JPS63183941A - Heat insulating thermoplastic resin foam - Google Patents

Heat insulating thermoplastic resin foam

Info

Publication number
JPS63183941A
JPS63183941A JP1668187A JP1668187A JPS63183941A JP S63183941 A JPS63183941 A JP S63183941A JP 1668187 A JP1668187 A JP 1668187A JP 1668187 A JP1668187 A JP 1668187A JP S63183941 A JPS63183941 A JP S63183941A
Authority
JP
Japan
Prior art keywords
foam
thermal conductivity
thermoplastic resin
powder
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1668187A
Other languages
Japanese (ja)
Inventor
Yuji Shinjo
新庄 裕司
Akira Fujie
富士栄 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1668187A priority Critical patent/JPS63183941A/en
Publication of JPS63183941A publication Critical patent/JPS63183941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a heat insulating thermoplastic resin foam capable of permanently sustaining a low thermal conductivity, by homogeneously dispersing fine powder having a specific value or above of reflectance of infrared rays in cell walls of a thermoplastic resin foam having a homogeneous and fine closed cell foam structure. CONSTITUTION:A heat insulating thermoplastic resin foam, obtained by melting (A) 100pts.wt. thermoplastic resin, preferably styrene based or olefin based resin and (B) 0.5-20pts.wt., preferably 1-12pts.wt. fine powder having >=40% average value of diffusion reflectance of infrared rays at 6-14mu wavelength, preferably graphite powder, preferably having the surface treated with a coupling agent, e.g. silane based or titanium based coupling agent, etc., using a twin-screw extruder, etc., while heating, injecting a foaming agent, preferably flon based foaming agent, kneading the resultant blend, cooling the kneaded blend to a suitable temperature, extruding and expanding the cooled blend into a zone under a low pressure to provide >=15 times expansion ratio and >=80% closed cell ratio and containing the powder (B) homogeneously dispersed in cell walls thereof.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、優れた断熱性能を有する熱可塑性樹脂発泡体
TICrJRする。更に詳しくは、熱線を有効に反射し
、輻射による熱の伝達を大きく抑制することができ、し
かも、従来の汎用の熱可塑性樹脂発泡体へ適用できる産
業上の利用価値の高い低熱伝導率性の熱可塑性樹脂発泡
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention uses a thermoplastic resin foam TICrJR having excellent heat insulation performance. More specifically, it is a material with low thermal conductivity that can effectively reflect heat rays and greatly suppress the transfer of heat due to radiation, and has high industrial value and can be applied to conventional general-purpose thermoplastic resin foams. Thermoplastic resin foam.

〔従来の技術〕[Conventional technology]

従来より均一微細な独立気泡構造を有する熱可塑性樹脂
発泡体は断熱性や緩衝性だ優れ種々の用途に広(利用さ
れてきた。中でも断熱材としての利用は、断熱性能の他
に基材樹脂の特性に依存する低吸水性、低水蒸気透過性
、機械的強度等に応じてその用途が使い分けられていた
。いずれの用途においても断熱性能は極めて重要な特性
であり、従来よりこの断熱性能を改良しようとする試み
が種々工夫されてきた。
Thermoplastic resin foams, which have a uniform, fine, closed-cell structure, have been widely used for a variety of purposes due to their excellent heat insulating and cushioning properties.Among them, their use as heat insulating materials is due to their heat insulating properties as well as the base resin. Its applications were determined according to its characteristics, such as low water absorption, low water vapor permeability, mechanical strength, etc. In each application, insulation performance is an extremely important property, and traditionally, this insulation performance has been Various attempts have been made to improve it.

例えば、実公昭q≦−コ0q23号、特開昭53−13
9479号公報に代表されるように1熱可塑性樹脂発泡
体くアルミ箔またはアルミ蒸着フィルムを積層すること
により輻射熱を遮断することにより断熱性能を改良しよ
うとする提案が種々なされている。
For example, Jikko Shoq≦-ko0q23, JP-A-53-13
As typified by Japanese Patent No. 9479, various proposals have been made to improve the heat insulation performance by blocking radiant heat by laminating aluminum foil or aluminum vapor-deposited film over a thermoplastic resin foam.

更に進んだ技術として特開昭j6−タ093夕号公報で
は、波長が夕〜30μmである赤外線領域に吸収を示す
物質をポリオレフィン系またはポリスチレン系樹脂に混
合して発泡せしめた熱伝導性、特に高倍率の発泡体にお
いて熱伝導性を低減させる提案が々されている。
As a more advanced technology, Japanese Patent Application Laid-Open No. 093-093 discloses a thermally conductive material that is foamed by mixing polyolefin or polystyrene resin with a substance that absorbs in the infrared region whose wavelength is from 30 μm to 30 μm. Many proposals have been made to reduce thermal conductivity in high-magnification foams.

また、断熱性能を改良すること、すなわち、熱伝導性を
低減せしめる目的とは根本的に技術思想は異なるが、無
機化合物、あるいは金属の粉体を熱可塑性樹脂に混合し
て発泡せしめる技術も種々検討されてきた。例えば、特
開昭1&−804(J−号公報では、フレーク状のアル
ミニウムを含有したポリスチレン発泡体により、軽鷺の
レーダー反射器用誘電体、あるいけ、特開昭t7−70
/コ9号公報では、無機粉体、特に高比重の鉛粉末、鉄
粉や鱗片状の雲母を合成樹脂に高度に含有させて発泡せ
しめ、発泡体本来の断熱性能を損なうことなく遮音性能
を向上させる技術が提案されてきた。
In addition, although the technical idea is fundamentally different from the purpose of improving insulation performance, that is, reducing thermal conductivity, there are various technologies that mix inorganic compounds or metal powder with thermoplastic resin and foam it. It has been considered. For example, in JP-A-1 &-804 (J-), polystyrene foam containing flake-like aluminum was used as a dielectric material for the radar reflector of Karisagi.
In Publication No. 9, inorganic powder, especially high-density lead powder, iron powder, and scaly mica are added to a high degree in a synthetic resin and foamed to improve sound insulation performance without impairing the foam's inherent insulation performance. Techniques to improve this have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、熱可塑性樹脂発泡体の有する特定の性能
を向上せしめるために、異質の無機粉体や化合物を混合
して発泡体とする技術i−tm々検尉されてきた。しか
し、特定の性能を向上するKは多量の無機粉体を樹脂中
に含有せしめる必要があり、その結果として他の特性を
低下させる欠点を有するものであつた。−)まり、基材
樹脂とけ異質な物質や無機粉末を多量に混合して発泡加
工を行うと樹脂気泡膜が延伸される際に、添加物質との
界面での破断を促進して連続気泡となり、独立気泡率の
低下した発泡体しか得られないものであった。その結果
、発泡体を使用する雰囲気環境によっては吸水現象によ
り実質的に熱伝導率を低減せしめることはできず、更に
け、水蒸気透過性を増大させたり、機械的強度を劣化さ
せる等の問題点があった。特に、樹脂に含有させる異質
な物質の粒子サイズが、例えば、前述の特開昭タ/;−
1ou3コ号公報の如< O,a■〜/、Qtmと非常
に大きな場合には、上記問題がさらに著しくなる。
As described above, in order to improve the specific performance of thermoplastic resin foams, various techniques have been investigated for forming foams by mixing different inorganic powders and compounds. However, K, which improves specific performance, requires the inclusion of a large amount of inorganic powder in the resin, which has the disadvantage of degrading other properties. -) If foaming is performed by mixing a large amount of foreign substances or inorganic powder with the base resin, when the resin cell membrane is stretched, it will promote rupture at the interface with the additive substance and become open cells. However, only a foam with a reduced closed cell ratio could be obtained. As a result, depending on the atmospheric environment in which the foam is used, it may not be possible to substantially reduce thermal conductivity due to water absorption, and furthermore, there may be problems such as increased water vapor permeability or deterioration of mechanical strength. was there. In particular, if the particle size of the foreign substance contained in the resin is
In the case where Qtm is very large, such as <O,a■~/,Qtm, as in Publication No. 1ou3, the above problem becomes even more serious.

また、輻射熱を遮断する材料と発泡体の積層による断熱
材では概して不十分な接着のため、接着層界面からの熱
の流入出により改良効果が不満足なものであったり、接
着のための余分な工程を要したり経済的にも不利である
等の問題点を有するものであった。
In addition, insulation materials made by laminating materials that block radiant heat and foam generally have insufficient adhesion, resulting in unsatisfactory improvement effects due to heat inflow and outflow from the adhesive layer interface, and the need for extra bonding. This method has problems such as requiring a process and being economically disadvantageous.

