JPS63185066A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS63185066A
JPS63185066A JP1763387A JP1763387A JPS63185066A JP S63185066 A JPS63185066 A JP S63185066A JP 1763387 A JP1763387 A JP 1763387A JP 1763387 A JP1763387 A JP 1763387A JP S63185066 A JPS63185066 A JP S63185066A
Authority
JP
Japan
Prior art keywords
film
electrode
thin film
film transistor
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1763387A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Noriko Ookawa
大川 野里子
Yutaka Minamino
裕 南野
Etsuya Takeda
武田 悦也
Seiichi Nagata
清一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1763387A priority Critical patent/JPS63185066A/en
Publication of JPS63185066A publication Critical patent/JPS63185066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To implement a stable thin film transistor characterized by excellent heat resistance and sufficiently low contact resistance, by providing a TiN film between an N<+>-a-Si film and an electrode film. CONSTITUTION:A gate insulating film 13 and an I-a-Si film 14 are sequentially laminated on a gate electrode 12, which is provided on a glass substrate 11. After an N<+>-a-Si film 15 is laminated, a TiN film 16 is formed. An electrode film 17 comprising Al-3% Si is further laminated. Then the patterns of a source electrode 17a and a drain electrode 17b are formed. In the electrode structure of this thin film transistor, the TiN film is provided between a contact aperture comprising the N<+>-a-Si film and the electrode film, whose main component is Al. Therefore, the contact resistance is low and the heat resistance is excellent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜トランジスターに関する。特に耐熱性に優
れ、且つ低抵抗の電極構造を有するa(アモルファス)
−8i半導体トランジスターに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin film transistors. a (amorphous), which has particularly excellent heat resistance and a low-resistance electrode structure.
-Relating to an 8i semiconductor transistor.

従来の技術 従来、薄膜トランジスターにおいては第4図に示すよう
に透明基板、例えばガラス基板31上に設けたゲート電
極32上にゲート絶縁膜として例えば膜厚400nmの
SiN膜33、膜厚1100nのi(真性)−a−3i
膜34を順次積層し、次にa−3i膜とのオーミック接
触を得るために、1−a−3i膜上に高不純物濃度を有
するn+−a−3i膜35を積層したうえに電極膜36
を設けてソース電極36aとドレイン電極36bを形成
していた。この電極膜材料には、Cr。
2. Description of the Related Art Conventionally, in a thin film transistor, as shown in FIG. 4, a gate electrode 32 is provided on a transparent substrate, for example a glass substrate 31, and a gate insulating film, for example, an SiN film 33 with a thickness of 400 nm and an i film with a thickness of 1100 nm are formed. (Intrinsic)-a-3i
The films 34 are sequentially laminated, and then in order to obtain ohmic contact with the a-3i film, an n+-a-3i film 35 having a high impurity concentration is laminated on the 1-a-3i film, and then an electrode film 36 is formed.
were provided to form a source electrode 36a and a drain electrode 36b. This electrode film material includes Cr.

Au、Ni、Ni/Cr、A I、ITOなどが用いら
れている。一般に、薄膜トランジスターを集積する場合
、浮遊容量による信号遅延を防ぐため配線抵抗の低いA
Iを主として用いている。
Au, Ni, Ni/Cr, AI, ITO, etc. are used. Generally, when integrating thin film transistors, A with low wiring resistance is used to prevent signal delay due to stray capacitance.
I is mainly used.

発明が解決しようとする問題点 以上のような薄膜トランジスターの電極構造に於てAl
膜を使用する場合、250oC以上の温度に於て薄膜ト
ランジスターを熱処理すると、Alに対するSiの固溶
限界が大きいため熱処理によりn+−a−8illが侵
食されると同時に微量のAlがn+−a−8i膜中に拡
散しオーミック接触を劣下させ、薄膜トランジスターと
して機能しなくなるという問題点を有していた。即ち、
従来の電極構造では例えば実装組立途中の熱処理プロセ
スないし実動作中に薄膜トランジスターが正常に動作し
なくなるという問題点を有していた。
Problems to be Solved by the Invention In the electrode structure of thin film transistors as described above, Al
When using a thin film transistor, if a thin film transistor is heat-treated at a temperature of 250oC or higher, the solid solubility limit of Si in Al is large, so the heat treatment corrodes n+-a-8ill, and at the same time a small amount of Al becomes n+-a- This has the problem that it diffuses into the 8i film and degrades ohmic contact, making it no longer functional as a thin film transistor. That is,
Conventional electrode structures have had the problem that, for example, the thin film transistor does not operate normally during a heat treatment process during assembly or during actual operation.

