処理水中の固形物をスクリーンにて除
去する工程、油分を前もつて除去する為の循環加
圧浮上分離工程、蛋白質を除去する為の例えば特
殊ラインミキサを使用した等電点全量加圧浮上分
離工程、BODを除去する為の生物処理工程を順
次行なうことにより油分、蛋白質、菌体汚泥を分
別採取することを特徴とする、水産加工廃水の処
理方法に関するものである。 本発明において、油脂分離では油脂の浮上に循
環加圧方式を使用し、蛋白分離には廃水を全量ラ
インミキサーに導入する、いわゆる全量加圧浮上
を用いるという使い分けの効果として次のことが
いえる。油脂は本来、自然に浮上するものであ
り、更に効果的に油脂のみを除去するには気泡量
は少なくてよく、循環水として廃水量の20〜30%
を供給するだけでよいし、全量加圧方式を用いた
場合の油脂の微細化による浮上速度の低下といつ
た問題も起らない。また蛋白の浮上分離にあたつ
ては、廃水中に蛋白とSSが多く、浮上させるた
めの気泡が多量に必要であり、循環方式では循環
水量が大きくなるにしたがつて浮上分離水槽も大
きくなる欠点を有す。しかるに、特殊ラインミキ
サーを用いた全量加圧浮上方式の場合は、水量を
増加させることなく充分な気泡量の供給が可能で
あり、更に特殊ラインミキサー内での高効率撹拌
力により蛋白の等電点凝集反応を完全に行なうこ
とが可能であり、蛋白、SS粒子の微細化はポリ
アクリル酸ソーダによる凝結作用により粗大フロ
ツクとして浮上させることにより充分補うことが
可能である。 次に上記の油脂、蛋白処理の効果について具体
的に明らかにした例を示す。 まず油脂分離において、特殊ラインミキサーを
用いた加圧浮上方式による効果を比較するため、
容量2のラインミキサーと容量100の浮上分
離槽を用いて、無薬注での全量加圧、部分加圧、
循環加圧にてPH6.5、ノルマルヘキサン抽出物質
510ppmの水産加工廃水について比較した結果を
第1表に示す。
The present invention relates to a method for removing oil, protein, and BOD contained in wastewater generated during the processing of marine products, and easily recovering high-grade fish oil, fish meal, and fertilizer. At seafood processing plants, thawing, cutting, and
The water quality of seafood processing wastewater generated from processing processes such as washing, boiling, seasoning, surimi, and boiling varies greatly depending on the water amount, season, and processing method. BOD is 3000 to 12000 ppm, and oil content is 1000 ppm. ~
4000ppm, SS is 1000-5000ppm, and has characteristics such as a high content of emulsionized nitrogen-containing substances (amino acids, proteins, peptides, etc.). Therefore, when treating seafood processing wastewater, in order to use biological oxidation as the final step, the oil content in the pretreatment step must be within the allowable concentration range for microbial purification ability.
Effective removal of SS, BOD, etc. is necessary.
If removal is insufficient, the microbial purification ability will decrease due to oil accumulation during the biooxidation process, and a large amount of inert SS will be produced.
Problems such as the outflow of purifying microorganisms due to the influx of water, and the modification of purifying microorganisms due to a decrease in oxygen supply capacity due to overloading occur. On the other hand, the pollutant components contained in seafood processing wastewater are mainly composed of oil, protein, etc., and although resources should originally be recovered effectively, it is complicated to separate the oil and protein and turn them into products. Additional post-processing is required. In general, when treating seafood processing wastewater, the treatment method before the biological treatment process is to remove the solid content in the wastewater with a screen, then allow the oil content in the wastewater to float naturally to remove some of the oil content. , adjust the pH to the isoelectric point of the protein at 3 to 6 using an inorganic acid, turn the protein and oil into coarse flocs by the coagulation effect produced by adding sodium alginate, sodium polyacrylate, etc., and dissolve the air by pressurizing the treated water. A first method in which the recycled water is led to a flotation separation tank and separated into treated water and froth with condensed oil and protein.As a flotation method in the first method, the froth and treated water are separated by air bubbles generated by electrolysis. The second method,
After the oil content in the wastewater is floated and separated using circulating pressurized water, a portion of the excess sludge generated in the biological treatment process is mixed with the wastewater from which the oil content has been removed, and protein is absorbed using the flocculation and adsorption properties of microbial flocs. There is a third method in which mixed flocs of microorganisms and proteins that have been captured are floated and separated using circulating pressurized water; Since it is necessary to increase the amount of circulating water to generate a large amount of air bubbles necessary for flotation, the amount of circulating water increases, and it is inevitable that the flotation separation tank becomes too large. Further, in the second method, since it is necessary to generate a large number of bubbles, the amount of electric power increases, resulting in an increase in running costs. Furthermore, in the first and second methods, the floss separated in the flotation tank contains a large amount of oil, so when dewatering the floss,