〔問題点を解決するための手段及び作用〕夢本発明の目
的は、従来の熱可塑性樹脂発泡体の熱伝導率を大きく低
減させ、しかも、従来より発泡体の熱伝導率#i経時的
に変化し、その値が上昇し易いものとされていた常識に
反し、低い熱伝導率を恒久的に維持せしめんとするもの
である。さらKは、経年変化のない低い熱伝導率を保持
した発泡体例より、従来の熱gT塑性樹脂発泡体では使
用し得なかった用途分骨への適用を可能ならしめ、また
、断熱性能の長期間にわたる信頼性を高めた産業上極め
て利用価値の高い断熱材用発泡体を提供することにある
。もちろん、断熱材用発泡体として必要な性質である低
水蒸気透過性、低吸水性及び圧縮強度等の性能を損なう
ことなく上記目的を達成するものである。また、従来の
熱可塑性樹脂発泡体に混層的に利用し得る技術を提供す
ることにある。
[Means and effects for solving the problems] The purpose of the present invention is to significantly reduce the thermal conductivity of conventional thermoplastic resin foams, and furthermore, to significantly reduce the thermal conductivity #i of the foams over time compared to conventional foams. Contrary to the common sense that the thermal conductivity tends to change and increase, it is intended to permanently maintain a low thermal conductivity. SaraK is a foam that maintains a low thermal conductivity that does not change over time, making it possible to apply it to applications that could not be used with conventional thermogT plastic resin foam, and also has long insulation performance. The object of the present invention is to provide a foam for heat insulating material that has improved reliability over a long period of time and has extremely high utility value in industry. Of course, the above object is achieved without impairing the properties necessary for a foam for heat insulating materials, such as low water vapor permeability, low water absorption, and compressive strength. Another object of the present invention is to provide a technology that can be used in a multi-layered manner with conventional thermoplastic resin foams.

本発咀者らは、このような状況に鑑み鋭意研究の結果、
発泡体の熱伝導率を支配する因子の内、輻射の寄与を低
減させること、換言すれば発泡体を構成する微細な気泡
内での熱線を反射減衰せしめることにより、低い熱伝導
率の熱可塑性樹脂発泡体を提供する圧至った。
In view of this situation, the inventors of this study have conducted extensive research and have found that
Among the factors that govern the thermal conductivity of foam, we reduce the contribution of radiation, in other words, by attenuating the reflection of heat rays within the microscopic cells that make up the foam, we have achieved thermoplastic properties with low thermal conductivity. The pressure to provide resin foam has been reached.

すなわち、本発明の上記目的は、発泡倍率/j倍以上、
独立気泡率80%以上の熱可塑性樹脂発泡体圧おいて、
赤外線の反射率180%以上の微粉末が気泡膜中に均一
に分散していることを特徴とする断熱用熱可塑性樹脂発
泡体をS!用することによって達成することができた。
That is, the above object of the present invention is to achieve a foaming ratio of /j times or more;
At a thermoplastic resin foam pressure with a closed cell ratio of 80% or more,
S! is a heat-insulating thermoplastic resin foam characterized by fine powder with an infrared reflectance of 180% or more uniformly dispersed in a cell membrane. This could be achieved by using

以下、本発明の内容を詳述する。Hereinafter, the content of the present invention will be explained in detail.

まず始めに1発泡体の熱伝導の機構を考慮した後、本発
明の要点について述べる。
First, after considering the heat conduction mechanism of the foam, the main points of the present invention will be described.

一般に1発泡体の熱伝導率は下式により決定される。Generally, the thermal conductivity of a foam is determined by the following formula.

λf=λ、+λg+λ。λf=λ, +λg+λ.

ココで、λf:発泡体の熱伝導 λ、:ボリマーの熱伝導 λg=気体の熱伝導 λr:輻射による熱伝導   を示す。Here, λf: Thermal conduction of foam λ,: thermal conduction of the polymer λg = heat conduction of gas λr: Indicates heat conduction by radiation.

発泡体を構成する気泡中の気体を空気と考えれば、発泡
体の熱伝導率は密度だより概ね決定される。密度が小さ
くなる、すなわち、高倍率に発泡するに従い、ポリマー
の熱伝導は小さくなるが、それに反して輻射による熱伝
導は大きくなる。その両者の関係により、発泡体全体と
しては第4図に示されるような関係となる。
If the gas in the cells constituting the foam is considered to be air, then the thermal conductivity of the foam is largely determined by the density. As the density decreases, that is, as the foam expands to a higher magnification, the thermal conductivity of the polymer decreases, but on the other hand, the thermal conductivity due to radiation increases. Due to the relationship between the two, the foam as a whole has a relationship as shown in FIG.

次に、このような原則だ基づいて同一密度でも低い熱伝
導率を得るためには次の一つの方策が考えられる。
Next, based on this principle, the following method can be considered in order to obtain a lower thermal conductivity even at the same density.

(1)気体の熱伝導率(λg)を低減させる。(1) Reduce the thermal conductivity (λg) of gas.

(2)輻射による熱伝導率(λr)を低減させる。(2) Reduce thermal conductivity (λr) due to radiation.

まず(1)については、発泡体の気泡内に低熱伝導性の
気体を封入することである。主としてフロン系のガスが
使用されてきた。
First, regarding (1), a gas with low thermal conductivity is enclosed within the cells of the foam. Freon-based gases have mainly been used.

しかしながら、発泡体の気泡中に閉じこめられたフロン
ガスは時間の経過と共に逸散してゆき、空気と置換され
る。長時間経過後だけ第1図に示される密度と熱伝導率
の関係まで熱伝導率は増加する。特に80倍以上の高倍
率の発泡体では短時間で増加する傾向がある。また、気
泡中にフロンガスを含んだ発泡体は、フロンガスの沸点
以下の温度では、フロンガスの液化が生じ、熱伝導率が
増加する。
However, the freon gas trapped in the cells of the foam dissipates over time and is replaced by air. Only after a long period of time has passed, the thermal conductivity increases to the relationship between density and thermal conductivity shown in FIG. In particular, foams with a high magnification of 80 times or more tend to increase in a short time. In addition, in a foam containing fluorocarbon gas in its bubbles, at a temperature below the boiling point of the fluorocarbon gas, the fluorocarbon gas liquefies, resulting in an increase in thermal conductivity.

このように1フロンガスの使用は断熱性能の向上に有効
ではあるが、経時変化すること、使用温度により熱伝導
率の増加する領域が現われる等の問題を内在するもので
ある。
As described above, the use of 1 fluorocarbon gas is effective in improving the heat insulation performance, but it has inherent problems such as changes over time and the appearance of regions where the thermal conductivity increases depending on the operating temperature.

次に(2)の方法は、具体的には発泡体を構成する気泡
膜中に熱線(赤外線)遮蔽材を混入することである。こ
の方法は、熱伝導率の経時変化、温度による特異的な変
化がfk<、熱伝導率の改良方法としては優れているが
、熱伝導率以外の他の物性、例えば、水蒸気透過率、あ
るいは圧縮強度等への影響が大きく、使用だあたっては
注意を要するものである。
Next, method (2) specifically involves mixing a heat ray (infrared rays) shielding material into the cell membrane constituting the foam. This method is excellent as a method for improving thermal conductivity, since changes in thermal conductivity over time and specific changes due to temperature fk< It has a large effect on compressive strength, etc., so care must be taken when using it.

熱線を遮蔽する方法としては、輻射する熱線を(a)吸
収して減衰せしめるもの (b) g体の屈折率の差により散乱減衰せしめるもの
(e)反射により減衰せしめるもの 等がある。また、合成樹脂発泡体に要求される遮蔽すべ
き熱線の波長はブランクの放射法則c下式)の関係によ
り、第5図に示すように≦μ〜/11μの熱線が対象と
なる。
Methods for shielding heat rays include (a) absorbing and attenuating the radiating heat rays, (b) scattering and attenuating them due to the difference in the refractive index of the g-body, and (e) attenuating them by reflection. Further, the wavelength of the heat rays to be shielded required of the synthetic resin foam is based on Blank's radiation law c (formula below), and as shown in FIG.

(a)のタイプとしては上記波長範囲に吸収能力を有す
る材料としては限られており、例えば、カーボンブラッ
クがそうである。しかし、一般的に吸収された赤外線の
エネルギーの一部はポリマ一層あるいけ気泡内の気体に
伝導されていくが、一部は再度赤外線として再輻射され
てしまう。このため、赤外線の遮蔽材としては性能の劣
ったものとなり、所望の熱伝導率まで改良しようとすれ
ば、吸収性の材料を多量に添加しなければならない。
As for type (a), there are limited materials that have absorption ability in the above wavelength range, such as carbon black, for example. However, while some of the absorbed infrared energy is generally conducted to the polymer layer and the gas within the bubbles, some of it is re-radiated as infrared light. This results in poor performance as an infrared shielding material, and in order to improve the thermal conductivity to the desired level, a large amount of absorbing material must be added.