本発明は実装組立中の熱処理プロセス或は薄膜トランジ
スターとしての実働作中の発熱による経年劣化に耐える
安定した耐熱性を有する薄膜トランジスターの電極構造
を提供するものである。
The present invention provides an electrode structure for a thin film transistor that has stable heat resistance and can withstand aging deterioration due to heat treatment during assembly and assembly or heat generated during actual operation of the thin film transistor.

問題点を解決するための手段 そこで、本発明者らは、上記した目的に鑑みなされたも
のである。即ち、高不純物濃度アモルファスSi半導体
からなるコンタクト開口面にコンタクトする電極構造を
有する薄膜トランジスターに於て、上記コンタクト開口
面上に設けられたTiN膜と、上記TiN膜上に設けら
れたAIを主成分とする電極膜を有する構造からなるも
のである。
Means for Solving the Problems Therefore, the present inventors have devised the above-mentioned object. That is, in a thin film transistor having an electrode structure in contact with a contact opening made of a highly impurity-concentrated amorphous Si semiconductor, a TiN film provided on the contact opening and an AI provided on the TiN film are mainly used. It consists of a structure having an electrode film as a component.

更に、上記TiN膜と電極膜との間にTi膜からなる中
間層を設けることにより密着性が更に良くなる。
Further, by providing an intermediate layer made of a Ti film between the TiN film and the electrode film, the adhesion is further improved.

作用 以上のような本発明による薄膜トランジスターの電極構
造は、TiN膜を例えば、n+−a−8i膜と電極膜と
の間に設けであるので組立中での熱プロセス処理、或は
実動作中での経年劣下おいても、n+−a−3i膜と電
極膜とがTiN膜を拡散して反応することがなく、層状
電極構造が破壊されることはない。それ故、本発明によ
る電極構造は耐熱性に優れ、コンタクト抵抗も十分低い
安定した薄膜トランジスターを実現することが出来る。
In the electrode structure of the thin film transistor according to the present invention as described above, a TiN film is provided between, for example, an n+-a-8i film and an electrode film, so that thermal processing during assembly or during actual operation can be easily performed. Even if the TiN film deteriorates over time, the n+-a-3i film and the electrode film do not diffuse into the TiN film and react with each other, and the layered electrode structure is not destroyed. Therefore, the electrode structure according to the present invention has excellent heat resistance and can realize a stable thin film transistor with sufficiently low contact resistance.

実施例 以下、添付図面を参照して本発明による薄膜トランジス
ターの実施例を説明する。
Embodiments Hereinafter, embodiments of a thin film transistor according to the present invention will be described with reference to the accompanying drawings.

第1図は、本発明による電極構造をゆうする薄膜トラン
ジスターの1実施例を示す要部断面図である。すなはち
、ガラス基板11上に設けた例えばCr膜からなるゲー
ト電極12上に、ゲート絶縁膜13として例えば膜厚4
00nmのSiN膜、膜厚1100nの1−a−8i膜
14を順次積層し、次に1−a−3i膜とのオーミック
接触を得るために、1−a−8i膜上に高不純物濃度を
有するn+−a−3i膜15を50nm積層したのち、
膜厚50nmのTiN膜上6を反応性スッパタリング法
にa線間siターゲットを用いAr−N2混合ガス中で
形成し、さらに例えばAl−3%Siからなる膜厚50
0nmの電極膜17を積層したのち、同図のごとくソー
ス電極17aおよびドレイン電極17bをパターン形成
することにより薄膜トランジスターが形成される。
FIG. 1 is a sectional view of essential parts showing one embodiment of a thin film transistor having an electrode structure according to the present invention. In other words, a gate insulating film 13 with a thickness of 4, for example, is formed on a gate electrode 12 made of, for example, a Cr film provided on a glass substrate 11.
A SiN film with a thickness of 00 nm and a 1-a-8i film 14 with a thickness of 1100 nm are sequentially laminated, and then a high impurity concentration is applied to the 1-a-8i film in order to obtain ohmic contact with the 1-a-3i film. After laminating 50 nm of n+-a-3i films 15 having
A TiN film 6 with a thickness of 50 nm is formed using a reactive sputtering method using an A-line Si target in an Ar-N2 mixed gas, and further a film with a thickness of 50 nm made of, for example, Al-3%Si is formed.
After laminating electrode films 17 of 0 nm thickness, a thin film transistor is formed by patterning a source electrode 17a and a drain electrode 17b as shown in the figure.