Drum filters, press filters, belt filters, etc. are difficult to use, assuming that a flocculant that is approved as a food additive is used, because the oil clogs the cloth and reduces the dehydration effect, and screw filters are difficult to use. In the press, it is necessary to perform a heating operation at the same time and use a method for dehydration. In this case, the extracted oil has already been oxidized by heat and has no value as a high-grade fish oil as it is.
Further reduction operations are required to recover it as high-grade fish oil. The oil and water that has been squeezed out are collected in an oil-water separation tank, and the water is returned to the isoelectric treatment tank or activated sludge treatment tank, but it contains a large amount of soluble protein and BOD generated by heating, and is loaded. will increase. In addition, when solid foods containing protein are dried and used as feed, there is a risk of spontaneous combustion due to the large proportion of fish oil contained in the product, and when mixed with fish meal, the quality of the product is affected by the oil content. causes a decline. In the third method, complete recovery is difficult because proteins are recovered only by the coagulation adsorption power of microorganisms, and wastewater flows into the biooxidation process with a large amount of protein and BOD remaining, which increases the load in the biooxidation process. It has the disadvantage of having a high amount of water and the size of the equipment, and furthermore, the floss contains a mixture of proteins and microorganisms, which should be avoided from hygienic considerations when used as meat meal or feed. The only use left is as fertilizer. The present inventors have conducted repeated research to resolve the drawbacks of the above-mentioned conventional methods for treating wastewater from seafood processing. Completed the present invention by discovering that by separating proteins using the pressure flotation separation method of the entire isoelectric point, the drawbacks of conventional methods can be overcome and fishery processing wastewater can be treated efficiently. This is what I did.
That is, the present invention provides a method for treating wastewater from seafood processing, which includes a step of removing solid matter from the water to be treated using a screen, a circulating pressurized flotation step to remove oil in advance, and a step to remove proteins. For example, seafood processing is characterized by separately collecting oil, protein, and bacterial sludge by sequentially performing a pressure flotation separation process using a special line mixer to remove the entire isoelectric point, and a biological treatment process to remove BOD. It relates to wastewater treatment methods. In the present invention, the following effects can be obtained by using a circulation pressurization method for oil and fat flotation in oil and fat separation, and using so-called total pressure flotation in which wastewater is introduced into a line mixer for protein separation. Oil and fat naturally float to the surface, and in order to remove only oil and fat more effectively, the amount of bubbles needs to be small, and 20 to 30% of the amount of wastewater is used as circulating water.
It is sufficient to simply supply the oil, and problems such as a reduction in floating speed due to finer oil and fat when using the full-volume pressurization method do not occur. In addition, in flotation separation of proteins, there are many proteins and SS in the wastewater, and a large amount of air bubbles are required to float them.In the circulation method, as the amount of circulating water increases, the flotation separation tank also becomes larger. It has its drawbacks. However, in the case of the full-volume pressurized flotation method using a special line mixer, it is possible to supply a sufficient amount of bubbles without increasing the amount of water, and furthermore, the high-efficiency stirring power in the special line mixer improves the isoelectricity of the protein. It is possible to carry out the point aggregation reaction completely, and the refining of protein and SS particles can be sufficiently compensated for by floating them as coarse flocs through the coagulation action of sodium polyacrylate. Next, an example will be shown in which the effects of the above-mentioned oil/fat and protein treatments are specifically clarified. First, in order to compare the effects of the pressurized flotation method using a special line mixer in oil and fat separation,
Using a line mixer with a capacity of 2 and a flotation tank with a capacity of 100, full volume pressurization, partial pressurization, and chemical-free injection are possible.
PH6.5 under circulating pressure, normal hexane extracted substance
Table 1 shows the comparison results for 510ppm seafood processing wastewater.