このよう々物質は樹脂との界面接着性に劣り、多量に添
加すると樹脂の伸び、強度等が大幅に低下し、発泡倍率
の低下、あるいは独立気泡率の低下をもたらす。このた
め、水蒸気透過率、圧縮強度等の劣った発泡体と々り易
い。また、多量の添加剤を混合する場合には、凝集粒子
が発生しやすく、独立気泡率の低下等の一層深刻な問題
を生ずる。
These substances have poor interfacial adhesion with the resin, and when added in large amounts, the elongation, strength, etc. of the resin are significantly reduced, leading to a reduction in expansion ratio or closed cell ratio. For this reason, foams with poor water vapor permeability, compressive strength, etc. tend to crumble. Furthermore, when a large amount of additives are mixed, agglomerated particles are likely to occur, resulting in more serious problems such as a decrease in closed cell ratio.

(b)のタイプの赤外線遮蔽材としては酸化チタン、チ
タン酸カリウム等の屈折率の大きな物質がある。
Examples of the type (b) of infrared shielding materials include materials with a large refractive index such as titanium oxide and potassium titanate.

この方法だおいては赤外線は散乱され、赤外線の通過す
べき行路長が長くなり、赤外線の透過は抑え゛られ、熱
伝導率は改良され゛る。しかしながら、赤外線散乱によ
る効果は、(C)のタイプのものと比較して著しく弱い
。このため、所望の熱伝導率まで改良しようとすれば、
屈折率の大きな物質分多量に添加する必要があり、発泡
体物性、あるいは発泡倍率の低下は避けられない。
In this method, the infrared rays are scattered, the path length through which the infrared rays must travel is increased, the transmission of the infrared rays is suppressed, and the thermal conductivity is improved. However, the effect of infrared scattering is significantly weaker than that of type (C). Therefore, if you try to improve the thermal conductivity to the desired level,
It is necessary to add a large amount of a substance with a high refractive index, and a decrease in the physical properties of the foam or the expansion ratio is unavoidable.

したがって本発明者らは、(C)のタイプ、すなわち、
波長が6μ〜/47μの熱線を有効Kf射し、独立気泡
性の高い材料について鋭意検討を重ねた結果、本発明を
完成するに至ったのである。
Therefore, the inventors are of type (C), i.e.
As a result of extensive research into materials that effectively radiate heat rays with wavelengths of 6μ to /47μ and have high closed-cell properties, the present invention was completed.

すなわち、本発明の要点は、 ■熱線(赤外線)の反射率が41(1)%以上となる微
粉末を、 ■樹脂の気泡膜中に均一に分散させる。
That is, the main points of the present invention are: (1) Fine powder having a reflectance of heat rays (infrared rays) of 41(1)% or more is uniformly dispersed in a resin bubble film.

ことによって独立気泡率80%以上の熱可塑性樹脂発泡
体とすることである。
By this, the thermoplastic resin foam has a closed cell ratio of 80% or more.

■の要件については、赤外線反射率の異々る材料の微粉
末を同量混入せしめた一定の熱可塑性樹詣発泡体の熱伝
導率で比較すれば、第3図に示すように反射率180%
以上のもので、熱伝導率が低下していることが明らかで
ある。本発明で言う赤外線の反射率とけ、後述するよう
に6〜141μの赤外線の拡散反射率の平均値である。
Regarding the requirement (2), if we compare the thermal conductivity of a certain thermoplastic resin foam mixed with the same amount of fine powder of materials with different infrared reflectances, the reflectance is 180% as shown in Figure 3. %
From the above, it is clear that the thermal conductivity is reduced. The reflectance of infrared rays referred to in the present invention is the average value of the diffuse reflectance of infrared rays of 6 to 141μ, as described later.

本発明で使用する赤外線を反射する能力の高い微粉末は
、赤外線遮蔽能力が高いため少量の使用で熱伝導率の改
良効果は大きい。このため、良好な分散が得られ易く破
泡が起こらないため、水蒸気透過性、圧縮強度等の物性
、あるいは発泡性能等に悪影響を与えず物性のバランス
のとれた優れた発泡体が得られる。また、従来効果が少
ないとされてきた75〜30倍の発泡倍率の領域でも、
有効に熱伝導率を下げることができる。
The fine powder with a high ability to reflect infrared rays used in the present invention has a high ability to shield infrared rays, so even if a small amount is used, the effect of improving thermal conductivity is large. Therefore, good dispersion is easily obtained and bubble breakage does not occur, so that an excellent foam with well-balanced physical properties can be obtained without adversely affecting physical properties such as water vapor permeability and compressive strength, or foaming performance. In addition, even in the area of foaming ratios of 75 to 30 times, which were traditionally considered to be less effective,
Thermal conductivity can be effectively lowered.

■の要件、すなわち、赤外線反射能力の高い粉末を気泡
膜中に均一に分散する必要性について述べる。この意味
するところを概念的に図示すれば第2図(&)、(b)
のようである。
The requirement (2), that is, the need to uniformly disperse the powder with high infrared reflection ability in the bubble film, will be described. Figure 2 (&) and (b) conceptually illustrate what this means.
It seems like.

第2図(a)K示された構造は、微粉末が気泡膜中に均
一に分散している本発明に従う構造である。
The structure shown in FIG. 2(a)K is a structure according to the invention in which the fine powder is uniformly dispersed in the bubble membrane.

任意の切断面のどの気泡膜中にも多数個の微粉末lが気
泡膜λ中に含まれ、あるいは気泡膜表面に付着し、さも
Kは気泡膜を大きくはみださない状態で存在している。
A large number of fine powders L are contained in the bubble film λ or attached to the surface of the bubble film in any cut surface of the bubble film, and K exists in a state that does not extend beyond the bubble film. ing.

第一図(a) K示される構造をとるには、使用する微
粉末の粒径を選ぶことが重要であり、発泡体の気泡膜の
厚みに比較して極端忙大きなものは使用できない。
In order to obtain the structure shown in FIG. 1(a), it is important to select the particle size of the fine powder used, and one that is extremely large compared to the thickness of the cell membrane of the foam cannot be used.

第2図(b)では使用する粉末の粒径が大きいか、ある
いは小さくとも凝集しているため結果的に大きな粒径と
なることKより、気泡膜中より大きくはみだした状態で
、しかも、一部の気泡膜だ偏在する構造である。このよ
うな場合には、発泡していく過程でポリマーと粉末間の
界面接着力が膨張力に負け、気泡膜に穴がおいてしまう
。このため独立気泡率の低い発泡体しか得られない。
In Fig. 2 (b), the particle size of the powder used is large, or even if it is small, it is agglomerated, resulting in a large particle size. It has a structure in which the bubble membranes are unevenly distributed. In such a case, during the foaming process, the interfacial adhesion between the polymer and the powder is overcome by the expansion force, resulting in holes in the foam membrane. Therefore, only a foam with a low closed cell ratio can be obtained.

独立気泡率の高い高発泡倍率の発泡体を得るためには、
微粉末を気泡膜中に均一に分散する必要があるが、どの
程度の粒径が望ましいかの 目安を示すと、例えば、断
熱材として一般的に使用されている密度30KII/−
1気泡径。、乙■、気泡膜厚6μ程度の発泡体では、平
均最小粒径はコjμ以下、すなわち、少なくとも気泡膜
厚みの1倍以下、さらに望ましくはImp以下、すなわ
ち気泡膜厚みの一1S倍以下に抑えると、独立気泡率の
高い優れた物性の発泡体が得られる。
In order to obtain a foam with a high expansion ratio and a high closed cell ratio,
It is necessary to uniformly disperse the fine powder in the bubble membrane, but a guideline for the desired particle size is, for example, the density 30KII/-, which is commonly used as a heat insulating material.
1 bubble diameter. In a foam with a cell membrane thickness of about 6 μm, the average minimum particle diameter is less than 1 μm, that is, at least 1 times the thickness of the cell membrane, and more preferably less than Imp, that is, less than 1 S times the thickness of the cell membrane. When suppressed, a foam with a high closed cell ratio and excellent physical properties can be obtained.

ここで言う平均最小粒径とは、球状、針状の粉末ではそ
の直径の平均値、鱗片状の場合にはその厚みの平均値を
意味する。
The average minimum particle size as used herein means the average value of the diameter in the case of spherical or acicular powder, and the average value of the thickness in the case of scaly powder.

発泡体の密度や気泡径はその使用目的だよって設定され
るため、本発明に用いる熱線反射性の微粉末の平均最小
粒径も適宜選択されねばならない。
Since the density and cell diameter of the foam are determined depending on its intended use, the average minimum particle diameter of the heat ray reflective fine powder used in the present invention must also be appropriately selected.