第3図に本発明よる電極構造にかかるESCAの結果を
示す。同図において縦軸は各元素の任意のスケールによ
る濃度を示し、横軸に示すスッパタ時間は多層膜の表面
からの距離を示す。同図は真空中400℃、2時間焼鈍
後の各元素の膜厚方向の濃度プロファイルを示しており
、AIの濃度曲線elはn+−a−8tの濃度曲線e2
と重なる領域をもたず、TiN膜が拡散バリア一層とじ
て働きn+−a−3i膜中へのAIの拡散を防止してお
り、本発明の効果が示された。
FIG. 3 shows the results of ESCA regarding the electrode structure according to the present invention. In the figure, the vertical axis shows the concentration of each element on an arbitrary scale, and the sputtering time shown on the horizontal axis shows the distance from the surface of the multilayer film. The figure shows the concentration profile of each element in the film thickness direction after annealing at 400°C for 2 hours in vacuum, and the concentration curve el of AI is the concentration curve e2 of n+-a-8t.
The TiN film acts as a diffusion barrier to prevent the diffusion of AI into the n+-a-3i film, demonstrating the effectiveness of the present invention.

第2図に第2の実施例を示す。同図において、11.1
2.13.14.15.16.17.17a、17bは
、第1図と同一である。すなわち、第1図に示す実施例
1の構成においてTiN膜上6と電極膜であるAl−3
%Si膜17との間にTi膜21を例えば、膜厚50n
mにて積層する。この場合、特にT i PIA 21
とAl−3%Si膜を同一真空容器内で連続形成すると
密着性が著しく改善される。
FIG. 2 shows a second embodiment. In the same figure, 11.1
2.13.14.15.16.17.17a and 17b are the same as in FIG. That is, in the structure of Example 1 shown in FIG.
For example, a Ti film 21 with a thickness of 50 nm is placed between the %Si film 17.
Laminate at m. In this case, especially T i PIA 21
When the and Al-3%Si films are successively formed in the same vacuum container, the adhesion is significantly improved.

発明の効果 以上の説明から明らかなように、本発明による薄膜トラ
ンジスターの電極構造は、n”  a−8i膜からなる
コンタクト開口面とAIを主成分とする電極膜との間に
、TiN膜を設けているので、きはめてコンタクト抵抗
が低く、且つ耐熱性に優れている。従って、本発明によ
れば、電極構造上コンタクト抵抗が低く且つ耐熱性の優
れた薄膜トランジスターを実現できる。
Effects of the Invention As is clear from the above explanation, the electrode structure of the thin film transistor according to the present invention has a TiN film between the contact opening surface made of the n''a-8i film and the electrode film mainly composed of AI. Since the electrode structure is provided, the contact resistance is low and the heat resistance is excellent. Therefore, according to the present invention, a thin film transistor having a low contact resistance and excellent heat resistance due to the electrode structure can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる薄膜トランジスター
の要部断面構造を示°す図、第2図は本発明の第2の実
施例による薄膜トランジスターの要部断面構造を示す図
、第3図は耐熱性を示す図パターン形成直後の真空中4
00℃、2時間焼鈍した後の濃度プロファイルを示す図
、第4図は従来の薄膜トランジスターの要部断面構造を
示す図である。 11・・・・ガラス基板、12・・・・ゲート電極、1
3・・・・ゲート絶縁膜、14−i−a−3il!I、
15−n+−a−8i膜、16=・TiN膜、17・・
・・電極膜、21・・・・TiN膜。 代理人の氏名 弁理士 中尾敏男 ほか1名All 7
1N /fL+−工−δi 幌と、2時間虎銑漿 スバッグ時間 (分ジ 軽 +4 ト 褐      外の
FIG. 1 is a diagram showing a cross-sectional structure of a main part of a thin film transistor according to an embodiment of the present invention, FIG. 2 is a diagram showing a cross-sectional structure of a main part of a thin film transistor according to a second embodiment of the present invention, and FIG. Figure 3 shows heat resistance in vacuum immediately after pattern formation 4
FIG. 4 is a diagram showing a concentration profile after annealing at 00° C. for 2 hours, and FIG. 4 is a diagram showing a cross-sectional structure of a main part of a conventional thin film transistor. 11...Glass substrate, 12...Gate electrode, 1
3...Gate insulating film, 14-ia-3il! I,
15-n+-a-8i film, 16=・TiN film, 17.
...Electrode film, 21...TiN film. Name of agent: Patent attorney Toshio Nakao and 1 other person All 7
1N /fL+-Eng-δi hood and 2 hours tiger pigskin subbag time (min.