【表】 上記試験により、20%前後の循環加圧浮上方式
が油脂分離に最適であることが判る。また浮上油
の濃度は8〜12%で、魚油としての回収が可能で
ある。こゝで全量加圧方式とは、廃水の全量を加
圧してその加圧水に空気を溶解する方式であり、
部分加圧方式とは廃水の一部を加圧してその加圧
水に空気を溶解する方式であり、循環加圧方式と
は処理済みの水を一部加圧してその加圧水に空気
を溶解する方式である。例えば30%部分加圧では
廃水全量1に対して部分加圧水0.3、浮上槽入口
水量1の割合であり、30%循環加圧では廃水全量
1に対して循環水0.3、浮上槽入口水量1.3の割合
となる。 次に、蛋白分離に特殊ラインミキサーを用いた
全量加圧浮上方式の性能について、油脂を分離し
た廃水を用いて、容量50のラインミキサー、容
量1670の浮上分離槽を用いて、ラインミキサー
圧力3Kg/cm2・Gにてポリアクリル酸ソーダの添
加量を変えて性能テストを行なつた結果を第2表
に示す。
[Table] The above test shows that the circulating pressure flotation method of around 20% is optimal for oil and fat separation. The concentration of floating oil is 8-12%, and it can be recovered as fish oil. The total volume pressurization method is a method in which the entire volume of wastewater is pressurized and air is dissolved in the pressurized water.
The partial pressurization method is a method in which a portion of the wastewater is pressurized and air is dissolved in the pressurized water, and the circulation pressurization method is a method in which a portion of the treated water is pressurized and air is dissolved in the pressurized water. be. For example, in 30% partial pressurization, the ratio of partially pressurized water is 0.3 and the flotation tank inlet water volume is 1 to the total amount of wastewater, and in the case of 30% circulation pressurization, the ratio is 0.3 of the circulating water and 1.3 of the flotation tank inlet water volume to the total amount of wastewater. becomes. Next, we will examine the performance of the full-volume pressurized flotation method using a special line mixer for protein separation. Using wastewater from which oils and fats have been separated, a line mixer with a capacity of 50 and a flotation tank with a capacity of 1670 were used, with a line mixer pressure of 3 kg. Table 2 shows the results of a performance test conducted by changing the amount of sodium polyacrylate added at /cm 2 ·G.