また、小さな微粉末を使用する場合でも、混練能力の優
れた装置、例えば、コ軸押出機等を使用してポリマーと
微粉末を均一に分散しておく必要がある。
Furthermore, even when using small fine powder, it is necessary to uniformly disperse the polymer and the fine powder using a device with excellent kneading ability, such as a coaxial extruder.

赤外線の反射率がUO%の微粉末をセル漠中に均一に分
散した発泡体の熱伝導率改良効果は、発泡倍率30倍以
上の輻射による熱伝導が大きく寄与する領域でより大き
く赤外線を反射する微粉末を添加しない発泡体に比較し
て/Q%以上熱伝導率を低下させることができる。特に
、発泡倍率70倍以上の高発泡した領域では著しい効果
があり、11%以上の熱伝導率の改良も容易である。ま
た、驚くべきことには、発泡倍率−0程度度の従来輻射
による熱伝導がほとんどないと考えられていた領域にお
いても、該微粉末は有効に作用し、効果的に熱伝導を下
げることができる。
The thermal conductivity improvement effect of a foam made by uniformly dispersing fine powder with an infrared reflectance of UO% throughout the cells reflects infrared rays to a greater extent in areas where heat conduction by radiation with a foaming ratio of 30 times or more makes a large contribution. Thermal conductivity can be lowered by more than /Q% compared to a foam without the addition of fine powder. In particular, the effect is remarkable in highly foamed regions with a foaming ratio of 70 times or more, and it is easy to improve the thermal conductivity by 11% or more. Surprisingly, the fine powder acts effectively even in a region where the expansion ratio is around -0, where it was thought that there is almost no heat conduction due to radiation, and it is possible to effectively reduce heat conduction. can.

本発明に使用される赤外線の反射率がゲ。5以上の微粉
末としては、アルミ粉、金粉、銀粉、銅粉、鉄粉、ステ
ンレス粉等の金属粉、グラファイト粉、さらKは、それ
らを塗布した粉末、あるいはアンチモンや弗素を添加し
たSnO2や、錫を添加した1111zOs  を塗布
した粉末等が考えられる。それらの中でも特に、粉末の
非爆発性、安定性だ優れかつ安価なグラファイト粉が望
ましい。これらの微粉末は単独で使用してもよいし、2
種以上混合して使用してもよい。
The reflectance of the infrared rays used in the present invention is ge. Examples of fine powders of 5 or more include metal powders such as aluminum powder, gold powder, silver powder, copper powder, iron powder, stainless steel powder, graphite powder, powders coated with these powders, or SnO2 and antimony- or fluorine-added powders. , powder coated with tin-added 1111zOs, etc. can be considered. Among them, graphite powder is particularly desirable because it is non-explosive, stable, and inexpensive. These fine powders may be used alone or in combination with
You may use a mixture of more than one species.

本発明に使用される赤外線の反射能力を有する微粉末の
使用量は、達成すべき熱伝導率、発泡倍率、使用微粉末
の種類、形状等により適宜決定されるが、一般的には発
泡体樹脂800重量部処対して0.5−20重量部が好
ましい。この範囲を超えて多量に使用しても熱伝導率の
改良効果は少なく、かえって独立気泡率等の低下を起こ
し、水蒸気透過率、圧縮強度等の発泡体物性を低下させ
てしまう。また、06j重量部以下の添加量では、熱伝
導率の改良効果はわずかである。さらに望ましい範囲と
しては/ −/コ重量部であり、この範囲では発泡体の
他の物性を低下させることなく熱伝導率のみ゛を効果的
に改良することができる。
The amount of the fine powder having infrared reflecting ability used in the present invention is appropriately determined depending on the thermal conductivity to be achieved, the expansion ratio, the type and shape of the fine powder used, etc. Preferably, 0.5-20 parts by weight is used when treating 800 parts by weight of resin. Even if it is used in an amount exceeding this range, the effect of improving thermal conductivity will be small, and instead, the closed cell ratio will be reduced, and the physical properties of the foam, such as water vapor permeability and compressive strength, will be reduced. Further, if the amount added is less than 06j parts by weight, the effect of improving thermal conductivity is slight. A more desirable range is / - / parts by weight, and within this range only the thermal conductivity can be effectively improved without deteriorating other physical properties of the foam.

このように、赤外線の反射能力の高い微粉末で、気泡膜
より太きくはみださない粒径のものを選択し、かつ該微
粉末と樹脂を十分に混練して微粉末が気泡膜中に均一に
分散している場合に独立気泡率80%以上の発泡体とま
り、このため、その熱伝導率は該微粉末を加えなかった
場合に比較して著しく改良され、また、圧縮強度、水蒸
気透過率等だおいても優れた断熱材用発泡体として優れ
たものとなる。
In this way, we select a fine powder with high infrared reflective ability and a particle size that does not protrude beyond the bubble membrane, and thoroughly knead the fine powder and resin so that the fine powder is absorbed into the bubble membrane. When the fine powder is uniformly dispersed in the foam, it becomes a foam with a closed cell ratio of 80% or more, and therefore its thermal conductivity is significantly improved compared to the case without the addition of the fine powder, and the compressive strength and water vapor The foam is excellent as a heat insulating material with excellent transmittance and other properties.

本発明に使用される微粉末は、樹脂との接着性を高める
目的で、7ラン系1チタン系九アルミ系等のカップリン
グ剤で表面処理すると、得られる発泡体は独立気泡性に
富み優れた断熱性能に加え他の諸物性も向上できる。
When the fine powder used in the present invention is surface-treated with a coupling agent such as 7 run type, 1 titanium type, 9 aluminum type, etc., in order to improve the adhesion with the resin, the resulting foam has excellent closed cell properties. In addition to the heat insulation performance, other physical properties can also be improved.

本発明に使用される熱可塑性樹脂としては、ポリスチレ
ン、アクリロニトリル−スチレン共重合体、アクリロニ
トリル−ブタジェン−スチレン共重合体、ハイインパク
トポリスチレン等のスチレン系樹脂、低密度ポリエチレ
ン、高密度ポリエチレン、直鎖状低密度ポリエチレン、
ポリプロピレン、ポリブテン、ボリダーメチルペンテン
、あるいはこれらのポリマーを主とする共重合体等のオ
レフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン
、あるいけこれらのポリマーを主とする共重合体、アク
リル樹脂、ポリアミド樹脂、ポリエステル樹脂等の汎用
樹脂、さらに工/ジニャリング樹脂として、例えば、ポ
リカーボネート、ポリ7エリレンエーテル、ポリエーテ
ルイミド、ポリエーテルスルフォン、ポリフェニレンサ
ルファイド、フッ素樹脂等の1種または一種以上が使用
でき、発泡体の得られる熱可塑性樹脂なら制限はない。
Thermoplastic resins used in the present invention include polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrenic resins such as high-impact polystyrene, low-density polyethylene, high-density polyethylene, linear low density polyethylene,
Olefin resins such as polypropylene, polybutene, bolidar methylpentene, or copolymers mainly composed of these polymers, polyvinyl chloride, polyvinylidene chloride, or copolymers mainly composed of these polymers, acrylic resins, General-purpose resins such as polyamide resins and polyester resins, and one or more types of resins such as polycarbonate, poly7 erylene ether, polyetherimide, polyether sulfone, polyphenylene sulfide, and fluororesins can be used as engineering/signalling resins. , there is no restriction as long as it is a thermoplastic resin from which a foam can be obtained.

熱可塑性樹脂の中でも、発泡性、成形性、物性等にバラ
ンスのとれたスチレン系樹脂およびオレフィン系樹脂が
望ましい。特に、発泡体として汎用的に使用される低密
度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポ
リエチレン、ポリプロピレン、ポリスチレン、アクリロ
ニトリル−スチレン共重合体、ノ・イインパクトポリス
チレン等の樹脂は好適に用いられる。
Among thermoplastic resins, styrene resins and olefin resins are desirable because they have well-balanced foamability, moldability, physical properties, and the like. In particular, resins commonly used as foams, such as low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, polystyrene, acrylonitrile-styrene copolymer, and no-impact polystyrene, are preferably used. .