Claims (2)

【特許請求の範囲】[Claims] (1)高不純物濃度アモルファスSiからなるコンタク
ト開口面にコンタクトする電極構造を有する薄膜トラン
ジスターにおいて、上記コンタクト開口面上に設けられ
たTiN膜と、上記TiN膜上に設けられたAlを主成
分とする電極膜を有することを特徴とする薄膜トランジ
スター。
(1) In a thin film transistor having an electrode structure in contact with a contact opening made of highly impurity-concentrated amorphous Si, the main components are a TiN film provided on the contact opening and Al provided on the TiN film. A thin film transistor characterized in that it has an electrode film.
(2)TiN膜上と電極膜との間にTi膜からなる中間
層を設けたことを特徴とする特許請求の範囲第1項記載
の薄膜トランジスター。
(2) The thin film transistor according to claim 1, characterized in that an intermediate layer made of a Ti film is provided between the TiN film and the electrode film.
JP1763387A 1987-01-28 1987-01-28 Thin film transistor Pending JPS63185066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1763387A JPS63185066A (en) 1987-01-28 1987-01-28 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1763387A JPS63185066A (en) 1987-01-28 1987-01-28 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS63185066A true JPS63185066A (en) 1988-07-30

Family

ID=11949269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1763387A Pending JPS63185066A (en) 1987-01-28 1987-01-28 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS63185066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308384A (en) * 1987-06-10 1988-12-15 Fujitsu Ltd Thin film transistor
JP2000216403A (en) * 1994-07-30 2000-08-04 Semiconductor Energy Lab Co Ltd Active matrix circuit
US6448612B1 (en) 1992-12-09 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Pixel thin film transistor and a driver circuit for driving the pixel thin film transistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308384A (en) * 1987-06-10 1988-12-15 Fujitsu Ltd Thin film transistor
US6448612B1 (en) 1992-12-09 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Pixel thin film transistor and a driver circuit for driving the pixel thin film transistor
US6608353B2 (en) 1992-12-09 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having pixel electrode connected to a laminate structure
US7045399B2 (en) 1992-12-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7061016B2 (en) 1992-12-09 2006-06-13 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7105898B2 (en) 1992-12-09 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7547916B2 (en) 1992-12-09 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7897972B2 (en) 1992-12-09 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US8294152B2 (en) 1992-12-09 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit including pixel electrode comprising conductive film
JP2000216403A (en) * 1994-07-30 2000-08-04 Semiconductor Energy Lab Co Ltd Active matrix circuit

Similar Documents

Publication Publication Date Title
JPS59232456A (en) Thin film circuit element
JPS6132471A (en) Thin film transistor
JPS63185066A (en) Thin film transistor
JPH04188770A (en) Thin-film transistor
JPH06140355A (en) Semiconductor device and manufacture thereof
JPH03136280A (en) Thin film transistor matrix and manufacture thereof
JPS61187369A (en) Manufacture of thin film transistor
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
JPS5968975A (en) Semiconductor device and manufacture thereof
JPS6132572A (en) Semiconductor device
JPH0147012B2 (en)
JPS62274624A (en) Manufacture of semiconductor device
JPH03159247A (en) Manufacture of matrix of thin film transistor
KR960002673A (en) Metal thin film formation method of a semiconductor device
JPH07162008A (en) Polysilicon thin-film transistor
JP2775883B2 (en) Method of manufacturing thin film transistor matrix
JPS63292682A (en) Manufacture of thin film semiconductor device
JP2563760B2 (en) Method for manufacturing semiconductor device
JPH01100973A (en) Manufacture of semiconductor device
JPH0298171A (en) Heat resistant ohmic electrode
JPS6248069A (en) Semiconductor device
JPS59191336A (en) Semiconductor device
JPS62165345A (en) Formation of electrode wiring for semiconductor device
JPS60249371A (en) Manufacture of semiconductor device
KR950009930A (en) Metal wiring formation method of semiconductor device