【表】 第2表から判るようにSS除去率99.5%、BOD
除去率85%、油分除去率95%を得た。またこのと
きの蛋白フロスの濃縮効果は非常に良好であり、
蛋白フロスの含水率は93〜95%で、特殊ラインミ
キサーを用いた全量加圧浮上方式により万遍なく
多量に発生する微細気泡の効果が表れている。 前記蛋白フロスについて、1m2の過面積、孔
径1mmφの網を用いたスクリユープレスにて脱水
テストを行なつた結果は第3表の通りである。
[Table] As seen from Table 2, SS removal rate is 99.5%, BOD
A removal rate of 85% and an oil removal rate of 95% were obtained. In addition, the concentration effect of protein floss at this time is very good,
The moisture content of protein floss is 93 to 95%, and the effect of fine bubbles generated evenly and in large quantities by the full-volume pressurized flotation method using a special line mixer is evident. Table 3 shows the results of a dehydration test on the protein floss using a screw press using a screen with an overarea of 1 m 2 and a pore diameter of 1 mmφ.

【表】 通常、60〜80℃に加熱して脱水したときの含水
率70%と同様が得られているが、これは前述の蛋
白フロスの含水率が低いことと、油分が前もつて
除去されていることが効果的に働いているためで
ある。 本発明の水産加工廃水処理法について添付の図
面により詳細に説明する。 水産加工により発生する廃水を第1廃水貯留槽
1に導入し、ポンプaにてスクリーン2へ供給し
て固形物を分離し()、処理水を第2廃水貯留
槽3へ導入する。廃水はポンプbにて貯留槽3よ
り、連結された配管15,16を経て油脂分離槽
5に導いて廃水中のコロイド状の油脂を分離し、
分離された廃水を、貯槽5′よりポンプCにて特
殊ラインミキサー4へ加圧導入し、圧縮空気Aを
吹き込み飽和濃度まで溶解させた加圧循環水を混
合し、浮上分離槽5において、加圧循環水の減圧
によつて生じる微細気泡の浮上作用で油脂を分離
させる()。ここで特殊ラインミキサー4は内
筒を有した二重筒構造となつており、インペラー
による急速混合撹拌により、約30秒間で導入液に
空気をその飽和溶解度まで溶解可能な装置であ
り、通常3〜5Kg/cm2・Gにて使用する。次に油
脂を分離した廃水を油脂分離液貯槽6に一時貯留
し、腐敗防止の為曝気を行なつた後、ポンプdに
て等電点凝集槽7へ導入し、酸貯槽18より塩酸
を滴下して曝気混合を行いPH4〜6に調整し、ポ
ンプeにて特殊ラインミキサー8へ加圧導入す
る。特殊ラインミキサー8には圧縮空気Aを供給
し、前記と同様にして加圧空気飽和液となし、減
圧弁22にて減圧後、助剤貯槽19よりポリアク
リル酸ソーダを供給し、凝結作用によつて粗大な
蛋白フロツクを形成させ、浮上分離槽9に導入
し、減圧によつて生じた微細気泡の浮上作用で蛋
白を浮上させる。このようにして蛋白を除去した
処理水を蛋白分離液貯槽10に一時貯留し、次い
でポンプfによりPH調整槽10′へ導入してアル
カリ剤を槽20より滴下し、次の生物酸化処理の
許容PHに調整した後、ポンプf′により送られた曝
気槽11にて汚泥と一定時間曝気混合し、沈殿槽
12により最終処理水と汚泥とに分離する。ここ
での生物酸化処理には既存の方式を使用すればよ
く、標準活性汚泥法、生物膜法、回転円板法等も
用いることができる。沈殿槽12の底部より引き
抜いた汚泥はポンプgにより曝気槽11へ返送
し、一部を余剰汚泥として系外に取り出し、乾燥
後、肥料用菌体汚泥を得る。一方、浮上分離槽9
にて分離槽上面より掻きとりレーキにより集めた
蛋白フロスFをフロス貯槽13に貯留し、ここに
助剤貯槽21よりポリアクリル酸ソーダを滴下
し、ポンプhによりスクリユープレス14に導入
して脱水する。スクリユープレスでの脱離液はポ
ンプh′により油脂分離液貯槽6へ返送し、脱水ケ
ーキは乾燥後、フイツシユミール原料とする。 以上のように、本発明の方法では等電点加圧浮
上分離工程より発生するフロスの含油量を低下さ
せ、フロスの脱水に際し無加熱で脱水可能であ
り、油分、蛋白質、菌体汚泥を分別して系外に取
り出し、各々、高熱魚油、フイツシユミール、肥
料として容易に資源回収をすることができる。し
たがつて本発明の方法は、魚種の変更による油脂
分の急増、溶解有機分の増加によるBODの上
昇、及びフロス処理等で種々の問題を抱えている
水産加工業界の公害問題の解決に寄与する所、大
である。 実施例 1日当り廃水量1900m3、生物処理工程までの処
理時間8時間(240m3/h)の水産加工廃水処理
プラントにおける、各工程別の処理効果は第4表
に示す通りである。
[Table] Normally, the same moisture content as 70% is obtained when dehydrating by heating to 60-80℃, but this is due to the low moisture content of the protein floss mentioned above and the fact that the oil content has been removed beforehand. This is because what is being done is working effectively. The seafood processing wastewater treatment method of the present invention will be explained in detail with reference to the accompanying drawings. Wastewater generated from seafood processing is introduced into a first wastewater storage tank 1, supplied to a screen 2 by a pump a to separate solids (), and treated water is introduced into a second wastewater storage tank 3. The wastewater is guided from the storage tank 3 by the pump b to the oil separation tank 5 via the connected pipes 15 and 16, and the colloidal oils and fats in the wastewater are separated.
The separated wastewater is pressurized and introduced from the storage tank 5' into the special line mixer 4 using pump C, and mixed with pressurized circulating water that has been dissolved to saturation concentration by blowing in compressed air A. Oils and fats are separated by the floating action of microbubbles created by the reduced pressure of pressurized circulating water (). Here, the special line mixer 4 has a double cylinder structure with an inner cylinder, and is a device that can dissolve air in the introduced liquid to its saturated solubility in about 30 seconds by rapid mixing and agitation using an impeller. Used at ~5Kg/cm 2・G. Next, the wastewater from which the fats and oils have been separated is temporarily stored in the oil and fat separated liquid storage tank 6, and after aeration is performed to prevent spoilage, it is introduced into the isoelectric point coagulation tank 7 using the pump d, and hydrochloric acid is added dropwise from the acid