本発明に示される熱可塑性樹脂発泡体の製造方法は、公
知の方法が使用できる。例えば、ポリマーと赤外線反射
用微粉末を押出機で加熱溶融後、発泡剤を圧入し混練し
た後、適当な温度まで冷却し、低圧域に押出発泡する方
法や、ポリマーと該微粉末を押出機にて加熱混練した後
、適当な大きさに切断し、オートクレーブにて発泡剤を
含浸した後、加熱して発泡成形する方法、さらには、ポ
リマー該微粉末、化学発泡剤等を混練、シート化した後
、電子線、あるいけ過酸化物等により架橋した後、加熱
発泡させる方法など種々の発泡方法が可能である。ポリ
マーと赤外線反射用微粉末の混合は、混練能力の高い装
置、例えば、コ軸押出機等を使用するのが望ましい。
A known method can be used for producing the thermoplastic resin foam according to the present invention. For example, there is a method in which a polymer and an infrared reflective fine powder are heated and melted in an extruder, a blowing agent is injected and kneaded, the mixture is cooled to an appropriate temperature, and the polymer and the fine powder are extruded into a low pressure region and foamed. A method of heating and kneading the product, cutting it into appropriate sizes, impregnating it with a foaming agent in an autoclave, and then heating and foam-molding it.Furthermore, kneading the fine polymer powder, chemical foaming agent, etc., and forming it into a sheet. After that, various foaming methods can be used, such as crosslinking with an electron beam, a peroxide, etc., and then heating and foaming. For mixing the polymer and the fine powder for infrared reflection, it is desirable to use a device with a high kneading capacity, such as a coaxial extruder.

本発明において、通常の発泡体製造時に使用される気泡
調整剤、鋪燃剤、滑剤、安定剤、酸化劣化防止剤、紫外
線吸収剤、着色剤、架橋助剤等を使用するのは何ら問題
ない。
In the present invention, there is no problem in using cell regulators, refueling agents, lubricants, stabilizers, oxidative deterioration inhibitors, ultraviolet absorbers, colorants, crosslinking aids, etc. that are commonly used in the production of foams.

本発明において使用される発泡剤は、特に制限がなく通
常使用されるものなら何でもよい。物理発泡剤としては
沸点−タO℃〜to”cのもの、例えばトリクロロフル
オロメタン、ジクロロジフルオロメタン、ジクロロフル
オロメタン、クロロ・ジフルオロメタン、トリクロロト
リフルオロエタン、ジクロロテトラフルオロエタン、ク
ロロペンタフルオロエタン、クロロジフルオロエタン、
ジフルオロエタン等のフロ/系化合物、クロロメタン、
ジクロロメタン、トリクロロメタン、クロロエタン等の
塩素化炭化水素、プqパン、ブタン、ペンタン等の脂肪
族炭化水素、さらKはジメチルエーテル、メチルエチル
エーテル、ジエチルエーテル、蟻酸メチル1酢酸メチル
、テトラメチルシラン、アセトン、メタノール等が考え
られ、熱、光等により分解しガスを発生する化学発泡剤
としては、重炭酸ナトリウム、重炭酸アンモニウム、炭
酸アンモニウム、亜硝酸アンモニウム、中性炭駿マグネ
シウム1M酸第−鉄、過硫酸アンモニウム、カルシウム
アジド等の無機塩、アゾジカルボンアシド、アゾビスイ
ンブチロニトリル、ジアゾアミノベンゼン、アゾシクロ
へキシルニトリル等のアゾ化合物、ジニ・トロソペンタ
メチレンテトラミン、ジメチルジニトロンテレフタルア
ミド等のニトロソ化合物、ベンゼンスルホニルヒドラジ
ド、p−トルエンスルホニルヒドラジド、p、p′−オ
キシビスベンゼンスルホニルヒドラジド等のスルホニル
ヒドラジド化合物、Plm)’−オキシビスベンゼンス
ルホニルセミカルバジド、p−トルエンスルホニルセミ
カルバジド、トリヒドラジノトリアジン、バリウムアゾ
ジカルボキシレート等が考えられる。
The blowing agent used in the present invention is not particularly limited, and any commonly used blowing agent may be used. Examples of physical blowing agents include those having a boiling point of 0°C to 20°C, such as trichlorofluoromethane, dichlorodifluoromethane, dichlorofluoromethane, chlorodifluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, chloropentafluoroethane, Chlorodifluoroethane,
Furo/based compounds such as difluoroethane, chloromethane,
Chlorinated hydrocarbons such as dichloromethane, trichloromethane, and chloroethane; aliphatic hydrocarbons such as puqpan, butane, and pentane; Chemical blowing agents that decompose with heat, light, etc. and generate gas include sodium bicarbonate, ammonium bicarbonate, ammonium carbonate, ammonium nitrite, neutral magnesium carbonate, 1M ferrous oxide, and carbonate. Inorganic salts such as ammonium sulfate and calcium azide, azo compounds such as azodicarbonate, azobisinbutyronitrile, diazoaminobenzene, and azocyclohexylnitrile, nitroso compounds such as dini-trosopentamethylenetetramine, dimethyldinitron terephthalamide, Sulfonyl hydrazide compounds such as benzenesulfonyl hydrazide, p-toluenesulfonylhydrazide, p,p'-oxybisbenzenesulfonylhydrazide, Plm)'-oxybisbenzenesulfonyl semicarbazide, p-toluenesulfonyl semicarbazide, trihydrazinotriazine, barium azodi Carboxylates, etc. may be considered.

これらの発泡剤は、使用するポリマー、加工条件等を考
え適宜選択すればよく、2種以上の発泡剤を併用しても
よい。これらの発泡剤の中でも特に熱゛伝導率が低くガ
ス透過係数の小さなフロン系の発泡剤がよく、フロン系
発泡剤を使用すると本発明の輻射熱を抑える効果と相乗
的に作用し、熱伝導率改良効果は著しい。
These blowing agents may be appropriately selected in consideration of the polymer used, processing conditions, etc., and two or more types of blowing agents may be used in combination. Among these blowing agents, fluorocarbon-based foaming agents with low thermal conductivity and a small gas permeability coefficient are particularly preferred.Using a fluorocarbon-based foaming agent works synergistically with the effect of suppressing radiant heat of the present invention, and has a high thermal conductivity. The improvement effect is significant.

〔実施例〕〔Example〕

次に実施例を示す。部は重量部を表わす。 Next, examples will be shown. Parts represent parts by weight.

まず本実施例で用いる評価方法を示す。First, the evaluation method used in this example will be described.

l)赤外線反射率 測定資料が単結晶ならその勇開面、多結晶なら鏡面研摩
した面の赤・外線反射スペクトルを、高滓7−リエ変換
赤外分光光度計FTIR−11800に拡散反射測定装
置DR8−/を取り付けた装置にて空気を対照として測
定し、波長4,7.1,9、io、 //、 /コ、1
3、iaμmの9点の反射率の平均値である。粉体の試
料しかない場合には、金粉を対照とし、同様の方法にて
求めた。
l) Infrared reflectance measurement If the material is a single crystal, measure the infrared and external reflection spectra of its open surface, or if it is a polycrystal, measure the mirror-polished surface using a diffuse reflectance measurement device using a Takasago 7-Lier transform infrared spectrophotometer FTIR-11800. Measured using a device equipped with DR8-/ with air as a reference, wavelengths 4, 7, 1, 9, io, //, /co, 1
3. This is the average value of the reflectance at 9 points of ia μm. If only a powder sample was available, gold powder was used as a control and the same method was used.

−)発泡体密度 JIS A−91//fc準じて測定した。−) Foam density Measured according to JIS A-91//fc.

3)発泡倍率 ポリマー密度を発泡体密度で除した値。3) Foaming ratio Polymer density divided by foam density.

tl)  圧縮強度 JISA−9りlダに準じて測定した。tl) Compressive strength It was measured according to JISA-9 Rida.

り 水蒸気透過率 ASTM C−IIK に準じ、厚さ−jm1mlの発
泡体を温度コ3°C1湿度り0%の条件にて測定した。
Water vapor transmission rate According to ASTM C-IIK, a foam with a thickness of -jm and 1 ml was measured at a temperature of 3° C. and a humidity of 0%.

6)熱伝導率 ASTM C−1ar平均比較法にて測定した。 ’C
の値。
6) Thermal conductivity Measured by ASTM C-1ar average comparison method. 'C
The value of the.

7)独立気泡率 ASTM D−コrstに記載のエアービクノメーター
法で測定した。
7) Closed cell ratio Measured by the air vicinometer method described in ASTM D-Corst.

わ 添加剤分散状態 得られた発泡体を倍率り00倍の光学顕微鏡で観察し、
気泡膜厚みの5倍を超える大きな凝集粒子が観察きれる
場合を分散状態が悪いとし九〇 9)平均最小粒径 微粉末を光学[iI微鏡写真、必要なら電子顕微鏡写真
をとり、球状および針状々らその直径、鱗片状ならその
厚みを任意の800個の粒子に対して測定し、得られた
値の平均値である。
The foam obtained in the additive-dispersed state was observed using an optical microscope with a magnification of 00x.
If large agglomerated particles exceeding 5 times the thickness of the bubble membrane can be observed, the dispersion state is considered to be poor. The diameter of each grain, and the thickness of any 800 grains if scaled, are measured, and the obtained values are the average value.

80)  平均粒径 微粉末の光学顕微鏡写真、必要なら電子顕微鏡写真をと
り、任意の一定方向に平行な一本の線で粒子の両端をは
さみ、その間隔の測定値800個の平均値を平均粒径と
し九〇 なお、実施例および比較例においては、次のコ軸押出機
を用いた。
80) Average particle size: Take an optical micrograph or, if necessary, an electron micrograph of the fine powder, sandwich both ends of the particle with a single line parallel to an arbitrary fixed direction, and average the average value of 800 measured values of the distance between them. The particle size was 90. In the Examples and Comparative Examples, the following coaxial extruder was used.

第1の押出機は供給部、圧縮部、計量部、混合部のりセ
クションから麿る直径夕Owll L/D =2乙のス
クリューを装備し、かつそのシリンダーの計量部と混合
部の間の位置には発泡剤注入口が設けられている。さら
に、この押出機は連結管でもってもう7台の6り簡φ押
出機に接続されており、2白目の押出機の出口には、コ
■XjOm の長方形の開口部を有するダイか設けられ
ている。
The first extruder is equipped with a screw with a diameter of L/D = 2 leading from the feed section, compression section, metering section, and mixing section, and the cylinder is located between the metering section and the mixing section. is provided with a blowing agent injection port. Furthermore, this extruder is connected to seven other six-ring simple φ extruders with connecting pipes, and a die with a rectangular opening of ing.

実施例7〜3、比較例/ −/ 0 ポリスチレン樹脂スタイロン乙r3■(旭化成工業■製
) ioo部に対して第1表記載の微粉末を記載量だけ
コ軸押出機を使用して混練し、造粒して原料とした。該
原料800部だ対してタルク0.3部、ステアリン酸カ
ルシウムo、o r部を上記押出機ホッパ一部よりJr
K1/hrの割合で投入し、さらに発泡剤注入口より、
発泡剤としてブタン/クロルメチル(to7ダO重量%
)を該原料lOO部忙対してIO部 圧入し、十分く混
練した後均−に冷却し、ダイより押出発泡した。
Examples 7 to 3, Comparative Examples / - / 0 Polystyrene resin Styron Otsu r3■ (manufactured by Asahi Kasei Kogyo ■) The fine powder listed in Table 1 was kneaded in the amount listed in Table 1 for the IOO part using a coaxial extruder. It was granulated and used as a raw material. For 800 parts of the raw material, 0.3 part of talc and 0.0 parts of calcium stearate were added to 800 parts of the raw material from a part of the extruder hopper.
Inject at a rate of K1/hr, and then from the blowing agent injection port,
Butane/chloromethyl (to7% by weight) as blowing agent
) was press-injected into 100 parts of the raw material, sufficiently kneaded, cooled uniformly, and extruded and foamed through a die.

上記条件にて得られた発泡体を60″Cのオーブンに2
週間保存し、重量、寸法が安定した後、該発泡体の密度
・気泡径、独立気泡率、圧縮強度、水蒸気透過率、熱伝
導率を測定し、第1表に示した。
The foam obtained under the above conditions was placed in an oven at 60"C for 2 hours.
After storage for a week and the weight and dimensions stabilized, the density, cell diameter, closed cell ratio, compressive strength, water vapor permeability, and thermal conductivity of the foam were measured and are shown in Table 1.

本発明に示される赤外線の反射能力の高い微粉末を使用
した実施例1〜3の発泡体は、未使用の発泡体比較例1
に比較し熱伝導率は20%以上も改良されており、また
、発泡体の他の物性、圧縮強度、水蒸気透過率等には悪
影響は与えていない。
The foams of Examples 1 to 3 using the fine powder with high infrared reflecting ability shown in the present invention are the unused foam Comparative Example 1
Thermal conductivity was improved by more than 20% compared to the foam, and other physical properties of the foam, such as compressive strength and water vapor permeability, were not adversely affected.

一方、比較のために実験した発泡体に通常よく使用され
るカーボンブラック等の微粉末を使用した比較例コ、ダ
、j、7.9の場合では、赤外線の反射率が低いため、
熱伝導率はほとんど改良されない0 さらに、これらの微粉末を多量に添加した比較例3、i
r、IOの場合には、熱伝導率は少しは改良されるが、
圧縮強度、水蒸気透過率が低下してしまい、望ましい発
泡体は得られない。
On the other hand, in the case of Comparative Examples KO, DA, J, and 7.9, which used fine powder such as carbon black, which is commonly used in foams tested for comparison, the reflectance of infrared rays was low.
Thermal conductivity was hardly improved.0 Furthermore, Comparative Example 3, i, in which a large amount of these fine powders was added
In the case of r, IO, the thermal conductivity is slightly improved, but
Compressive strength and water vapor permeability decrease, making it impossible to obtain a desired foam.

実施例7〜3、比較例/、80で明らかなように赤外線
反□射率の高い微粉末を添加した発泡体は、発泡体の水
蒸気透過率、圧縮強度等の物性を維持しながら熱伝導率
のみを効果的に改良していることが分かる。
As is clear from Examples 7 to 3, Comparative Example/, and 80, the foam to which fine powder with high infrared reflectance is added has good thermal conductivity while maintaining the physical properties of the foam, such as water vapor permeability and compressive strength. It can be seen that only the ratio is effectively improved.

実施例ダ〜≦、比較例11Slコ 実施例7〜3と同様の方法にて発泡体を得た。Example D~≦, Comparative Example 11Sl Foams were obtained in the same manner as in Examples 7-3.

ただし、比較例ノコのみコ軸押出機を使用せず、スタイ
ロン[F]≦xJioo部に第2表記載の微粉末を記載
量トライブレンドしたものを原料とした。得られた発泡
体を30℃のオープンに一週間保存し、重量、寸法が安
定した後、該発泡体の密度、気泡径、独立気泡率、圧縮
強度、水蒸気透過率、熱伝導率、微粉の分散状態を測定
、観察し、結果を第2表に示した。
However, only in the comparative example, a coaxial extruder was not used, and the raw material was prepared by tri-blending the fine powder shown in Table 2 in the amount of Styron [F]≦xJioo. The obtained foam was stored in the open at 30°C for one week, and after the weight and dimensions were stabilized, the density, cell diameter, closed cell ratio, compressive strength, water vapor permeability, thermal conductivity, and fine powder content were evaluated. The dispersion state was measured and observed, and the results are shown in Table 2.

微粉末の粒径が大きかったり (比較例//)、あるい
は粒径が小さくても分散が悪くて大きな凝集体が発生す
る場合には(比較例/J)、得られた発泡体の独立気泡
率は低く、このため圧縮強度、水蒸気透過率の悪い発泡
体となってしまう。
If the particle size of the fine powder is large (Comparative Example//), or if the particle size is small but the dispersion is poor and large aggregates are generated (Comparative Example/J), the resulting foam may have closed cells. The ratio is low, resulting in a foam with poor compressive strength and water vapor permeability.

(以下余白) 実施例7〜11.比較例13〜17 実施例1〜3と同じ押出機を使用したが、ダイは直径0
.Iw、の円形(穴数−00個)を使用した。
(Hereafter, blank spaces) Examples 7 to 11. Comparative Examples 13-17 The same extruder as in Examples 1-3 was used, but the die had a diameter of 0.
.. A circular shape (number of holes - 00) of Iw was used.

ポリスチレン樹脂スタイロン■41380800l対し
て第Jilt記載の微粉末を記載量コ軸押出様を使用し
て混線、造粒し、原料とした。該原料800部とタル2
012部、ステアリン酸カルシウムo、or部を、前記
押出機ホッパ一部より32Kg/brの割合で投入し、
さらに発泡剤注入口より発泡剤として、ブタン/ペンタ
ン(480/l 0重量%)を該原料800sK対して
/j部圧入し十分に混練した後、均一に冷却し、ダイよ
り押出し、発泡する前に冷却水槽にてストランドを急冷
することKより発泡を停止させ、カッターにで直径/1
ml、長さ3日にカットするととくより、未発泡製粒を
得た。未発泡製粒を蒸気で加熱することにより、7次発
泡させ、種々の密度の1次発泡粒子を得た。該1次発泡
粒子を7日二一ジングした後、金型の中に充填し、蒸気
加熱することによりJOO×JOOX2!■の成形品を
得た。
The fine powder described in No. Jilt was cross-wired and granulated using a co-axial extrusion method using polystyrene resin Styron 4,138,0800 liters to obtain a raw material. 800 parts of the raw material and 2 tals
012 parts, calcium stearate o, or parts were charged from a part of the extruder hopper at a rate of 32 Kg/br,
Furthermore, as a blowing agent, butane/pentane (480/l 0% by weight) was injected into the 800sK of the raw material in /j parts as a blowing agent through the blowing agent injection port, thoroughly kneaded, cooled uniformly, and extruded through a die before foaming. Then, quickly cool the strand in a cooling water tank to stop foaming, and use a cutter to cut the diameter/1.
Unfoamed granules were obtained by cutting to a length of 3 days. By heating the unfoamed granules with steam, seven-stage foaming was performed to obtain primary foamed particles of various densities. After subjecting the primary expanded particles to 7 days of aging, they are filled into a mold and heated with steam to form JOO×JOOX2! A molded product was obtained.