storage tank 18. The mixture is aerated and mixed to adjust the pH to 4 to 6, and then introduced under pressure into the special line mixer 8 using pump e. Compressed air A is supplied to the special line mixer 8, and it is made into a pressurized air saturated liquid in the same manner as described above. After the pressure is reduced by the pressure reducing valve 22, sodium polyacrylate is supplied from the auxiliary agent storage tank 19, and it is used for the coagulation effect. Coarse protein flocs are thus formed and introduced into the flotation separation tank 9, where the proteins are floated by the flotation action of fine bubbles generated by the reduced pressure. The treated water from which proteins have been removed in this way is temporarily stored in the protein separation liquid storage tank 10, then introduced into the PH adjustment tank 10' by the pump f, and an alkaline agent is dripped from the tank 20, allowing for the next biological oxidation treatment. After adjusting the pH, the sludge is aerated and mixed with the sludge for a certain period of time in the aeration tank 11 sent by the pump f', and is separated into final treated water and sludge in the settling tank 12. Existing methods may be used for the biological oxidation treatment, and standard activated sludge method, biofilm method, rotating disk method, etc. can also be used. The sludge pulled out from the bottom of the settling tank 12 is returned to the aeration tank 11 by the pump g, and a portion is taken out of the system as surplus sludge, and after drying, bacterial cell sludge for fertilizer is obtained. On the other hand, flotation separation tank 9
Protein floss F collected by scraping rake from the upper surface of the separation tank is stored in the floss storage tank 13, and sodium polyacrylate is dropped therein from the auxiliary agent storage tank 21, and introduced into the screw press 14 by pump h for dehydration. do. The liquid separated from the screw press is returned to the oil/fat separated liquid storage tank 6 by pump h', and the dehydrated cake is used as a raw material for fish meal after drying. As described above, the method of the present invention reduces the oil content of the floss generated from the isoelectric focus flotation process, enables dehydration of the floss without heating, and separates oil, protein, and bacterial cell sludge. They can be separated and taken out of the system and easily recovered as resources as high-temperature fish oil, fish meal, and fertilizer. Therefore, the method of the present invention can solve the pollution problem in the seafood processing industry, which has various problems such as a sudden increase in oil and fat content due to a change in fish species, an increase in BOD due to an increase in dissolved organic content, and various problems in floss treatment. It's a big contribution. Example Table 4 shows the treatment effects of each process in a seafood processing wastewater treatment plant with a daily wastewater volume of 1900 m 3 and a treatment time of 8 hours (240 m 3 /h) up to the biological treatment process.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は本発明方法の概略を示すフローシ
ートである。
The accompanying drawing is a flow sheet outlining the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水産加工廃水の処理にあたり、廃水中の固形
物をスクリーンにて除去する工程、循環加圧浮上
分離方式により油分を除去する工程、等電点全量
加圧浮上分離方式により蛋白質等を除去する工
程、及び生物酸化処理によりBODを除去する工
程の各工程で順次処理することを特徴とする、水
産加工廃水の処理方法。
1 In the treatment of seafood processing wastewater, the process of removing solids in the wastewater with a screen, the process of removing oil by a circulating pressure flotation method, the process of removing proteins, etc. by a total isoelectric point pressure flotation method , and a method for treating seafood processing wastewater, the method comprising sequentially treating each step of the process of removing BOD by biological oxidation treatment.
JP5807879A 1979-05-14 1979-05-14 Treatment of waste water from marine product rpocess Granted JPS55152599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5807879A JPS55152599A (en) 1979-05-14 1979-05-14 Treatment of waste water from marine product rpocess