該成形品を80℃のオーブンにてコ週間保存し、水分等
を除去した後、密度、気泡径、熱伝導率を測定し、第3
表および第1v!JK示した。
The molded product was stored in an oven at 80°C for a week, and after removing moisture, the density, bubble diameter, and thermal conductivity were measured.
Table and 1st v! JK showed.

第3表、第1v!Jより明らかなように、本発明による
熱伝導率の改良効果は著しいものがあり・輻射による熱
伝導が顕著になる、発泡倍率30倍以上(密度3rKy
/w/)、特K 70倍以上(密度is麺/−)の高発
泡領域において有効に作用し、熱伝導率を改良している
。本実施例にて得られた発泡体を80℃のオープンにて
800日間保存しても、熱伝導率の変化はほとんどなく
、低い値を維持した。さらに、熱伝導率の測定を−≦O
′Cの低温まで実施したが、特定温度による熱伝導率の
異常な上昇もなく、温度とともに熱伝導率は低下した。
Table 3, 1v! As is clear from J, the effect of improving thermal conductivity by the present invention is remarkable. Heat conduction by radiation becomes remarkable when the foaming ratio is 30 times or more (density 3rKy).
/w/), Special K It works effectively in the high foaming region of 70 times or more (density is noodles/-) and improves thermal conductivity. Even when the foam obtained in this example was stored in the open at 80° C. for 800 days, there was almost no change in thermal conductivity, and the value remained low. Furthermore, the measurement of thermal conductivity is −≦O
Although the test was carried out down to a low temperature of 'C, there was no abnormal increase in thermal conductivity due to a specific temperature, and the thermal conductivity decreased with temperature.

(以下余白) 〔効  果〕 以上実施例、比較例からも明らかなように、本発明の発
泡体は、圧縮強度、水蒸気透過率等の断熱材用発泡体に
必要な物性を損なうことなく、熱伝導率を効果的に改善
したものである。特に輻射による熱伝導が大きくなる高
発泡倍率の発泡体ではその効果は著しい。また、本発明
の発泡体は、一般の断熱材用発泡体に見られる経時によ
る断熱性能の低下はなく、安定した低い値を維持する信
頼性の高い発泡体である。本発明の発泡体は、発泡方法
、使用ポリマー発泡剤等九制限はなく、産業上広く利用
することができる利用価値の高い画期的々ものである。
(The following is a blank space) [Effects] As is clear from the above examples and comparative examples, the foam of the present invention has excellent properties such as compressive strength and water vapor permeability, which are necessary for foams for heat insulating materials. This effectively improves thermal conductivity. This effect is particularly remarkable in foams with high expansion ratios where heat conduction by radiation is large. In addition, the foam of the present invention is a highly reliable foam that maintains a stable low value without the deterioration in insulation performance over time that is observed in general foams for insulation materials. The foam of the present invention has no limitations on the foaming method, the polymer blowing agent used, etc., and is an innovative product with high utility value that can be widely used in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例と比較例について、発泡体の
発泡体密度と熱伝導率との関係を示したグラフである。 第一図(&) 、(b) #i、微粉末が発泡体の気泡
膜中に分散している状態を示した模式図で、(a)は本
発明のもの、(b)は本発明でないものを示す。 第3図は、発泡体中に分散する微粉末の友射率と発泡体
の熱伝導率との関係を示すグラフである。 第41図は、通常の発泡体の熱伝導率と発泡体密度との
関係を示したグラフである。 第5図は、ブランクの放射法則による熱線の波長と単色
放射能との関係を温度別に示したグラフである。 特許出願人 旭化成工業株式会社 代理人弁理士 星   舒      透第f図 骨之体慕L(勺2) 第2図 (久) (b) 第3図 反射学(%) 第4図 0   80  20  30  40  50  6
0   ’80  80全うと俸宅&(う暦) 第5図 シ良長(−)
FIG. 1 is a graph showing the relationship between foam density and thermal conductivity of foams for Examples and Comparative Examples of the present invention. Figure 1 (&), (b) #i is a schematic diagram showing the state in which fine powder is dispersed in the cell membrane of the foam, (a) is the one of the present invention, (b) is the one of the present invention. Show what is not. FIG. 3 is a graph showing the relationship between the thermal emissivity of the fine powder dispersed in the foam and the thermal conductivity of the foam. FIG. 41 is a graph showing the relationship between thermal conductivity and foam density of a normal foam. FIG. 5 is a graph showing the relationship between the wavelength of heat rays and monochromatic radioactivity according to Blank's radiation law, according to temperature. Patent Applicant: Asahi Kasei Industries, Ltd. Patent Attorney Patent Attorney Hoshi Shu Toru Figure 40 50 6
0 '80 80 full salary & (calendar) Figure 5 Shi Yoshinaga (-)

Claims (1)

【特許請求の範囲】[Claims] (1)発泡倍率15倍以上、独立気泡率80%以上の熱
可塑性樹脂発泡体において、赤外線の反射率40%以上
の微粉末が気泡膜中に均一に分散していることを特徴と
する断熱用熱可塑性樹脂発泡体。
(1) In a thermoplastic resin foam with an expansion ratio of 15 times or more and a closed cell ratio of 80% or more, a thermal insulation characterized in that fine powder with an infrared reflectance of 40% or more is uniformly dispersed in the cell membrane. Thermoplastic foam for use.
JP1668187A 1987-01-27 1987-01-27 Heat insulating thermoplastic resin foam Pending JPS63183941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1668187A JPS63183941A (en) 1987-01-27 1987-01-27 Heat insulating thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1668187A JPS63183941A (en) 1987-01-27 1987-01-27 Heat insulating thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JPS63183941A true JPS63183941A (en) 1988-07-29

Family

ID=11923059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1668187A Pending JPS63183941A (en) 1987-01-27 1987-01-27 Heat insulating thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JPS63183941A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710186A (en) * 1996-05-31 1998-01-20 The Dow Chemical Company Foams containing treated titanium dioxide and processes for making
KR100343025B1 (en) * 1999-07-13 2002-07-02 이철상 A method for manufactuing a foaming styrene resin
JP2005002268A (en) * 2003-06-13 2005-01-06 Jsp Corp Styrene resin foam comprising graphite powder
JP2005008668A (en) * 2003-06-16 2005-01-13 Dow Kakoh Kk Polystyrene resin extrusion foam and its manufacturing method
JP2006207114A (en) * 2004-12-28 2006-08-10 Jsp Corp External heat insulation structure
JP2008512514A (en) * 2004-09-03 2008-04-24 パクティヴ・コーポレーション Thermal insulation thermoplastic foam formed with methyl formate foaming agent
JP2008512509A (en) * 2004-09-03 2008-04-24 パクティヴ・コーポレーション Thermoplastic foam produced using a blowing agent based on methyl formate
JP2008527078A (en) * 2004-12-31 2008-07-24 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Polymer foam containing polyfunctional layered nanographite
DE102008023703A1 (en) 2007-05-18 2008-11-20 Polimeri Europa S.P.A. Composite material based on vinyl aromatic polymers with improved thermal insulation properties and process for its preparation
JP2010000460A (en) * 2008-06-20 2010-01-07 Tohoku Univ Radiation heat transfer control film
JP2010059264A (en) * 2008-09-02 2010-03-18 Sekisui Plastics Co Ltd Polystyrene-based resin expansion-molded item, and method for manufacturing the same, expandable polystyrene-based resin particle and method for manufacturing the same, as well as polystyrene-based resin pre-expanded particle
WO2010069584A1 (en) 2008-12-19 2010-06-24 Polimeri Europa S.P.A. Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their production and expanded articles obtained therefrom
JP2010209195A (en) * 2009-03-10 2010-09-24 Kaneka Corp Extrusion foamed article excellent in heat insulation capacity
JP2010254780A (en) * 2009-04-23 2010-11-11 Dow Kakoh Kk Styrenic resin extruded foam
JP2011503256A (en) * 2007-11-02 2011-01-27 ダウ グローバル テクノロジーズ インコーポレイティド Extruded polymer foam containing brominated fatty acid flame retardant additives
JP2011046845A (en) * 2009-08-27 2011-03-10 Dow Kakoh Kk Styrenic resin extruded foam
WO2011042800A1 (en) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity
JP2011122120A (en) * 2009-12-14 2011-06-23 Dow Kakoh Kk Styrene-based resin extruded foam
US8568632B2 (en) 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
JP2014129449A (en) * 2012-12-28 2014-07-10 Jsp Corp Method for manufacturing polystyrene resin extruded foam board and polystyrene resin extruded foam board
WO2015049008A1 (en) 2013-10-04 2015-04-09 Orion Engineered Carbons Gmbh Micro-domain carbon material for thermal insulation
EP1945700B1 (en) 2005-10-18 2016-02-17 versalis S.p.A. Expandable granulates based on vinylaromatic polymers having an improved expandability and process for the preparation thereof
WO2016113328A1 (en) 2015-01-14 2016-07-21 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
JP2017504702A (en) * 2014-02-03 2017-02-09 ダウ グローバル テクノロジーズ エルエルシー Stable styrene foam with brominated styrene / butadiene copolymer and metal oxide infrared attenuator
KR20170028385A (en) 2014-07-31 2017-03-13 세키스이가세이힝코교가부시키가이샤 Styrene resin foamable particles and production method for same, foam particles, foam molded body, and use for foam molded body
WO2018015502A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
JP2018127612A (en) * 2017-02-09 2018-08-16 株式会社カネカ Styrenic resin composition, and method for producing foamable styrenic resin particle
US10184037B2 (en) 2003-11-26 2019-01-22 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
EP3495335A1 (en) 2015-01-14 2019-06-12 Synthos S.A. Process for the production of a geopolymer composite
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770129A (en) * 1980-10-20 1982-04-30 Dainippon Printing Co Ltd Sheet having heat and sound insulating property
JPS60110731A (en) * 1983-11-21 1985-06-17 Shin Etsu Chem Co Ltd Expandable vinyl chloride resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770129A (en) * 1980-10-20 1982-04-30 Dainippon Printing Co Ltd Sheet having heat and sound insulating property
JPS60110731A (en) * 1983-11-21 1985-06-17 Shin Etsu Chem Co Ltd Expandable vinyl chloride resin composition

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710186A (en) * 1996-05-31 1998-01-20 The Dow Chemical Company Foams containing treated titanium dioxide and processes for making
KR100343025B1 (en) * 1999-07-13 2002-07-02 이철상 A method for manufactuing a foaming styrene resin
JP2005002268A (en) * 2003-06-13 2005-01-06 Jsp Corp Styrene resin foam comprising graphite powder
JP2005008668A (en) * 2003-06-16 2005-01-13 Dow Kakoh Kk Polystyrene resin extrusion foam and its manufacturing method
JP4636784B2 (en) * 2003-06-16 2011-02-23 ダウ化工株式会社 Polystyrene resin extruded foam and method for producing the same
US8568632B2 (en) 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology
US10184037B2 (en) 2003-11-26 2019-01-22 Owens Corning Intellectual Capital, Llc Thermoplastic foams and method of forming them using nano-graphite
JP2008512514A (en) * 2004-09-03 2008-04-24 パクティヴ・コーポレーション Thermal insulation thermoplastic foam formed with methyl formate foaming agent
JP2008512509A (en) * 2004-09-03 2008-04-24 パクティヴ・コーポレーション Thermoplastic foam produced using a blowing agent based on methyl formate
JP2006207114A (en) * 2004-12-28 2006-08-10 Jsp Corp External heat insulation structure
JP2008527078A (en) * 2004-12-31 2008-07-24 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Polymer foam containing polyfunctional layered nanographite
EP1945700B1 (en) 2005-10-18 2016-02-17 versalis S.p.A. Expandable granulates based on vinylaromatic polymers having an improved expandability and process for the preparation thereof
DE102008023703B4 (en) 2007-05-18 2019-10-02 Polimeri Europa S.P.A. Expandable granular composite material, a process for its manufacture and a composite foam
DE102008023703A1 (en) 2007-05-18 2008-11-20 Polimeri Europa S.P.A. Composite material based on vinyl aromatic polymers with improved thermal insulation properties and process for its preparation
US8268902B2 (en) 2007-05-18 2012-09-18 Polimeri Europa S.P.A. Composite material based on vinylaromatic polymers having enhanced thermal insulation properties and process for the preparation thereof
JP2011503256A (en) * 2007-11-02 2011-01-27 ダウ グローバル テクノロジーズ インコーポレイティド Extruded polymer foam containing brominated fatty acid flame retardant additives
JP2010000460A (en) * 2008-06-20 2010-01-07 Tohoku Univ Radiation heat transfer control film
JP2010059264A (en) * 2008-09-02 2010-03-18 Sekisui Plastics Co Ltd Polystyrene-based resin expansion-molded item, and method for manufacturing the same, expandable polystyrene-based resin particle and method for manufacturing the same, as well as polystyrene-based resin pre-expanded particle
WO2010069584A1 (en) 2008-12-19 2010-06-24 Polimeri Europa S.P.A. Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their production and expanded articles obtained therefrom
JP2010209195A (en) * 2009-03-10 2010-09-24 Kaneka Corp Extrusion foamed article excellent in heat insulation capacity
JP2010254780A (en) * 2009-04-23 2010-11-11 Dow Kakoh Kk Styrenic resin extruded foam
JP2011046845A (en) * 2009-08-27 2011-03-10 Dow Kakoh Kk Styrenic resin extruded foam
WO2011042800A1 (en) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Expandable thermoplastic nanocomposite polymeric compositions with an improved thermal insulation capacity
JP2011122120A (en) * 2009-12-14 2011-06-23 Dow Kakoh Kk Styrene-based resin extruded foam
JP2014129449A (en) * 2012-12-28 2014-07-10 Jsp Corp Method for manufacturing polystyrene resin extruded foam board and polystyrene resin extruded foam board
US10107443B2 (en) 2013-10-04 2018-10-23 Orion Engineered Carbons Gmbh Micro-domain carbon material for thermal insulation
WO2015049008A1 (en) 2013-10-04 2015-04-09 Orion Engineered Carbons Gmbh Micro-domain carbon material for thermal insulation
JP2016538232A (en) * 2013-10-04 2016-12-08 オリオン エンジニアード カーボンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microdomain carbon material for thermal insulation
JP2017504702A (en) * 2014-02-03 2017-02-09 ダウ グローバル テクノロジーズ エルエルシー Stable styrene foam with brominated styrene / butadiene copolymer and metal oxide infrared attenuator
KR20170028385A (en) 2014-07-31 2017-03-13 세키스이가세이힝코교가부시키가이샤 Styrene resin foamable particles and production method for same, foam particles, foam molded body, and use for foam molded body
EP3495335A1 (en) 2015-01-14 2019-06-12 Synthos S.A. Process for the production of a geopolymer composite
WO2016113328A1 (en) 2015-01-14 2016-07-21 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11267170B2 (en) 2015-01-14 2022-03-08 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US11447614B2 (en) 2015-01-14 2022-09-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11708306B2 (en) 2015-01-14 2023-07-25 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
WO2018015502A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
JP2018127612A (en) * 2017-02-09 2018-08-16 株式会社カネカ Styrenic resin composition, and method for producing foamable styrenic resin particle

Similar Documents

Publication Publication Date Title
JPS63183941A (en) Heat insulating thermoplastic resin foam
AU2002348044B2 (en) Asphalt-filled polymer foams
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
US5618853A (en) Molded structure comprising a thermoplastic, process for its production and its use
KR100798204B1 (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
HU223710B1 (en) Particle-shaped, expandable styrol polymers, method for the production thereof and polystyrol
TWI601775B (en) Improved expandable vinyl aromatic polymer composition
US4146598A (en) Process for preparing suspension chlorinated crosslinked polyethylene foam
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
US4209473A (en) Crosslinked chlorinated polyethylene foam
JPS5840326A (en) Foamable polyolefin resin composition
CA2399239C (en) Extruded foam product with reduced surface defects
US4220730A (en) Crosslinked chlorinated polyethylene foam
JPH02279739A (en) Foamed article and its manufacture
KR102319646B1 (en) Construction Insulation Material Foam
EP0644912B1 (en) Alkenyl aromatic polymer foams and processes for preparing same
JPH061874A (en) Preexpanded polyethylene resin particle
KR101419457B1 (en) method for manufacturing expandable styrene polymer containing aluminium particles, and expandable styrene polymer produced thereby
JPS585930B2 (en) Nannensei Polyolefin Inhatsupoutai Oyobi Sonoseizohouhou
JPH0456057B2 (en)
RU2223983C2 (en) Composition for manufacturing chemically filled polyolefin foams
KR20240016894A (en) Thermoplastic resin expanded beads and thermoplastic resin expanded beads molded article
JP2001055463A (en) Extruded foam sheet of polypropylene-based resin
JP6505570B2 (en) Foamed particle molded body and radio wave absorber using the same
JP5161593B2 (en) Method for producing expanded polypropylene resin particles