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5807879A JPS55152599A (en) 1979-05-14 1979-05-14 Treatment of waste water from marine product rpocess

Publications (2)

Publication Number Publication Date
JPS55152599A JPS55152599A (en) 1980-11-27
JPS6255917B2 true JPS6255917B2 (en) 1987-11-21

Family

ID=13073875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5807879A Granted JPS55152599A (en) 1979-05-14 1979-05-14 Treatment of waste water from marine product rpocess

Country Status (1)

Country Link
JP (1) JPS55152599A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107195U (en) * 1981-08-10 1983-07-21 越智 俊雄 Blood stain purification device for bonito, horse mackerel, etc.
WO2004106240A1 (en) * 2003-05-27 2004-12-09 Asahi Organic Chemicals Industry Co., Ltd. Method of treating organic waste water and organic sludge and treatment equipment therefor
JP4405286B2 (en) * 2004-03-01 2010-01-27 征八朗 三浦 Fishery processing wastewater scum treatment method
JP2012223747A (en) * 2011-04-19 2012-11-15 Kikuchi Eco Earth:Kk Water treatment system and water treating method
JP2015006645A (en) * 2013-06-25 2015-01-15 学校法人八戸工業大学 Treatment method for protein-containing wastewater, purification method for wastewater, and treatment system for wastewater
JP6532028B2 (en) * 2017-02-02 2019-06-19 アルバック東北株式会社 Antifoam collection mechanism

Also Published As

Publication number Publication date
JPS55152599A (en) 1980-11-27

Similar Documents

Publication Publication Date Title
US6113800A (en) Treatment process for recovering components of a float material from waste water
JPS6255917B2 (en)
JPS5895593A (en) Solid-liquid separation in activated sludge treating method
JP4040066B2 (en) Concentration method of excess sludge and sludge coagulant aid
JP4472154B2 (en) Legume wastewater treatment method and legume wastewater treatment apparatus
JPH04190891A (en) Treating method for rice cleansing waste water
JPS59179123A (en) Treating apparatus of captured substance such as jellyfish at intake of sea water
JPS63185499A (en) Methane fermentation method
JPS63166496A (en) Method and apparatus for treating distillation waste liquid of low-class distilled spirits
JPH06343999A (en) Dehydration process for sludge
JP4524522B2 (en) Treatment method for protein-containing wastewater
JPH0122840B2 (en)
JPS5874193A (en) Method and device for treating waste of processed marine products
US2372677A (en) Process for treating fish press liquor
JP4405286B2 (en) Fishery processing wastewater scum treatment method
TWI708739B (en) Organic waste water treatment sysyem and method thereof
JP2573937B2 (en) How to process boiled marine products
JPH09192692A (en) Treatment of oil and fat-containing waste water
CN211311131U (en) Organic garbage waste water treatment system
JP2003010681A (en) Oil removing agent and oil removing method and apparatus
JPH0339760B2 (en)
RU2259394C2 (en) Distillery dregs processing method
RU2019528C1 (en) Waste water purification method
JPS594978B2 (en) Makubunrihouniyor Netsugi Yokosei Protein
RU2076077C1 (en) Method of treatment of organic sediment